Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atherosclerosis antigens as targets for immunotherapy

Abstract

Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BCR and TCR characterization of human and mouse samples using single-cell techniques.
Fig. 2: Overview of atherosclerosis-associated antigens and antibodies.
Fig. 3: Experimental vaccination strategies targeting the immune system.

Similar content being viewed by others

References

  1. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27, 165–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Glass, C. K. & Witztum, J. L. Atherosclerosis. the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).

    CAS  PubMed  Google Scholar 

  7. Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  Google Scholar 

  10. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol. 22, 251–265 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Pradhan, A. D., Aday, A. W., Rose, L. M. & Ridker, P. M. Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy. Circulation 138, 141–149 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). The CANTOS clinical trial showed that anti-inflammatory therapy targeting the IL-1β with canakinumab led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering.

    Article  CAS  PubMed  Google Scholar 

  14. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Song, L., Leung, C. & Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Invest. 108, 251–259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reardon, C. A. et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 1011–1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ruterbusch, M., Pruner, K. B., Shehata, L. & Pepper, M. In vivo CD4+ T cell differentiation and function: revisiting the TH1/TH2 paradigm. Annu. Rev. Immunol. 38, 705–725 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006). Using various loss and gain of function approches the authors showed that Treg cells inhibit atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  21. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amersfoort, J. et al. Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells. Cardiovasc. Res. 117, 1309–1324 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Shao, Y. et al. IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight https://doi.org/10.1172/jci.insight.152511 (2021).

  25. Tiemessen, M. M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA 104, 19446–19451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffman, W., Lakkis, F. G. & Chalasani, G. B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol. 11, 137–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Palinski, W. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl Acad. Sci. USA 86, 1372–1376 (1989). This seminal work provides evidence, using three complementary approaches, for the oxidation of LDL in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenfeld, M. E., Palinski, W., Ylä-Herttuala, S., Butler, S. & Witztum, J. L. Distribution of oxidation specific lipid–protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 10, 336–349 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Orekhov, A. N. et al. Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation. Arterioscler. Thromb. 11, 316–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Salonen, J. T. et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339, 883–887 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Ylä-Herttuala, S. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 14, 32–40 (1994).

    Article  Google Scholar 

  35. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gräbner, R. et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 1174–1185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G. K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109, 745–753 (2002). This work showed that splenoctemy of hypercholestolemic Apo E-deficient mice aggravated atherosclerosis and that adoptive transfer of spleen B cells conferred atheroprotection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Major, A. S., Fazio, S. & Linton, M. F. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 22, 1892–1898 (2002). Pro-atherogenic LDLR-deficient mice transferred with B cell-deficient bone marrow showed aggravated atherosclerosis, indicating atheroprotection by B cells and/or antibodies.

    Article  CAS  PubMed  Google Scholar 

  40. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120, 417–426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doran, A. C. et al. B-cell aortic homing and atheroprotection depend on Id3. Circ. Res. 110, e1–e12 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010). B cell depletion in pro-atherosclerotic mice with anti-CD20 ameliorated atherosclerosis, indicating an atherogenic role for B cells, or a subset of them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kyaw, T. et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS ONE 7, e29371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice–brief report. Arterioscler. Thromb. Vasc. Biol. 32, 1573–1576 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Kyaw, T. et al. BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE−/− mice. PLoS ONE 8, e60430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res. 109, 830–840 (2011). Transfer of B1a cells into spleplenectomized mice attenuated atherosclerosis in an IgM-dependent manner. This work shows atheroprotection by B1a cells through IgM production.

    Article  CAS  PubMed  Google Scholar 

  48. Rosenfeld, S. M. et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ. Res. 117, e28–e39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000). This work showed that the variable region of E06 antibody cloned from atherosclerotic ApoE-deficient mice is identical to B1 T15 antibody, specific for phophorylcholine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Binder, C. J. et al. The role of natural antibodies in atherogenesis. J. Lipid Res. 46, 1353–1363 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129, 1677–1687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsiantoulas, D. et al. B cell-activating factor neutralization aggravates atherosclerosis. Circulation 138, 2263–2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tay, C. et al. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc. Res. 111, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017). Using a genetic model, this work shows that marginal zone B cells attenuates atherosclerosis development through the inhibition of TFH cells.

  55. Nus, M. et al. NR4A1 deletion in marginal zone B cells exacerbates atherosclerosis in mice–brief report. Arterioscler. Thromb. Vasc. Biol. 40, 2598–2604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guillamat-Prats, R. et al. GPR55 in B cells limits atherosclerosis development and regulates plasma cell maturation. Nat. Cardiovasc. Res. 1, 1056–1071 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler. Thromb. Vasc. Biol. 38, e71–e84 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Mach, F., Schönbeck, U., Sukhova, G. K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Centa, M. et al. Germinal center-derived antibodies promote atherosclerosis plaque size and stability. Circulation 139, 2466–2482 (2019).

    Article  PubMed  Google Scholar 

  61. Clement, M. et al. Control of the T follicular helper-germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Sage, A. P. et al. X-box binding protein-1 dependent plasma cell responses limit the development of atherosclerosis. Circ. Res. 121, 270–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Trezise, S. & Nutt, S. L. The gene regulatory network controlling plasma cell function. Immunol. Rev. 303, 23–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martos-Folgado, I. et al. MDA-LDL vaccination induces athero-protective germinal-center-derived antibody responses. Cell Rep. 41, 111468 (2022). This work characterized the repertoire of antibodies elicited by MDA-LDL vaccination and showed that germinal-center derived antibodies contribute to atheroprotection.

    Article  CAS  PubMed  Google Scholar 

  66. Ikeda, J. et al. Radiation impacts early atherosclerosis by suppressing intimal LDL accumulation. Circ. Res. 128, 530–543 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Schiller, N. K., Kubo, N., Boisvert, W. A. & Curtiss, L. K. Effect of gamma-irradiation and bone marrow transplantation on atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 1674–1680 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Gjurich, B. N., Taghavie-Moghadam, P. L., Ley, K. & Galkina, E. V. L-selectin deficiency decreases aortic B1a and Breg subsets and promotes atherosclerosis. Thromb. Haemost. 112, 803–811 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Strom, A. C. et al. B regulatory cells are increased in hypercholesterolaemic mice and protect from lesion development via IL-10. Thromb. Haemost. 114, 835–847 (2015).

    Article  PubMed  Google Scholar 

  70. Sage, A. P. et al. Regulatory B cell-specific interleukin-10 is dispensable for atherosclerosis development in mice. Arterioscler. Thromb. Vasc. Biol. 35, 1770–1773 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Douna, H. et al. Bidirectional effects of IL-10+ regulatory B cells in Ldlr−/− mice. Atherosclerosis 280, 118–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, T. X. et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open 8, e022452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. ClinicalTrials.gov. Low-dose interleukin-2 for the reduction of vascular inflammation in acute coronary syndromes (IVORY) NCT04241601 (2020).

  74. Inaba, A. et al. Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat. Commun. 14, 2071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hernández-Vargas, P. et al. Fcgamma receptor deficiency confers protection against atherosclerosis in apolipoprotein E knockout mice. Circ. Res. 99, 1188–1196 (2006).

    Article  PubMed  Google Scholar 

  76. Kelly, J. A. et al. Inhibition of arterial lesion progression in CD16-deficient mice: evidence for altered immunity and the role of IL-10. Cardiovasc. Res. 85, 224–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Mendez-Fernandez, Y. V. et al. The inhibitory FcγRIIb modulates the inflammatory response and influences atherosclerosis in male apoE−/− mice. Atherosclerosis 214, 73–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, M. et al. FcgammaRIIB inhibits the development of atherosclerosis in low-density lipoprotein receptor-deficient mice. J. Immunol. 184, 2253–2260 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Ng, H. P., Zhu, X., Harmon, E. Y., Lennartz, M. R. & Nagarajan, S. Reduced atherosclerosis in apoE-inhibitory FcγRIIb-deficient mice is associated with increased anti-inflammatory responses by T cells and macrophages. Arterioscler. Thromb. Vasc. Biol. 35, 1101–1112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lorenzo, C. et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 589, 287–292 (2021). Using an unbiased single-cell antibody sequencing approach, this work identified ALDH4A1 as a new atherosclerosis-associated antigen and potential immunotherapeutic target.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, J. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe−/− mice. J. Clin. Invest. 121, 3564–3577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, X. et al. IgE contributes to atherosclerosis and obesity by affecting macrophage polarization, macrophage protein network, and foam cell formation. Arterioscler. Thromb. Vasc. Biol. 40, 597–610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kounis, N. G. & Hahalis, G. Serum IgE levels in coronary artery disease. Atherosclerosis 251, 498–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Guo, X. et al. Serum IgE levels are associated with coronary artery disease severity. Atherosclerosis 251, 355–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc. Res. 117, 2544–2562 (2021).

    CAS  PubMed  Google Scholar 

  86. Taylor, J. A., Hutchinson, M. A., Gearhart, P. J. & Maul, R. W. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun. Ageing 19, 59 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Abplanalp, W. T., Tucker, N. & Dimmeler, S. Single-cell technologies to decipher cardiovascular diseases. Eur. Heart J. 43, 4536–4547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Slenders, L., Tessels, D. E., van der Laan, S. W., Pasterkamp, G. & Mokry, M. The applications of single-cell RNA sequencing in atherosclerotic disease. Front. Cardiovasc. Med. 9, 826103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fernandez, D. M. & Giannarelli, C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat. Rev. Cardiol. 19, 43–58 (2022).

    Article  PubMed  Google Scholar 

  90. Vallejo, J., Cochain, C., Zernecke, A. & Ley, K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-seq. Cardiovasc. Res. 117, 2537–2543 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Q. et al. Single-cell RNA sequencing in atherosclerosis: mechanism and precision medicine. Front. Pharmacol. 13, 977490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020). This early meta-analysis of scRNA-seq and mass cytometry studies provided a comprehensive view of functionally distinct subsets of macrophages and T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zernecke, A. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc. Res. 119, 1676–1689 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019). This work provided an unprecedented perspective of the immune cells in human atherosclerosis plaques, including the identification of distinct macrophage and T cell subsets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paulsson, G., Zhou, X., Törnquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Lin, Z. et al. Deep sequencing of the T cell receptor β repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients. Oncotarget 8, 99312–99322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023).

    Article  Google Scholar 

  99. Chowdhury, R. R. et al. Human coronary plaque T cells are clonal and cross-react to virus and self. Circ. Res. 130, 1510–1530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B(100)-reactive CD4+ T-regulatory cells. Circulation 142, 1279–1293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saigusa, R. et al. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat. Cardiovasc. Res. 1, 462–475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Freuchet, A. et al. Identification of human exT(reg) cells as CD16+CD56+ cytotoxic CD4+ T cells. Nat. Immunol. 24, 1748–1761 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Nettersheim, F. S. et al. Single-cell transcriptomes and T cell receptors of vaccine-expanded apolipoprotein B-specific T cells. Front. Cardiovasc. Med. 9, 1076808 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018). Pioneer study of the immune cells in mouse atherosclerotic aorta by scRNA-seq and mass spectrometry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, X. et al. Single-cell RNA sequencing reveals B cell–T cell interactions in vascular adventitia of hyperhomocysteinemia-accelerated atherosclerosis. Protein Cell 13, 540–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gu, W. et al. Adventitial cell atlas of WT (wild type) and ApoE (apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler. Thromb. Vasc. Biol. 39, 1055–1071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvad099 (2023).

  111. Hamze, M. et al. Characterization of resident B cells of vascular walls in human atherosclerotic patients. J. Immunol. 191, 3006–3016 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, S. et al. Deep sequencing reveals the skewed B-cell receptor repertoire in plaques and the association between pathogens and atherosclerosis. Cell Immunol. 360, 104256 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Upadhye, A. et al. Diversification and CXCR4-dependent establishment of the bone marrow B-1a cell pool governs atheroprotective IgM production linked to human coronary atherosclerosis. Circ. Res. 125, e55–e70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Busse, C. E., Czogiel, I., Braun, P., Arndt, P. F. & Wardemann, H. Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol. 44, 597–603 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Palinski, W. et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10, 325–335 (1990).

    Article  CAS  PubMed  Google Scholar 

  117. Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest. 98, 800–814 (1996). In this study, fusion of spleen B cells from ApoE deficient mice and screening for binding to LDL forms identified a collection of E0 antibodies, including the E06 antibody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hörkkö, S. et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest. 103, 117–128 (1999). This work shows that anti-OxLDL E06 antibody cloned from ApoE-deficient mice prevents the binding and degradation of CuOx-LDL by macrophages.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem. 275, 9163–9169 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Friedman, P., Horkko, S., Steinberg, D., Witztum, J. L. & Dennis, E. A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J. Biol. Chem. 277, 7010–7020 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Prasad, A. et al. Relationship of autoantibodies to MDA-LDL and ApoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Arterioscler. Thromb. Vasc. Biol. 37, 1213–1221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nilsson, J. & Hansson, G. K. Vaccination strategies and immune modulation of atherosclerosis. Circ. Res. 126, 1281–1296 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Hulthe, J. Antibodies to oxidized LDL in atherosclerosis development–clinical and animal studies. Clin. Chim. Acta 348, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Iseme, R. A. et al. A role for autoantibodies in atherogenesis. Cardiovasc. Res. 113, 1102–1112 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Fredrikson, G. N. et al. Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia 52, 1426–1433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Björkbacka, H. et al. Low levels of apolipoprotein B-100 autoantibodies are associated with increased risk of coronary events. Arterioscler. Thromb. Vasc. Biol. 36, 765–771 (2016).

    Article  PubMed  Google Scholar 

  129. Sjögren, P. et al. High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur. Heart J. 29, 2218–2226 (2008).

    Article  PubMed  Google Scholar 

  130. Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359–1370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang, M. K. et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl Acad. Sci. USA 96, 6353–6358 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736–743 (2003). Immunization with Streptococcus pneumoniae induced high titers of anti-oxLDL IgM antibodies and decreased atherosclerosis, indicating molecular mimicry between epitopes in oxLDL and S. pneumoniae.

    Article  CAS  PubMed  Google Scholar 

  135. Fredrikson, G. N. et al. Autoantibody against the amino acid sequence 661-680 in apo B-100 is associated with decreased carotid stenosis and cardiovascular events. Atherosclerosis 194, e188–e192 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Engelbertsen, D. et al. Low Levels of IgM antibodies against an advanced glycation endproduct-modified apolipoprotein B100 peptide predict cardiovascular events in nondiabetic subjects. J. Immunol. 195, 3020–3025 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Matsuura, E. et al. Anti-beta 2-glycoprotein I autoantibodies and atherosclerosis. Int. Rev. Immunol. 21, 51–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Shen, Z., Ye, C., McCain, K. & Greenberg, M. L. The role of cardiolipin in cardiovascular health. BioMed. Res. Int. 2015, 891707 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Teixeira, P. C. et al. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases. J. Biol. Chem. 289, 28249–28259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang, Y. et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat. Med. 20, 193–203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dunér, P. et al. Immunization of apoE−/− mice with aldehyde-modified fibronectin inhibits the development of atherosclerosis. Cardiovasc. Res. 91, 528–536 (2011).

    Article  PubMed  Google Scholar 

  142. Dunér, P. et al. Increased aldehyde-modification of collagen type IV in symptomatic plaques–a possible cause of endothelial dysfunction. Atherosclerosis 240, 26–32 (2015).

    Article  PubMed  Google Scholar 

  143. Hörkkö, S. et al. Antiphospholipid antibodies are directed against epitopes of oxidized phospholipids. Recognition of cardiolipin by monoclonal antibodies to epitopes of oxidized low density lipoprotein. J. Clin. Invest. 98, 815–825 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  144. DiDonato, J. A. et al. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J. Biol. Chem. 289, 10276–10292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shao, B. et al. Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J. Biol. Chem. 285, 18473–18484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mayr, M. et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99, 1560–1566 (1999). Antibodies against bacterial HSPs were identified from serum of participants with antherosclerosis, which cross-reacted with human HSPs and showed endothelial cytotoxicity.

    Article  CAS  PubMed  Google Scholar 

  147. Schett, G. et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J. Clin. Invest. 96, 2569–2577 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. George, J., Afek, A., Gilburd, B., Shoenfeld, Y. & Harats, D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol. 38, 900–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Xu, Q. et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341, 255–259 (1993). This study showed an association between anti-HSP65 titers and carotid atherosclerosis in a cohort of subclinical donors.

    Article  CAS  PubMed  Google Scholar 

  150. Wick, G., Jakic, B., Buszko, M., Wick, M. C. & Grundtman, C. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11, 516–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Martin-Ventura, J. L. et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 110, 2216–2219 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Seibert, T. A. et al. Serum heat shock protein 27 levels represent a potential therapeutic target for atherosclerosis: observations from a human cohort and treatment of female mice. J. Am. Coll. Cardiol. 62, 1446–1454 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Ghayour-Mobarhan, M. et al. Antibody titres to heat shock protein 27 are elevated in patients with acute coronary syndrome. Int. J. Exp. Pathol. 89, 209–215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, Y. X. et al. HSP25 vaccination attenuates atherogenesis via upregulation of LDLR expression, lowering of PCSK9 levels and curbing of inflammation. Arterioscler. Thromb. Vasc. Biol. 41, e338–e353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Crane, E. D. et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight https://doi.org/10.1172/jci.insight.99363 (2018).

  156. Hutchinson, M. A. et al. Auto-antibody production during experimental atherosclerosis in ApoE−/− mice. Front. Immunol. 12, 695220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y. P., Zhang, T. N., Wen, R., Liu, C. F. & Yang, N. Role of posttranslational modifications of proteins in cardiovascular disease. Oxid. Med. Cell Longev. 2022, 3137329 (2022).

    PubMed  PubMed Central  Google Scholar 

  158. Gao, J. et al. The involvement of post-translational modifications in cardiovascular pathologies: focus on SUMOylation, neddylation, succinylation, and prenylation. J. Mol. Cell. Cardiol. 138, 49–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92, 821–825 (1995). In this pioneer study, immunization with MDA-LDL showed atheroprotection in rabbits, a seminal contribution to open immunotherapeutic perspectives in cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 16, 1074–1079 (1996). Together with Palinski et al.159, this work pioneered the concept of vaccination in atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  161. Nilsson, J. et al. Immunization with homologous oxidized low density lipoprotein reduces neointimal formation after balloon injury in hypercholesterolemic rabbits. J. Am. Coll. Cardiol. 30, 1886–1891 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Freigang, S., Hörkkö, S., Miller, E., Witztum, J. L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18, 1972–1982 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Hansson, G. K. Vaccination against atherosclerosis: science or fiction? Circulation 106, 1599–1601 (2002).

    Article  PubMed  Google Scholar 

  164. Caligiuri, G. et al. Phosphorylcholine-targeting immunization reduces atherosclerosis. J. Am. Coll. Cardiol. 50, 540–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Gonen, A. et al. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine. J. Lipid Res. 55, 2137–2155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fredrikson, G. N. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol. 23, 879–884 (2003). Using a library of native and MDA-modified ApoB peptides, this study showed that immunization with ApoB peptides reduce atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  167. Khallou-Laschet, J. et al. Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis 184, 330–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A. K. & Hansson, G. K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 108–114 (2001). This study showed that immunization with MDA-LDL exerted atheroprotection that was associated with T cell-dependent elevation of IgG antibodies against MDA-LDL and oxLP.

    Article  CAS  PubMed  Google Scholar 

  169. Fredrikson, G. N. et al. Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2-specific antibody expression. Autoimmunity 38, 171–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Faria-Neto, J. R. et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189, 83–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Gisterå, A. et al. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation 138, 2513–2526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018). Ldlr−/− mice transgenic for a single chain variable fragment (scFV) of E06 antibody under an Apoe promoter showed decreased atherosclerosis. This is a seminal work supporting the use of immunotherapy to inactivate oxidized phospholipid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. van Puijvelde, G. H. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114, 1968–1976 (2006). Induction of tolerance by oral administration of oxLDL resulted in an increase of Treg cells and attenuated atherosclerosis in Ldlr−/− mice fed with a Western diet.

    Article  PubMed  Google Scholar 

  176. Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 946–952 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Herbin, O. et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 605–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Hermansson, A. et al. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123, 1083–1091 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Xu, Q. et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb. 12, 789–799 (1992).

    Article  CAS  PubMed  Google Scholar 

  180. George, J. et al. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler. Thromb. Vasc. Biol. 19, 505–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Harats, D., Yacov, N., Gilburd, B., Shoenfeld, Y. & George, J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J. Am. Coll. Cardiol. 40, 1333–1338 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. van Puijvelde, G. H. et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2677–2683 (2007).

    Article  PubMed  Google Scholar 

  183. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  184. Grundtman, C. et al. Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis 242, 303–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Klingenberg, R., Ketelhuth, D. F., Strodthoff, D., Gregori, S. & Hansson, G. K. Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe−/− mice. Immunobiology 217, 540–547 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Ma, Z. et al. Peptide vaccine against ADAMTS-7 ameliorates atherosclerosis and postinjury neointima hyperplasia. Circulation 147, 728–742 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Davidson, M. H. et al. The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 169, 113–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Bourinbaiar, A. S. & Jirathitikal, V. Safety and efficacy trial of adipose-tissue derived oral preparation V-6 Immunitor (V-6): results of open-label, two-month, follow-up study. Lipids Health Dis. 9, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bourinbaiar, A. S. & Jirathitikal, V. Effect of oral immunization with pooled antigens derived from adipose tissue on atherosclerosis and obesity indices. Vaccine 28, 2763–2768 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Zeitlinger, M. et al. A phase I study assessing the safety, tolerability, immunogenicity, and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9. Eur. J. Clin. Pharmacol. 77, 1473–1484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493–494 (2015).

    Article  PubMed  Google Scholar 

  192. Fröbert, O. et al. Design and rationale for the Influenza vaccination After Myocardial Infarction (IAMI) trial. A registry-based randomized clinical trial. Am. Heart J. 189, 94–102 (2017).

    Article  PubMed  Google Scholar 

  193. Ren, S. et al. Rationale and design of a randomized controlled trial of pneumococcal polysaccharide vaccine for prevention of cardiovascular events: The Australian Study for the Prevention through Immunization of Cardiovascular Events (AUSPICE). Am. Heart J. 177, 58–65 (2016).

    Article  PubMed  Google Scholar 

  194. Ren, S. et al. Generation of cardio-protective antibodies after pneumococcal polysaccharide vaccine: early results from a randomised controlled trial. Atherosclerosis 346, 68–74 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Saravia, J., Chapman, N. M. & Chi, H. Helper T cell differentiation. Cell Mol. Immunol. 16, 634–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xu, H., et al. 295–305 (Elsevier, 2023).Xu, H., Yusuf, N. & Elmets, C. A. in Clinical Immunology (Sixth Edition) (eds Robert R. Rich et al.) 295-305 (Elsevier, 2023)

  197. Zhu, J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 75, 14–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Meng, X. et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 13, 167–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Matz, H. C., McIntire, K. M. & Ellebedy, A. H. ‘Persistent germinal center responses: slow-growing trees bear the best fruits’. Curr. Opin. Immunol. 83, 102332 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Cerutti, A., Cols, M. & Puga, I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13, 118–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Smith, F. L. & Baumgarth, N. B-1 cell responses to infections. Curr. Opin. Immunol. 57, 23–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Baumgarth, N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front. Immunol. 7, 324 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Rosser, E. C. & Mauri, C. The emerging field of regulatory B cell immunometabolism. Cell Metab. 33, 1088–1097 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Ulbrich, J., Lopez-Salmeron, V. & Gerrard, I. BD Rhapsody single-cell analysis system workflow: from sample to multimodal single-cell sequencing data. Methods Mol. Biol. 2584, 29–56 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Saigusa, R., Durant, C. P., Suryawanshi, V. & Ley, K. Single-cell antibody sequencing in atherosclerosis research. Methods Mol. Biol. 2419, 765–778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I.R.-G. is a fellow of the Ministerio de Educación y Formación Profesional (FPU20/01814) A.R.-R. is fellow of the research training program funded by Ministerio de Ciencia, Innovación y Universidades (PRE2020-091873) and A.R.R. is supported by Spanish National Center for Cardiovascular Research (CNIC). A.R.R. has received funding from la Caixa Banking Foundation under the project code HR22-0253 and from PID2019-106773RB-I00/AEI/10.13039/501100011033 (Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 Programa Estatal de I + D + i Orientada a los Retos de la Sociedad Retos Investigación: Proyectos I + D + i 2016, Ministerio de Economía, Industria y Competitividad) and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) as well as from INMUNOVAR-CM P2022/BMD-733 grant funded by the Biomedicine Program 2022 of Comunidad Autónoma de Madrid. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). Correspondence should be addressed to A.R.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena R. Ramiro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Christoph Binder, Joseph Witztum, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raposo-Gutiérrez, I., Rodríguez-Ronchel, A. & Ramiro, A.R. Atherosclerosis antigens as targets for immunotherapy. Nat Cardiovasc Res 2, 1129–1147 (2023). https://doi.org/10.1038/s44161-023-00376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00376-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing