Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction

Abstract

After myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Because the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here we show, in humans and female mice, that hematopoietic progenitor cells increase fatty acid metabolism after MI. Blockade of fatty acid oxidation by deleting carnitine palmitoyltransferase (Cpt1a) in hematopoietic cells of Vav1Cre/+Cpt1afl/fl mice limited hematopoietic progenitor proliferation and myeloid cell expansion after MI. We also observed reduced bone marrow adiposity in humans, pigs and mice after MI. Inhibiting lipolysis in adipocytes using AdipoqCreERT2Atglfl/fl mice or local depletion of bone marrow adipocytes in AdipoqCreERT2iDTR mice also curbed emergency hematopoiesis. Furthermore, systemic and regional sympathectomy prevented bone marrow adipocyte shrinkage after MI. These data establish a critical role for fatty acid metabolism in post-MI emergency hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MI enhances fatty acid metabolism in HSPCs.
Fig. 2: HSPCs display increased fatty acid content in response to MI.
Fig. 3: Fatty acid oxidation is required for emergency hematopoiesis after MI.
Fig. 4: MI reduces bone marrow adiposity.
Fig. 5: Fatty acids from bone marrow adipocytes are required for increased myelopoiesis after MI.
Fig. 6: Local depletion of bone marrow adipocytes leads to reduced emergency hematopoiesis.
Fig. 7: Sympathetic nerve fibers regulate the release of fatty acids from bone marrow adipocytes in response to MI.

Similar content being viewed by others

Data availability

The data were deposited in the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO) and are accessible through GEO series accession number GSE169267. The DepMap public database was used for Extended Data Fig. 2c.

References

  1. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu. Rev. Immunol. 27, 165–197 (2009).

  2. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dutta, P. et al. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells. Cell Stem Cell 16, 477–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sager, H. B. et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119, 853–864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Engstrom, G., Melander, O. & Hedblad, B. Leukocyte count and incidence of hospitalizations due to heart failure. Circ. Heart Fail. 2, 217–222 (2009).

    Article  PubMed  Google Scholar 

  11. Ernst, E., Hammerschmidt, D. E., Bagge, U., Matrai, A. & Dormandy, J. A. Leukocytes and the risk of ischemic diseases. JAMA 257, 2318–2324 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Madjid, M., Awan, I., Willerson, J. T. & Casscells, S. W. Leukocyte count and coronary heart disease: implications for risk assessment. J. Am. Coll. Cardiol. 44, 1945–1956 (2004).

    Article  PubMed  Google Scholar 

  13. Maekawa, Y. et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J. Am. Coll. Cardiol. 39, 241–246 (2002).

    Article  PubMed  Google Scholar 

  14. Ito, K. et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Z. et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 11, e78496 (2022).

  22. Zhang, Z. et al. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica 104, 1731–1743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Virani, S. S. et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141, e139–e596 (2020).

    Article  PubMed  Google Scholar 

  25. Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohli, L. & Passegué, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 24, 479–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang, W. W. et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc. Natl Acad. Sci. USA 110, 3011–3016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rohde, D. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat. Cardiovasc. Res. 1, 28–44 (2022).

    Article  PubMed  Google Scholar 

  30. Ansó, E. et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat. Cell Biol. 19, 614–625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 22, 343 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scheller, E. L. et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6, 7808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen, W. et al. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos. Int. 18, 641–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y., Meng, Y. & Yu, X. The unique metabolic characteristics of bone marrow adipose tissue. Front. Endocrinol. (Lausanne) 10, 69 (2019).

    Article  PubMed  Google Scholar 

  35. Bani Hassan, E. et al. Bone marrow adipose tissue quantification by imaging. Curr. Osteoporos. Rep. 17, 416–428 (2019).

    Article  PubMed  Google Scholar 

  36. Schoiswohl, G. et al. Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Endocrinology 156, 3610–3624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fritsche, K. Fatty acids as modulators of the immune response. Annu. Rev. Nutr. 26, 45–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Tcheng, M. et al. Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood 137, 3518–3532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mistry, J. J. et al. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 12, 7130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, S. et al. Immunometabolism of phagocytes and relationships to cardiac repair. Front. Cardiovasc. Med. 6, 42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin, W., Li, Z. & Zhang, W. Modulation of bone and marrow niche by cholesterol. Nutrients 11, 1394 (2019).

  48. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shillingford, J. P. The red bone marrow in heart failure. J. Clin. Pathol. 3, 24–39 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scheller, E. L. et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 537, 123–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galvez-Monton, C. et al. Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J. Transl. Med. 12, 137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee, S. H., Erber, W. N., Porwit, A., Tomonaga, M. & Peterson, L. C. ICSH guidelines for the standardization of bone marrow specimens and reports. Int. J. Lab. Hematol. 30, 349–364 (2008).

    Article  PubMed  Google Scholar 

  56. Torlakovic, E. E. et al. ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int. J. Lab. Hematol. 37, 431–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2014).

    Article  PubMed  Google Scholar 

  58. Hirsch, A. et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and design of the HEBE trial—a prospective, multicenter, randomized trial. Am. Heart J. 152, 434–441 (2006).

    Article  PubMed  Google Scholar 

  59. Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    Article  PubMed  Google Scholar 

  62. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded, in part, by the National Institutes of Health (NIH) (HL142494, HL139598, HL125428, NS108419 and T32HL076136), the Massachusetts General Hospital (MGH) Research Scholar Program, the Deutsche Forschungsgemeinschaft (RO5071/1-1 to D.R. and SCHL 2221/1-1 to M.J.S.), the Italian Ministry of Health ‘Ricerca Corrente’ (to D.C.) and Siemens Healthineers. J.G. was supported by the German Centre for Cardiovascular Research (DZHK) and the German Research Foundation (DFG, SFB 1470 subproject A4, GR 5261/1-1). The authors thank the MGH Mouse Imaging Program for assistance with imaging, the Center for Skeletal Research Core (NIH P30 AR066261) for histological processing and micro-CT imaging, the Harvard Stem Cell Institute–Center for Regenerative Medicine Flow Cytometry Core for assistance with flow sorting, the Harvard Center for Mass Spectrometry for metabolomics and K. Joyes (Center for Systems Biology) for editing the manuscript. We acknowledge BioRender (BE261P1NT4) for the cartoon component.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., D.R., S.C., M.H., I.-H. L., J.G., L.H., Y.I., M.J.S., K.M., A.P., Y.Z., F.P., R.C., S.P., M.A.B., C.B., B.G., V.T., A.M.v.d.L., J.J.P., H.W.M.N. and D.C. designed, performed and analyzed experiments. I.-H.L. and K.N. analyzed and processed RNA sequencing data. S.Z., D.R., S.C., M.H., A.P., M.A.B., M.A.M., D.C., D.S., F.K.S., K.N. and M.N. discussed results and strategy. O.I.-E., C.G.-M. and A.B.-G. collected and provided human and swine bone marrow specimens. C.V. and S.A.T. performed and analyzed mass spectrometry experiments. S.Z., A.P., D.R. and M.N. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Matthias Nahrendorf.

Ethics declarations

Competing interests

M.N. has been a paid consultant or received research support from Takeda, Novartis, GlaxoSmithKline, Medtronic, Verseaux, Sigilon, Alnylam, IFM Therapeutics, Pfizer, Bitteroot and Molecular Imaging. All other authors declare no conflicts of interest, financial or otherwise.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Glucose uptake capacity of bone marrow GMP post MI and baseline phenotype in Vav1iCre+Cpt1afl/fl mice.

a, Representative flow cytometry plots, showing the gating strategy on GMP. b, Flow histograms and c, statistical analysis of 2-NBD glucose fluorescence in GMP isolated from naive controls and mice on day 1 and 3 post MI. Data are displayed as mean ± s.e.m. (n = 8 per time, Brown-Forsythe and Welsh Anova with Dunnett’s T3 multiple comparison, two independent experiments) d, Experimental design. e, Gating strategy for blood leukocytes. f, Quantification of blood leukocytes in naive Cpt1afl/fl controls and Vav1iCre+Cpt1Afl/fl mice (n = 8 Cpt1afl/fl, n = 7 Vav1Cre+Cpt1afl/fl, two-tailed Welch’s t test, two independent experiments). g, Quantification of HSPC numbers and proliferation in naive Cpt1afl/fl controls and Vav1iCre+Cpt1afl/fl mice (n = 8 Cpt1afl/fl, n = 8 Vav1iCre+Cpt1afl/fl, two-tailed Welch’s t test, two independent experiments). h, Representative flow cytometry plot, gating strategy on GMP and histogram for puromycin quantification. i, GMP glucose dependency and FAO capacity (n = 5 Cpt1afl/fl n = 6 Vav1iCre+Cpt1afl/fl, two-tailed unpaired t-test, two independent experiments). Data are displayed as mean ± SEM.

Source data

Extended Data Fig. 2 Hematopoietic Cpt1a deficiency reduces hematopoiesis.

a, Quantification of blood leukocytes in Cpt1afl/fl controls and Vav1iCre+Cpt1afl/fl mice on day 3 after MI (n = 6 Cpt1afl/fl, n = 7 Vav1iCre+Cpt1afl/fl, two-tailed Welch’s t test, three independent experiments). b, Bone marrow SLAM-LSK numbers and proliferation and leukocyte numbers in Cpt1afl/fl controls and Vav1iCre+Cpt1afl/fl mice on day 3 after MI (n = 6 Cpt1afl/fl, n = 8 Vav1iCre+Cpt1afl/fl, two-tailed Welch’s t test, three independent experiments). Data are displayed as mean ± SEM. c, Gene essentiality (Chronos) scores for CPT1A (red curve) and F13B (blue, a control gene expressed in hematopoietic cells).

Source data

Extended Data Fig. 3 Deletion of Cpt1a from HSPC and their progeny does not change post-MI outcomes 3 weeks later.

a, Experimental Outline. b, Left ventricular morphology and function measured by cardiac magnetic resonance imaging (MRI) 3 weeks after coronary ligation in Cpt1afl/fl controls and Vav1iCre+Cpt1afl/fl mice (n = 7 and 13, two-tailed unpaired t-tests, three independent experiments). Data are displayed as mean ± s.e.m.

Source data

Extended Data Fig. 4 Expanded proliferation of hematopoietic stem and progenitor cells in the adipocyte-rich metaphysis after myocardial infarction.

a, Quantification of adipocytes in femur diaphysis versus metaphysis (n = 9 mice, two-tailed paired t test, three independent experiments). Data are displayed as mean ± SEM.b, Immunofluorescent staining of adipocytes in femur. c, Flow plots of BrdU incorporation into GMP, LSK and SLAM-LSK in the femur diaphysis versus metaphysis in mice on day 3 after MI. d, Quantification of GMP, LSK and SLAM-LSK proliferation in femur diaphysis versus metaphysis (n = 10 mice for diaphysis, n = 10 mice for metaphysis, two-tailed Welch’s t test, three independent experiments). Data are displayed as mean ± SEM e, Quantification of adipocytes number and size on indicated days after surgery (n = 5-6 per time, One-way ANOVA with Tukey’s multiple comparison tests, two independent experiments) Data are displayed as mean ± SEM f, Hematoxylin and eosin (H&E) stain for subcutaneous adipocytes in control mice and on day 3 after MI. g, Quantification of subcutaneous adipocyte size in control mice and on day 3 after MI (n = 20 fields of view for 3control mice, n = 20 fields of view for3 mice with MI, two-tailed Welch’s t test). Data are displayed as mean ± SEM h, H&E stain for visceral adipocytes in control mice and on day 3 after MI. h, Quantification of visceral adipocyte size in control mice and on day 3 after MI (n = 20 fields of view for 3 control mice, n = 20 fields of view for 3 mice with MI, two-tailed Welch’s t test). Data are displayed as mean ± SEM. j, Percentage of counted labeled cells in the respective distance range of a bone marrow adipocyte in control and MI mice (77 cells counted in control and 61 in MI mice, three independent experiments).

Source data

Extended Data Fig. 5 Baseline hematopoiesis and leukocyte profile in AdipoqCreERT2Atglfl/fl mice.

a, Schematic depiction of ATGL-mediated lipolysis and experimental design. b, Quantification of blood leukocytes in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice (n = 8 Atglfl/fl, n = 7 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, two independent experiments). c, Quantification of bone marrow SLAM-LSK, LSK, CMP and GMP numbers in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice (n = 8 Atglfl/fl, n = 7 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, two independent experiments). d, Flow plots of Brdu incorporation into LSK, SLAM-LSK, CMP and GMP in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice. e, Quantification of LSK, SLAM-LSK, CMP and GMP proliferation in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice (n = 8 Atglfl/fl, n = 7 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, two independent experiments). Data are displayed as mean ± SEM.

Source data

Extended Data Fig. 6 Reduced hematopoiesis and myocardial myeloid cell content in AdipoqCreERT2Atglfl/fl mice.

a, Bone marrow adipocyte immunofluorescence images stained with perilipin-1 in Atglfl/fl versus AdipoqCreERT2Atglfl/fl mice 3 days after MI. b, Quantification of adipocyte size (n = 4 Atglfl/fl, n = 6 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, three independent experiments). c, Quantification of blood leukocytes in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice 3 days after MI (n = 9 Atglfl/fl, n = 8 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, three independent experiments). d, Quantification of bone marrow leukocytes in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice 3 days after MI (n = 9 Atglfl/fl, n = 9 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, three independent experiments). e, Flow plots of infiltrated leukocytes in the hearts of Atglfl/fl controls and AdipoqCreERT2Atglfl/fl. f, Quantification of macrophages, monocytes and neutrophils in the myocardium of Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice 3 days after MI (n = 9 Atglfl/fl, n = 9 AdipoqCreERT2Atglfl/fl, two-tailed Welch’s t test, three independent experiments). Data are displayed as mean ± SEM.

Source data

Extended Data Fig. 7 Deletion of Atgl from adipocytes does not change 3 week post-MI outcomes.

a, Experimental Outline. b, Left ventricular morphology and function measured by cardiac magnetic resonance imaging (MRI) 3 weeks after coronary ligation in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice (n = 9 and 10, Unpaired t-tests, two independent experiments). c, Quantification of blood leukocytes, monocytes, neutrophils (PMN) and B cells by flow cytometry 3 weeks after coronary ligation in Atglfl/fl controls and AdipoqCreERT2Atglfl/fl mice. (n = 6 and 7, Unpaired t-tests). Data are displayed as mean ± SEM.

Source data

Extended Data Fig. 8 Flow cytometry gating strategies.

a, Gating strategy for lineage negative cells, used to gate on LK and LSK in Fig. 1g. b, Gating strategy for single live cells used for human HSPC gating. c, Gating strategy for blood leukocytes. The gating on specific cell types is detailed in extended data Fig. 1e.

Supplementary information

Reporting Summary

Supplementary Table 1

Differentially regulated genes ordered by ascending P value in flow-sorted bone marrow GMPs isolated from controls and mice on day 2 after MI, as assessed by RNA-seq. A Wald test was performed, and the P value was adjusted for multiple multiple comparisons based on the Benjamini–Hochberg algorithm to control the FDR.

Supplementary Table 2

Mass spectrometry data for Fig. 1f.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig./Table 1

Statistical source data.

Source Data Extended Data Fig./Table 2

Statistical source data.

Source Data Extended Data Fig./Table 3

Statistical source data.

Source Data Extended Data Fig./Table 4

Statistical source data.

Source Data Extended Data Fig./Table 5

Statistical source data.

Source Data Extended Data Fig./Table 6

Statistical source data.

Source Data Extended Data Fig./Table 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Paccalet, A., Rohde, D. et al. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. Nat Cardiovasc Res 2, 1277–1290 (2023). https://doi.org/10.1038/s44161-023-00388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00388-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing