Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances and future prospects in direct cardiac reprogramming

Abstract

Cardiovascular disease remains a leading cause of death worldwide despite important advances in modern medical and surgical therapies. As human adult cardiomyocytes have limited regenerative ability, cardiomyocytes lost after myocardial infarction are replaced by fibrotic scar tissue, leading to cardiac dysfunction and heart failure. To replace lost cardiomyocytes, a promising approach is direct cardiac reprogramming, in which cardiac fibroblasts are transdifferentiated into induced cardiomyocyte-like cells (iCMs). Here we review cardiac reprogramming cocktails (including transcription factors, microRNAs and small molecules) that mediate iCM generation. We also highlight mechanistic studies exploring the barriers to and facilitators of this process. We then review recent progress in iCM reprogramming, with a focus on single-cell '-omics' research. Finally, we discuss obstacles to clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of direct cardiac reprogramming.
Fig. 2: Direct reprogramming of CFs into CMs in vivo and in vitro.
Fig. 3: Barriers to and facilitators of direct cardiac reprogramming.
Fig. 4: scRNA-seq analyses of direct cardiac reprogramming.

Similar content being viewed by others

References

  1. Murry, C. E., Reinecke, H. & Pabon, L. M. Regeneration gaps: observations on stem cells and cardiac repair. J. Am. Coll. Cardiol. 47, 1777–1785 (2006).

    Article  PubMed  Google Scholar 

  2. Yusuf, S. et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. https://doi.org/10.1056/nejm199108013250501 (1991).

    Article  PubMed  Google Scholar 

  3. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell https://doi.org/10.1016/j.cell.2006.07.024 (2006). This study demonstrated reversion of fibroblasts to pluripotency following overexpression of four TFs.

    Article  PubMed  Google Scholar 

  5. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell https://doi.org/10.1016/j.cell.2010.07.002 (2010). This study identified reprogramming factors that could reprogram CFs into iCMs in vitro.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell https://doi.org/10.1016/0092-8674(87)90585-X (1987). This study demonstrated that overexpression of one TF, MYOD, could change cell fate.

    Article  PubMed  Google Scholar 

  7. Zhou, Y. et al. Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell https://doi.org/10.1016/j.stem.2016.02.003 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, L. et al. Down-regulation of Beclin1 promotes direct cardiac reprogramming. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay7856 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang, P. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature https://doi.org/10.1038/nature10116 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature https://doi.org/10.1038/nature08797 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scesa, G., Adami, R. & Bottai, D. iPSC preparation and epigenetic memory: does the tissue origin matter? Cells 10, 1470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furtado, M. B. et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ. Res. 114, 1422–1434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Protze, S. et al. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J. Mol. Cell. Cardiol. https://doi.org/10.1016/j.yjmcc.2012.04.010 (2012).

    Article  PubMed  Google Scholar 

  14. Sadahiro, T., Yamanaka, S. & Ieda, M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ. Res. 116, 1378–1391 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Vidal, R. et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight 4, e131092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Trial, J. & Cieslik, K. A. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am. J. Physiol. Heart Circ. Physiol. 315, H745–H755 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, L. et al. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.116.305547 (2015). This study optimized the stoichiometry of GMT protein expression, resulting in efficient iCM reprogramming.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature https://doi.org/10.1038/nature11139 (2012). This study demonstrated that GHMT can convert resident CFs into iCMs after MI in mice.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Addis, R. C. et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J. Mol. Cell. Cardiol. https://doi.org/10.1016/j.yjmcc.2013.04.004 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Christoforou, N. et al. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS ONE https://doi.org/10.1371/journal.pone.0063577 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, H. et al. ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes Dev. https://doi.org/10.1101/gad.305482.117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garry, G. A. et al. The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00668-z (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, H. et al. Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes. Cell Stem Cell 29, 1491–1504 (2022). This study found that ASCL1, a neuron-specific TF, could drive efficient cardiac reprogramming together with MEF2C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsao, C. W. et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  25. Xie, Y. et al. MircroRNA-10b promotes human embryonic stem cell-derived cardiomyocyte proliferation via novel target gene LATS1. Mol. Ther. Nucleic Acids https://doi.org/10.1016/j.omtn.2019.11.026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oikonomopoulos, A., Kitani, T. & Wu, J. C. Pluripotent stem cell-derived cardiomyocytes as a platform for cell therapy applications: progress and hurdles for clinical translation. Mol. Ther. 26, 1624–1634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature https://doi.org/10.1038/nature11044 (2012). This study demonstrated the ability of in vivo cardiac reprogramming to repair the heart.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tani, H. et al. Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction. Circulation 147, 223–238 (2023). This study demonstrated that cardiac reprogramming could repair chronic MI with established scars.

    Article  CAS  PubMed  Google Scholar 

  29. Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.112.269035 (2012). This study demonstrated that miRNAs have the ability to convert fibroblasts into iCMs both in vitro and in vivo.

  30. Fu, Y. et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. https://doi.org/10.1038/cr.2015.99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science https://doi.org/10.1126/science.aaf1502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang, C., Tu, W., Fu, Y., Wang, J. & Xie, X. Chemical-induced cardiac reprogramming in vivo. Cell Res. https://doi.org/10.1038/s41422-018-0036-4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, H. et al. Ultraefficient extracellular vesicle-guided direct reprogramming of fibroblasts into functional cardiomyocytes. Sci. Adv. 8, eabj6621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyamoto, K. et al. Direct in vivo reprogramming with Sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell https://doi.org/10.1016/j.stem.2017.11.010 (2018).

    Article  PubMed  Google Scholar 

  35. Chang, Y. et al. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials 192, 500–509 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Fu, J. D. et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports https://doi.org/10.1016/j.stemcr.2013.07.005 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wada, R. et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1304053110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nam, Y. J. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1301019110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Singh, V. P. et al. MiR-590 promotes transdifferentiation of porcine and human fibroblasts toward a cardiomyocyte-like fate by directly repressing specificity protein 1. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.116.003922 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Christoforou, N. et al. Core transcription factors, microRNAs, and small molecules drive transdifferentiation of human fibroblasts towards the cardiac cell lineage. Sci. Rep. https://doi.org/10.1038/srep40285 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh, V. P. et al. Hippo pathway effector Tead1 induces cardiac fibroblast to cardiomyocyte reprogramming. J. Am. Heart Assoc. 10, e022659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, Y. et al. Single-cell transcriptomic analyses of cell fate transitions during human cardiac reprogramming. Cell Stem Cell https://doi.org/10.1016/j.stem.2019.05.020 (2019). This study revealed an early decision point at which a cell decides to either progress toward the CM fate or regress to its initial fibroblast state during human iCM reprogramming.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nam, Y. J. et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development 141, 4267–4278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Z., Villalpando, J., Zhang, W. & Nam, Y. J. Chamber-specific protein expression during direct cardiac reprogramming. Cells 10, 1513 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Van Handel, B., Wang, L. & Ardehali, R. Environmental factors influence somatic cell reprogramming to cardiomyocyte-like cells. Semin. Cell Dev. Biol. 122, 44–49 (2022).

    Article  PubMed  Google Scholar 

  47. Ifkovits, J. L., Addis, R. C., Epstein, J. A. & Gearhart, J. D. Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS ONE https://doi.org/10.1371/journal.pone.0089678 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao, Y. et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat. Commun. https://doi.org/10.1038/ncomms9243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mohamed, T. M. A. et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation https://doi.org/10.1161/CIRCULATIONAHA.116.024692 (2017).

    Article  PubMed  Google Scholar 

  50. Muraoka, N. et al. MiR‐133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. https://doi.org/10.15252/embj.201387605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kurotsu, S. et al. Soft matrix promotes cardiac reprogramming via inhibition of YAP/TAZ and suppression of fibroblast signatures. Stem Cell Reports 15, 612–628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, H., Dickson, M. E., Kim, M. S., Bassel-Duby, R. & Olson, E. N. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1516237112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abad, M. et al. Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity. Stem Cell Reports https://doi.org/10.1016/j.stemcr.2017.01.025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hashimoto, H. et al. Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell https://doi.org/10.1016/j.stem.2019.03.022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Muraoka, N. et al. Role of cyclooxygenase-2-mediated prostaglandin E2–prostaglandin E receptor 4 signaling in cardiac reprogramming. Nat. Commun. 10, 674 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yamakawa, H. et al. Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions. Stem Cell Reports https://doi.org/10.1016/j.stemcr.2015.10.019 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mathison, M. et al. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J. Am. Heart Assoc. 1, e005652 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, Z. et al. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Res. https://doi.org/10.1016/j.scr.2016.02.037 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dal-Pra, S., Hodgkinson, C. P., Mirotsou, M., Kirste, I. & Dzau, V. J. Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.116.308741 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Sevinç, K. et al. BRD9-containing non-canonical BAF complex maintains somatic cell transcriptome and acts as a barrier to human reprogramming. Stem Cell Reports 17, 2629–2642 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Testa, G. et al. Bmi1 inhibitor PTC-209 promotes chemically-induced direct cardiac reprogramming of cardiac fibroblasts into cardiomyocytes. Sci. Rep. 10, 7129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, L. et al. Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discov. https://doi.org/10.1038/celldisc.2016.36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhou, Y. et al. A loss of function screen of epigenetic modifiers and splicing factors during early stage of cardiac reprogramming. Stem Cells Int. 2018, 3814747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kida, Y. S. et al. ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell 16, 547–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5, e13374 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gascón, S. et al. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18, 396–409 (2016).

    Article  PubMed  Google Scholar 

  69. Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, Y. et al. Comparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytes. Cell Rep. 20, 3014–3024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y., Shi, S., Liu, H. & Meng, L. Hypoxia enhances direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells. Cell. Reprogram. https://doi.org/10.1089/cell.2015.0051 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Murray, T. V. A., Ahmad, A. & Brewer, A. C. Reactive oxygen at the heart of metabolism. Trends. Cardiovasc. Med. 24, 113–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Talkhabi, M., Pahlavan, S., Aghdami, N. & Baharvand, H. Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochem. Biophys. Res. Commun. 463, 699–705 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X. et al. Selenium augments microRNA directed reprogramming of fibroblasts to cardiomyocytes via Nanog. Sci. Rep. 6, 23017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paredes, A. et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 618, 365–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Stone, N. R. et al. Context-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogramming. Cell Stem Cell https://doi.org/10.1016/j.stem.2019.06.012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sauls, K. et al. Initiating events in direct cardiomyocyte reprogramming. Cell Rep. https://doi.org/10.1016/j.celrep.2018.01.047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xie, Y., Liu, J. & Qian, L. Direct cardiac reprogramming comes of age: recent advance and remaining challenges. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2021.07.010 (2022).

    Article  PubMed  Google Scholar 

  79. Ali, S. R. et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115, 625–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Z. et al. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature https://doi.org/10.1038/nature24454 (2017). This study constructed the routes of mouse iCM generation using scRNA-seq and discovered the critical role of the splicing factor PTBP1 during mouse cardiac reprogramming.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, L. et al. Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab134 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. https://doi.org/10.1101/gr.190595.115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature https://doi.org/10.1038/nature14590 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature https://doi.org/10.1038/s41586-021-03887-4 (2021).

    Article  PubMed  Google Scholar 

  85. Rotem, A. et al. Single-cell ChIP–seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. https://doi.org/10.1038/nbt.3383 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Karemaker, I. D. & Vermeulen, M. Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.04.002 (2018).

    Article  PubMed  Google Scholar 

  87. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods https://doi.org/10.1038/nmeth.4380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xie, Y. et al. Translational landscape of direct cardiac reprogramming reveals a role of Ybx1 in repressing cardiac fate acquisition. Nat. Cardiovasc. Res. 2, 1060–1077 (2023).

    Article  Google Scholar 

  89. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaur, K. et al. Direct reprogramming induces vascular regeneration post muscle ischemic injury. Mol. Ther. 29, 3042–3058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barnabei, M. S., Palpant, N. J. & Metzger, J. M. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiol. Genomics 42A, 103–113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vaillant, F. et al. Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am. J. Physiol. Heart Circ. Physiol. 306, H78–H87 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Park, S. et al. Genetic regulation of fibroblast activation and proliferation in cardiac fibrosis. Circulation 138, 1224–1235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.A. is supported by US National Institutes of Health (NIH) grants R01 NS112256, R01 HL148714 and R01 GM127985. Y.X. is supported by American Heart Association (AHA) grant 23POST1026377. L.Q. is supported by AHA grant 20EIA35310348 and NIH‒NHLBI grant R35HL155656.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. wrote the draft and created figures. B.V.H., L.Q. and R.A. made key edits and additions.

Corresponding author

Correspondence to Reza Ardehali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Gentaro Ikeda, Taketaro Sadahiro and Kunhua Song for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Van Handel, B., Qian, L. et al. Recent advances and future prospects in direct cardiac reprogramming. Nat Cardiovasc Res 2, 1148–1158 (2023). https://doi.org/10.1038/s44161-023-00377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00377-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing