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Critical shiftsin lipid metabolism promote
megakaryocyte differentiationand
proplatelet formation
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During megakaryopoiesis, megakaryocytes (MKs) undergo cellular
morphological changes with strong modification of membrane composition
and lipid signaling. Here, we adopt a lipid-centric multiomics approach

to create a quantitative map of the MK lipidome during maturation and
proplatelet formation. Datareveal that MK differentiation is driven by
anincreased fatty acylimport and de novo lipid synthesis, resulting in an
anionic membrane phenotype. Pharmacological perturbation of fatty acid
import and phospholipid synthesis blocked membrane remodeling and
directly reduced MK polyploidization and proplatelet formation, resulting
inthrombocytopenia. The anionic lipid shift during megakaryopoiesis

was paralleled by lipid-dependent relocalization of the scaffold protein
CKIP-1and recruitment of the kinase CK2a to the plasma membrane, which
seems to be essential for sufficient platelet biogenesis. Overall, this study
provides aframework to understand how the MK lipidome is altered during
maturation and the effect of MK membrane lipid remodeling on MK kinase
signalinginvolved in thrombopoiesis.

Deriving from pluripotent hematopoietic stem cells in the bone differentiation (megakaryopoiesis) affect platelet generation or func-
marrow, megakaryocytes (MKs) are responsible for the production  tion and can result in clinically significant disorders. Thrombocyto-
of platelets, thus being essential for hemostasis and vascular integ-  penia or impaired platelet function might lead to disrupted primary
rity. Since MKs produce thousands of platelets, irregularities in MK hemostasis withincreasedrisk of bleeding. In contrast, elevated platelet
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counts (thrombocythemia) or excessive platelet activation increases
therisk for thrombotic events and ischemic diseases'.

After the hematopoietic stem cell was discovered more than
150 years ago®?, the description of megakaryopoiesis at the omics
scaleis still inits infancy, although the cellular processes underlying
megakaryopoiesis are now well defined*. MKs become polyploid during
their maturation owing to endomitotic processes and reach diameters
of up to 100 um. However, they only occur with a frequency of 0.2%
when compared with other nucleated blood cells, making them difficult
tostudy. The entire process of megakaryopoiesisisaccompanied by a
substantial membrane reorganization, including shaping alobulated
nuclear envelope, packing granules, generating the lipid-rich demarca-
tionmembrane system’, and MK polarization toward the protrusion of
proplateletsinto the sinusoids of the bone marrow®. Altogether, these
processes makeit necessary toadapt membrane properties constantly.
In particular, sphingolipid metabolism and signaling’” are indicated
inthe elongation of proplatelet extensions and the shedding process
of platelets. Recently, there is growing scientificevidence that de novo
lipogenesis may modulate MK maturation and platelet production™. It
has been reported that maturating MKs incorporate fatty acids (FAs)
released by adipocytes closely located to MKs in the bone marrow to
facilitate thrombopoiesis™. Consequently, the FA transfer from adi-
pocytes to MKs hasimportant clinical implications in obesity-related
cardiovascular thrombotic complications.

However, despite its high clinical importance, the MK lipidome
composition is still ill defined, and the lipid-dependent processes
during MK maturation and platelet biogenesis are largely unknown.

Theexistence of more than 350 lipids in platelets™ with the capabil-
ity toinfluence membrane geometry and platelet signaling” demands
a systematic large-scale modulation potential of the lipid metabolism
inMKs. Over thelast 10 years, mass spectrometry (MS) hasevolved into
the state-of-the-art technology for lipid analysis. Theimprovementsin
sensitivity, speed and resolution, coupled with developmentsin systems
biology™, ease of access to lipid databases” and search engines, and the
availability of lipid standards for accurate quantification, have made it
possible to explore various aspects of lipid function and regulation®.
Present-day lipidomicstools provide access to understand lipids’ com-
plexity, homeostatic regulation, and role in differentiation, thuslinking
lipids to diseases and cellularimpairments such as platelet dysfunction.
Therefore, itis astonishing that neither a quantitative lipid inventory nor
amap of the lipid metabolism of MKs is currently available.

Additionally, information gained from multiomics is more valu-
able whenextracted frommultiple layers of evidence of one biological
sample. This accounts for missing values and points to new molecular
mechanisms and interactions. Although lipidomics and proteomics
have beensuccessfully applied toinvestigate different blood cells, the
potential of multiomics has yet to be fully explored. Here, we estab-
lished amultiomics extraction strategy and quantitative MS workflow
todetermine lipid metabolism and its modulating effect on megakary-
opoiesis and proplatelet formation. Using this unique approach, we

were able to define regulatory metabolic mechanisms shaping the MK
lipidome during MK maturation. These mechanisms directly influence
the processesthat are critically involved in thrombopoiesis, and their
inhibition results in profound thrombocytopenia.

Results

Dynamic lipid metabolism modulation in megakaryopoiesis
For multiomics method development, hematopoietic stem cells were
isolated from bone marrow of10-14-week-old male mice and subjected
to a 7-day differentiation protocol. The SIMPLEX workflow (Fig. 1a),
which enables simultaneous lipid and protein sample preparation,
was used to determine their general molecular composition” . The
differentiation efficiency was monitored by immunocytochemistry
staining of the MK surface marker GPIb and the nuclear lobulation
using a DRAQ5 DNA stain (Fig. 1b). The MS-based global proteomics
analysis was integrated with top-down shotgun and targeted lipidom-
ics to establish the multiomics workflow (Fig. 1a). In total, 4,651 pro-
teins, with two or more unique peptides, were identified and relatively
quantified by nano-liquid chromatography (nLC) high-resolution MS.
Across the time course of differentiation, comparing all days, 3,152
proteins were significantly regulated, with approximately 1,908 pro-
teins displaying continuous upregulation, 1,189 showing downregula-
tion, and about 55 were transiently regulated. During MK maturation,
protein regulation mostly occurred between days 1 and 3, with 593
proteins being upregulated and 455 downregulated (Extended Data
Fig.1a). Computing fuzzy c-means clustering of all regulated proteins
(P<0.01) from day O to day 7, we identified 39 distinct clusters using
asimilarity threshold of 85% (Fig. 1c and Extended Data Figs. 2 and 3).
Here, 607 proteins showed an overall downward trend, whereas 979
proteins showed anupward trend. In asubsequent pathway enrichment
analysis, considering significantly regulated proteins from day O to
day 7withalog,(fold change) of >2 or <-2 (Fig. 1d), pathway hallmarks
of megakaryopoiesis were enriched, such as platelet and extracel-
lular matrix receptor activation (Fig. 1e). However, most strikingly,
seven lipid-specific pathways were identified under the top 15 most
enriched biosynthesis pathways, ranging from steroid biosynthesis
over the PPAR signaling pathway to FA elongation (Fig. 1e), pointing to
astrong dependency of MK differentiation on lipid metabolism. The
datawere particularly analyzed for markers to underscore the enrich-
ment analysis and further evaluate the differentiation process and the
discovered link to lipid metabolism. MK differentiation markers such
as RUNX1, RUNX3 and GATAL1 (refs. 20-22) and surface markers such as
GPIb, CD36, VWF, GPV, GPNMB and integrins*** were monitored and
shown to be highly regulated (Fig. 1f). Moreover, specific domains of
lipid metabolism, such as the FA receptors, transporters, the FA syn-
thetase itself or mitochondrial FA importers are highly upregulatedin
maturating MKs (Fig. 1g and Extended Data Fig. 1b). Futhermore, the
metabolism of complex lipids such as phospholipids, sphingolipids
and sterolsis elevated, whereas other enzymes derived from oxylipin
metabolism were downregulated or unregulated as indicated by their

Fig.1| Global proteomics analysis highlights key changes of proteins
steering MK maturation. a, Multiomics workflow for the quantitative
assessment of the lipidome and proteome of maturating MKs. b, Representative
immunofluorescence staining of GPIb (platelet glycoprotein Ib B-chain, green)
expressed in the late stage of MK maturation and platelets (n = 6). Nuclei were
stained with DRAQS dye (blue). Scale bar, 10 pm (upper panel) or 100 um (lower
panels). ¢, Fuzzy c-means clustering of regulated proteins from day O today 7.
Number of proteins and their median are denoted in individual plots, and only a
selection of clusters is shown. Note that over 2,229 proteins are not regulated and
therefore not considered. The assignment of proteins to clusters can be found
inthe Source data. Threshold, 85.d, Diagram showing nonregulated (light gray)
and ssignificantly regulated proteins comparing day 7 versus day O, with the latter
being divided into three sections: upregulated (red) or downregulated (blue)
proteins with alog,(fold change) of >2 or <-2, respectively, and other regulated

proteins (dark gray) with log,(fold change) between -2 and +2. e, Pathway
enrichment analysis of significantly regulated proteins with log,(fold change)
of 22 or <-2 showing the top 15 enriched pathways of only upregulated (red) or
downregulated (blue) proteins. Pathways were sorted by their fold enrichment
independent of the number of proteins involved. Pathway enrichment analysis
was performed using the open-source DAVID bioinformatics tool. f,g, Bar graphs
of various MK differentiation markers (f) and lipid-related enzymes (g) displayed
with their associated lipid category. Proteomics data were combined from

three independent experiments with four pooled mice per biological replicate.
Means are displayed with the standard deviations represented as error bars. A
two-sided ¢-test was used for statistical analysis. Benjamini-Hochberg correction
was applied to P values using an FDR cutoff of <0.05 (*P < 0.05; **P< 0.01;
***P<0.001). Oxi, oxylipin.
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corresponding metabolizing enzymes (Fig. 1g and Extended Data
Fig.1c). Using the latest MS technologies, we assembled a lipid meta-
bolic network of more than 300 proteins involved in lipid transport,
synthesis and degradation that shows substantial regulation during MK

maturation (Extended Data Fig. 1d). This strong metabolic rewiring at
the proteinlevel raised the questions as to what extent thisis reflected
inthelipidome andif this multiomics-derived information can be used
to generate novel hypotheses.
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The MK membrane lipidome has specific signatures

For global quantitative lipidomics of MKs during maturation, we
used the established workflow (Fig. 1a) integrating shotgun and
targeted lipidomics to detect both low-abundant lipid species (for
example, ceramides) and major membrane components (for exam-
ple, glycerophospholipids) simultaneously. All lipid molecules were
sequenced and their concentrations were reported using internal
standards.

To ensure lipid identification with high confidence, all lipid mol-
eculeswere structurally characterized by tandem mass spectrometry
(MS/MS), enabling the determination of the number of carbon atoms
and double bonds for each FA chain (Extended Data Figs. 4 and 5).
Knowledge about the FA composition is crucial, as rearrangement
and exchange of FAs constantly occur during fundamental cell-fate
decisions®? or differentiation®. Furthermore, it contributes to the
physicochemical features of the membrane, including lateral diffusion
and stiffness, but mostimportantly, it provides the precursor reservoir
of many signaling molecules'". We structurally characterized and
identified 473 lipid species in differentiated MKs (Fig. 2) originat-
ing from the main lipid categories glycerophospholipid (GP; 343),
glycerolipid (GL; 46), sphingolipid (SP; 76) and sterol (ST; 8), thereby
covering 24 different lipid classes.

Quantitative lipid analysis was executed using internal standards
that co-ionize with the target analyte. Lipids were normalized based
on afixed number of cells and the protein amount. Assembling of the
quantitative results revealed a dynamic range of six orders of mag-
nitude similar to the platelet lipidome (Fig. 2a,b)". In mature MKs,
low-abundant species such as the signaling molecule sphingoid base
phosphate (SPBP) 18:1;02 (5 pmol mg™) were detected alongside major
structural components such as cholesterol (48,523 pmol mg™) and
PC16:0 18:1 (11,427 pmol mg™) (Fig. 2b). Most lipid classes displayed
a quantitative distribution of over two orders of magnitude. In con-
trast, lysophospholipid species, which have signaling capabilities,
had a narrower range, likely representing a more tightly controlled
metabolism (Fig. 2a). Our evidence shows that 60% of the entire lipid
mass is accounted for by 15 lipids, and 70% by 29 lipids (Fig. 2c), mak-
ing them essential building blocks for the membrane integrity of the
MK lipidome.

Compared with platelets,inwhich 15 lipids already cover 70% of the
lipid mass™, the MK lipidome seems to be twice as complex, with more
lipids contributing to membrane properties. The most abundant lipid
classes detected within mature MKs were cholesterol (ST), phosphati-
dylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol
(P1), phosphatidylserine (PS) and sphingomyelin (SM) (Fig. 2d).

Interestingly, besides arachidonic acid (FA 20:4), which domi-
nated the top 15 lipids in platelets, here eicosatrienoic acid (FA 20:3)
is also found under the most abundant molecules in MKs, indicating
slight differences in the FA composition of major lipid classes. These
differences underscore the likelihood that not only the demarcation
membrane system of MKs determines the platelet lipidome, but also
subsequent processes such as aging and interaction with the micro-
environment during circulationare involved in shaping platelet mem-
branes. Nevertheless, critical precursors for platelet signaling like PI
18:0_20:4 are already abundantly available in MKs. Comparing fully
mature MKs against the lipidome of human® and mouse' platelets
reveals an equal basis for various lipid classes such as PE, PS, ST, choles-
terol ester (SE), PC-ether lipid (PCO), triacylglycerol (TG) and lyso-PE
(LPE) (Fig.2e). However, PC, Pl, and PE-ether lipid (PEO), and especially
SP classes such as ceramide (Cer) and hexosylceramide (HexCer), dis-
play very distinct abundances. Currently, we can only speculate why
thisis the case. Platelets lose their ability to synthesize SPs de novo®;
therefore, higher levels in MKs are likely. Higher Cer levels stabilize
Cer-rich platforms, which are needed to preserve multiple signaling
processes or to be precursors themselves, steering megakaryopoiesis
and thrombopoiesis®*.

Anionic membrane remodeling in MK maturation

To gain further insight, we analyzed the MK lipidome on days 1, 3 and
7. Generally, the total membrane content was found to be increased
within the first 3 days, as also observed in the lipids-to-protein ratio.
Overall, 337 lipids were shared across all days, whereas approximately
10 lipids were distinct for specific days (Fig. 3a). The lipidome seems
to be rather stable, as 81% of lipids were not regulated during differ-
entiation (Fig. 3b). The 19% of lipids that were regulated (fold change
of 22 or <-2; P< 0.05) are mainly derived from low-abundant lipids.
Nevertheless, 15 species belonging to 75% of the membrane lipidome
arealsoaltered, indicating achange in membrane properties (Fig. 3c).
Therefore, we aimedto elucidate higher organizational rearrangements
inmembranes (Fig. 3d-h). First, we analyzed the coregulation of 506
lipids at the individual molecular lipid species level using absolute
concentrations, revealing that most correlated lipids can be found
within, but notacross, classes (Fig. 3d). Applying the Pearson correla-
tion computed for any lipid pair, 18 distinct clusters of correlated and
anticorrelated lipids were identified during differentiation (Fig. 3e). As
expected, GPs and SPs were distributed over all clusters, whereas STs
were observed only in clusters C8-C13. However, lipid abundance and
the individual alterations of each species are difficult to access from
a hierarchical view. Therefore, the lipid-lipid correlation matrix was
transformed into a network (Fig. 3f~h). Here, most lipid regulation
appearsbetween days 1and 3, and only minor changes canbe observed
afterward, indicating that the membrane composition is determined
relatively early during megakaryopoiesis. Interestingly, similar trends
could be observed in the proteomic results (Extended Data Fig. 1a).

To further dissect the reorganization of the MK lipidome dur-
ing differentiation, we carried out a quantitative analysis at the lipid
category, lipid class and molecular species levels, as well as on the
corresponding FA composition using absolute concentrations. By
investigating the lipidome-wide class-specific representation (Fig.
4a), the results obtained earlier could be emphasized. More spe-
cifically, many lipid classes show regulation early on and are rather
unchanged in the late stage of differentiation after day 3. Most sig-
nificantly regulated classes like diacylglycerol (DG), TG, PS, PCO,
PE, phosphatidylglycerol (PG), lyso-PG (LPG), PI, lyso-PI (LPI) and
sphingoid base (SPB) follow this trend at the class and individual lipid
specieslevels with PG anditslyso formsthatare further upregulated
atday 7 (Fig.4b,c). LPland PCO show opposing trends and are down-
regulated. Lipids of high interest were validated by high-resolution
targeted LC-MS/MS (Extended DataFigs. 6 and 7). To prove that lipid
changes are not mirroring the lipid composition of the media or are
induced by apoptosis, we analyzed the fetal bovine serum (FBS),
determined apoptotic markers, conducted a cell vitality assay, and
proved by surface labeling that the PSamountis notincreased inthe
outer membrane leaflet (Extended Data Fig. 8a-d).

Regarding molecular lipid composition, FA shifts canbe observed
toward a more unsaturated membrane (Fig. 4d,e). However, this is
mainly due to an increased level of single monounsaturated FAs
rather than total polyunsaturated FAs (PUFAs). Here, a decrease in
arachidonicacid with abalancingincrease of FA 20:3 can be observed
(Fig. 4e). Nevertheless, the total PUFA levels remain unchanged
(Fig. 4f). Interestingly, PUFA lipids are more abundant in platelets than
in MKs, supporting the hypothesis that the lipidome of platelets is still
being formed after release from MKs (Fig. 4f).

Moreover, we observed anincrease in odd long-chain FAs (Fig. 4d)
from day 1to day 3, which is likely due to increased branched-chain
FAs and their oxidations and unraveled that lysolipids with signal-
ing capabilities such as LPG, lyso-PC (LPC), lyso-PA (LPA) and SPB are
upregulated until the end of MK differentiation. Our data reveal that
megakaryopoiesis is likely modulated from different mechanisms
such as (1) lipidome rearrangement (membrane charge, for example,
PG), (2) modulation of the FA lipid composition (membrane fluidity, FA
18:1) and (3) the production of signaling molecules (DG, LPG and SPB).
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of six orders of magnitude. a, Boxplots displaying the dynamic range of the MK
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GP and ST) spanning 24 lipid classes and 473 lipid species are shown. Each bar is
composed of all quantified lipid species within the respective class. b, Dynamic
range of quantified lipid species covering six orders of magnitude. ¢, Cumulative
lipid abundance. Fifteen lipid species account for more than 60% of the total lipid
content of mature MKs. d, Relative lipid class distribution. Classes are color-
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coded by category. e, Relative distribution of main lipid classes from mature
MKs, as well as mouse and human platelets, in mol%. For statistical analysis, a two-
sided t-test was used, and both platelet samples were tested against MK at day 7
(*P<0.05;*P<0.01;**P<0.001). All data show the mean of three biological
replicates. One biological replicate was comprised of five individual animals.

Ina, boxplot whiskers represent the minimum and maximum, box boundaries
represent the 25th and 75th percentiles, and the center line represents the mean.
Ine, error bars represent standard deviations.

Phospholipid synthesis is essential for proplatelet-forming MKs
For validation of our previous data, we inhibited de novo phospho-
lipid biosynthesis at two initiation points (Fig. 5a). In this regard, we
added along-chain acyl-CoA synthetase (ACSL) inhibitor (triacsin C),
aninhibitor of glycerol-3-phosphate acyltransferase (GPAT) (FSG67),
or vehicle control to the freshly isolated bone marrow cell suspen-
sion and collected thrombopoietin (TPO)-stimulated MKs on day 7.

Nontreated day-0 MKs were used as baseline control, and changes
for all lipid classes were calculated as ratios relative to the control.
Treatment with either inhibitor diminished the production of almost
all phospholipids, including anionic lipids such as PG, Pland PS (Fig. 5b
and Extended Data Fig. 9a). Interestingly, phosphatidic acid (PA) abun-
dances were not altered, indicating a redistribution between lipid
classes to preserve PA content. In FSG67-treated MKs, we observed
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3today7 (h). Thedisplayed pure red indicates a fold change of >2, and pure
blueindicates afold change of <-2. Data are combined from three independent
biological experiments, and mean values are shown.

slightly, but not significantly, decreased levels of DG and an increase
inPC. Of note, TGsincreased 3-fold compared with day-7 control, likely
owingto the production of lipid droplets to compensate for high levels
ofacyl-CoA withinthe cell. Whereas phospholipid biosynthesis is ham-
pered when inhibitors are used, the production of SM and ST appears
to be enhanced. This could be owing either to an excess of serine and
palmitoyl-CoA that cannot be incorporated via normal lipogenesis,
or to SM and ST acting as functional substituents of other stabilizing
membranelipids. To elucidate the role of phospholipids in MK matura-
tion, we first monitored control and inhibitor-treated MKs and visually

examined their ability to form proplatelets. MKs were taken after 3 days
of differentiation, and proplatelet formation was observed for30 h. The
number of proplatelet-forming MKs increased by only 9% for FSG67-
treated and triacsin C-treated MKs, instead of 20% as observed for
control MKs (Fig. 5c,d). Further, polyploidization of inhibitor-treated
MKs was markedly impaired as reflected by a significant reduction of
polyploidy and a significantly higher percentage of MKs with DNA
content of <8 N (Fig. 5e). Both inhibitors resulted in an overall greatly
reduced number of proplatelet-forming cells compared with the con-
trol, indicating that proper MK development and proplatelet formation
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Fig. 4| Quantitative lipid inventory analysis of MKs reveals shifts in FA and
double bond distribution during the course of MK maturation. a, Relative
lipid class distribution at different time points (dark, day 1; light, day 3; medium,
day 7) of MK maturation. b, Absolute concentrations of selected lipid classes.
D1, day 1; D3, day 3; D7, day 7. c, Selected lipid species, each representing

the corresponding class displayed inb. d, Amount and distribution of FA
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abundances derived from different GP species. f, Absolute quantification of the
saturated, monounsaturated and polyunsaturated FA content of GPs during
megakaryopoiesis (on days 1,3 and 7) and in platelets (PLT). All data show the
mean of three biological replicates. One biological replicate was comprised of
five individual animals. Error bars represent standard deviations. Inf, error bars
represent summed standard deviations of the total FA content each day. A two-
sided t-test was used for statistical analysis (*P < 0.05; **P < 0.01; **P < 0.001).
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requires both de novo lipid synthesis and uptake of exogenous FAs
fromdietary lipids.

These results could also be translated intoin vivo conditions. Treat-
ment of mice with either inhibitor over a period of 7 days resulted in a
significant reduction in the MK sinusoid contact, with a significantly
higher rate of MK fragmentation within the bone marrow of murine
femora and reduced polyploidy (Fig. 5f,g and Extended Data Fig. 9b).
These marked effects onthrombopoiesis resulted in significant throm-
bocytopeniaininhibitor-treated mice compared with mice treated with
solvent control (Fig. 5h,i). Notably, in vivo visualization of MKs in the
bone marrow of the mouse skull using two-photon intravital microscopy
(2P-IVM) unraveled a profound reduction of the ratio of proplatelet-
forming MKsinbone marrow of mice treated with FSG67 (6.6 +3.7%) or
triacsin C (10.6 £ 3.1%) compared with vehicle-treated mice (14.4 + 5.5%),
indicating that both treatments impair proplatelet formation in vivo
(Fig. 5h and Extended Data Fig. 9¢) and consequently result in throm-
bocytopenia (Fig. 5i) Moreover, 2P-IVM revealed an increased ratio of
MKs with altered morphology and premature ectopic fragmentation
(triacsinC, 6.5 £ 2.1%; FSG67, 8.6 + 3.0%; vehicle, 4.5 + 2.4%), potentially
resultinginaninefficient proplatelet release into the vascular sinusoids.

Anionic membrane regulates platelet biogenesis via CKIP-1/
CK2a axis

Finally, we investigated how class rearrangement to a more anionic
membrane, through increase of PG, Pl and PS, can increase the ani-
oniclipid strength in MKs from 13 mol% to 20 mol% (0.2-1.7 mol%, 7.5~
10.8 mol% and 7-8.8 mol%, respectively). Thereby, increased signaling
capability could potentially modulate megakaryopoiesis. Therefore, we
reanalyzed our proteomics datawith aninteraction analysis and identi-
fied anetwork of 67 strongly regulated kinases, as well as additional 162
regulated proteins containing at least one of the following lipid-binding
domains: pleckstrin homology (PH) or PH-like domains®*; C1 and C2
(refs.35,36); four-point-one, ezrin, radixin, moesin (FERM) domains®’;
or Srchomology domains SH2 or SH3, which were recently identified to
also show lipid-binding capabilities®. All have a strong link to anionic
lipids**°~*2, Among those proteins, we identified several kinases that
themselves harbor lipid-binding sites suchasJanuskinases1and 2 (JAK1/
JAK2), integrin-linked protein kinase (ILK), Bruton’s tyrosine kinase
(BTK), protein kinase C-a (PKC-a) and several Src family kinases such
asSRC,FYNand LYN (Extended DataFig.10a-c). Alleight are linked to
megakaryocytic development and platelet activation*** andinteract
with or are directly or indirectly activated by lipids*® ™,

Given that anionic phospholipids linked to membrane binding
exhibit continuous upregulation, we speculate whether the interplay
of lipids, lipid-binding proteins and kinases may act as a potential
modulatory axis driving megakaryopoiesis and proplatelet forma-
tion. Using the Molecular Complex Detection (MCODE)* clustering
algorithm within the open-source software Cytoscape®, we were able

toidentify six clusters (cutoff score, 2.0) of densely connected regions
in the protein interaction network (Fig. 6a). Whereas clusters 1,2, 4
and 5 were closely clustered together, clusters 3 and 6 showed clear
separation. Interestingly, cluster 6 was formed by the casein kinase 2
catalytic subunits (CK20,/CK2a’), the CK2 regulatory 3-subunit (CK2p),
and the adapter protein PH domain-containing family O member 1/
caseinkinase interacting protein-1(PKHO1/CKIP-1).

Inthis context, weidentified arobust upregulation of the CKIP-1/
CK2 cluster during megakaryopoiesis on day 7 (Fig. 6b). CKIP-1reflects
an adapter protein with a PH domain facilitating recruitment of the
CK2aisoformto the plasma membrane via directinteraction resulting
innonenzymatic regulation of CK2a activity>*>*. CKIP-1contains a PH
domain at the amino terminus and five proline-rich motifs throughout
the protein, which mediate multiple cellular protein interactions®.
Immunoblotting revealed a strong upregulation of the membrane
localization of CKIP-1in MKs and its coexpressed target CK2a at day 7
(Fig. 6¢), an effect that was abolished in MKs treated with ACSL inhibitor
triacsin C or the GPAT inhibitor FSG67, respectively. These observations
suggest a regulation of the CKIP-1/CK2a interplay at the MK plasma
membrane by the ACSL/GPAT lipid metabolic axis during megakary-
opoiesis. To elucidate the functional role of the recruited catalytic CK2a
subunit for the process of thrombopoiesis, we examined MK localiza-
tion and morphology inimmunostained bone marrow cryosections
of intact murine femora from mice with an MK-specific or platelet-
specific genetic deletion of CK2a (csnk2al). The visualization of MK
distribution within the entire femora confirmed that MKs in the femora
of csnk2a1™*/"#4 mice displayed less direct sinusoidal contact and
conversely anaccumulation of MKs in the bone marrow hematopoietic
compartment with markedly increased MK fragmentation (Fig. 6d and
Extended DataFig.10d), pointing to insufficient transendothelial plate-
let biogenesis. Additionally, investigation of MKs flushed out of bone
marrow revealed a significantly reduced ploidy in csnk2aI™”#"# MKs,
with asignificant reduction of 16 N-containing MKs (Fig. 6e), indicat-
ing that csnk2al deficiency results in the accumulation of immature
MKs. To study the effect of genetic deletion of CK2a in MK-dependent
thrombopoiesis, we performed in vitro proplatelet formation assays
using MKs derived from the bone marrow of csnk2a1”*/"** mice and
csnk2a1°"* littermates. Accordingly, significantly fewer numbers of
csnk2a1”*"#* MKs formed proplatelets (Fig. 6f). Thus, abolished MK
maturation and proplatelet formation again contribute to the devel-
opment of significant macrothrombocytopeniain csnk2aI”## mice
when compared with csnk2a1°°* mice (Fig. 6g). Altogether, these
observationslet us hypothesize that the lipid-driven CKIP-1/CK2a axis
inMKsis crucial for MK maturation and proplatelet formation (Fig. 6h).

Discussion
Megakaryopoiesis is acomplex process by which hematopoietic stem
cells differentiate into MKs, which are eventually capable of releasing

Fig. 5| Inhibition of de novo phospholipid biosynthesis pathways leads
toreduced MK polyploidization and proplatelet formation. a, Schematic
representation of FA uptake and phospholipid biosynthesis pathways. Acyl-
CoAis generated from FAs via long-chain ACSL and transferred into glycerol-
3-phosphate (G3P) by GPAT to create LPA. Inhibitors of the enzymatic steps
areshownasred inhibitory arrows. Dashed arrows connect lipids to anionic

lipid shiftillustrating putative functions in proplatelet formation. b, Relative
amount of depicted lipid classes of control and inhibitor-treated MKs (triacsin
CorFSG67) onday 7. Nontreated day-0 MKs were used as baseline control, and
lipid quantities were set to 1. Standard deviations are depicted as dashed lines.
Changes for all lipid classes were calculated as ratios relative to control at day 0.
¢, Number of proplatelet-forming cells in vitro of control and inhibitor-treated
MKs examined from day 4 for 30 h (means £ s.d.; n=5).d, Representative images
of proplatelet-forming MKs after 24-h examination. e, Representative ploidy
histogram and arithmetic means of DNA content of control and inhibitor-treated
CD41" bone marrow-derived MKs cultured for 5 days (n = 6). f, Representative

confocal microscopy images ofimmunostained femora cryosections (left) and
arithmetic means + s.d. (n = 6; right) of MK localization (distance to sinusoids)
and fragmentation in the bone marrow of mice subjected to DMSO, triacsin
CorFSG67 injections for 7 days. Green, MKs (GPIb); red, sinusoids (CD105);
blue, nuclei (DRAQS). Asterisks indicate fragmented MKs. g, Representative
ploidy histogram and arithmetic means of DNA content of bone marrow MKs
from triacsin C-treated, FSG67-treated or vehicle-treated mice (n=5-7). h,
Representative median projections of 25-um z-stacks (left) and arithmetic
means + s.d. (n = 5-7; right) of MK fragmentation and proplatelet-forming MKs
from the bone marrow of triacsin C-treated, FSG67-treated or vehicle-treated
mice. Arrows indicate proplatelets, and asterisks indicate fragmented MKs.
Green, MKs/platelets (GPIX derivative); magenta, vessels (CD105). Graphs
representratios of proplatelet-forming (left) and fragmented MKs (four to eight
z-stacks per mouse). i, Platelet count of triacsin C-treated, FSG67-treated or
vehicle-treated mice (n =9). A two-sided t-test was used for statistical analysis
(*P<0.05;*P<0.01;,**P<0.001).
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plateletsinto the bloodstream through a process called thrombopoie- Recently, afewstudies tried to shed light on how lipid metabolism
sis. Itis characterized by a progressive increase of cellular dimensions,  can affect megakaryopoiesis and proplatelet formation by mainly
DNA content with subsequent polyploidization, and, finally, proplatelet  investigating enzymes derived from SP metabolism””**, Nevertheless,
formation into the bone marrow sinusoids. these studies did not elucidate the chemical nature of the involved
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lipid species to describe the observed functional effects leading to
pathologies such as thrombocytopenia. Therefore, it is still unclear if
lipids are the actual cause of the functional effect. To investigate the
exact mechanisms of lipidome regulation during megakaryopoiesis,
lipids must be analyzed in detail simultaneously with their metaboliz-
ing proteins. Several aspects should be considered, for example, time
and sensitivity of cell isolation, using detergent-free conditions, and
reporting of concentrations to understand the dimensions of mem-
brane rearrangement under the given circumstances. Here, we have
used the full technological advancement of MS-based lipidomics to
report a quantitative lipidomics map of MK differentiation using a
lipid-centered multiomics approach’®. Onthe one hand, we quantified
473 lipid species covering a concentration range of over six orders of
magnitude. On the other hand, the expression levels of around 4,651
proteins were determined. Using one sample to cover multiple mol-
eculeclasses reduces the analytical error and enhances the correlation
between different molecules”. Quantitatively, the MK lipidome seems
twice as complex as the one derived from platelets'>*°. Additionally,
PUFAs areless enriched in the MK membrane compared with platelets.
Nevertheless, both lipidomes are comparable, whichis reflected in the
abundance of different lipid classes. The higher complexity of the MK
lipidome is most likely based on the presence of more organelles and
anadvanced lipid metabolism.

Using a multiomics approach to dissect megakaryopoiesis,
this study revealed three major findings. First, lipid uptake is highly
increased during MK maturation, whichis reflected by theincreased
expression of FA receptors (CD36 and FATP1) and transporters
(FABP4/5).Second, FA synthesis and oxidation are elevated in differ-
entiating MKs, indicated by the upregulation of FA synthetase (FASN)
and different mitochondrial FA transporters needed for 3-oxidation,
such as CPT2 and CACP (Extended Data Fig. 1b). Third, a significant
remodeling of complex lipid synthesis pathways such as SP, GP and
ST occurs, which can be observed at the enzyme and lipid levels.
Interestingly, increasing TG levels indicate an elevated lipid drop-
let formation, most likely needed for B-oxidation. Most lipidome
changes occur between days 1and 3, demonstrating that membrane
remodeling is an early process during megakaryopoiesis. However,
the most striking finding was the upregulation of anionic membrane
lipids, whichincreased by >7 mol% during differentiation. Of note, this
elevationinanioniclipid mass correlated well with the upregulation
of DG. As aresult of pharmacological inhibition of FA uptake or GP
de novo synthesis, no upregulation of anionic lipids in maturating
MKs was observed. Moreover, the inhibition of either ACSL or GPAT
resulted in impaired MK polyploidization and perturbated throm-
bopoiesis reflected by a 50% reduction of proplatelet formation
and release into the bone marrow sinusoids resulting in a significant
thrombocytopenia.

Using relative quantitative proteomics, we uncovered a broad
spectrum of proteins whose expression was significantly shifted during
theearly and late stages of megakaryopoiesis. A recent study compared
the proteome and transcriptome of round versus proplatelet-produc-
ing MKs by two-dimensional (2D) electrophoresis and polysome profil-
ing to uncover protein changes during megakaryopoiesis®. Using the
latest MS technology, we analyzed the proteome at several time points
of megakaryopoiesis and proplatelet formation. This enabled us to
assess abundances of over 4,400 proteins, compared with 200 proteins
inthe previously mentioned study. Of the 30 proteins previously identi-
fied to be regulated, most also displayed regulation in our study. Due
totheincreased sensitivity of our approach, more than 3,000 proteins
were found to beregulated. Remarkably, we unraveled several proteins
andkinases that could potentially be regulated by (anionic) lipids and
aresignificantly regulated during megakaryopoiesis. A signaling path-
way that was significantly upregulated in MKs during MK maturation
was the CKIP-1/CK2 cluster. The regulatory -subunit of CK2 has been
reported as major regulator of MK maturation and thrombopoiesis®.
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Fig.7|Lipid-driven functional regulation and underlying mechanisms of MK
maturation and thrombopoiesis. This study focuses on the functional analysis
and regulation of MK maturation and proplatelet formation, using a multiomics
approachand incorporating bothin vitro and in vivo methodologies. To develop
the multiomics method, we isolated hematopoietic stem cells from murine
bone marrow and subjected them to a 7-day differentiation protocol with TPO.
The SIMPLEX workflow, which enables simultaneous lipid and protein sample
preparation, was used to comprehensively determine the general molecular
composition of MKs. The results revealed significant anionic lipid membrane
remodeling and relocalization of the CKIP-1/CK2a complex to the plasma
membrane, which appear to be essential for adequate platelet biogenesis. The
graphicalillustration was generated using BioRender.

CKIP-1is anonenzymatic and specific regulator of the catalytic CK2a
isoform activity®’. CKIP-1 binds to the plasma membrane via its PH
domain by specific binding of anionic lipids such as PS, Pl and PI's
phosphorylated forms®**. Furthermore, CKIP-1 controls the access
of CK2a to specific cellular targets through its ability to selectively
recruit CK2a and not CK2a’ to the plasma membrane, again in a PH
domain-dependent manner®. Accordingly, we unraveled CKIP-1/CK2a
asapotential effector of the lipidome remodeling downstream of ACSL
and GPAT. The anionic shift of the MK lipidome during MK maturation
culminatesinanincrease of phospholipids that are able to bind to the
PH domain of CKIP-1with consecutive recruitment of CKIP-1and CK2a
to the plasma membrane of MKs. It has been reported that CKIP-1is
crucially involved in MK differentiation and thrombopoiesis, and a
genetic deletion of CKIP-1(plekhol/ckipI) resulted in defective mega-
karyopoiesis with reduced MK ploidy and reduced platelet production
with significant thrombocytopenia®’. Similarly, after MK-specific or
platelet-specific genetic deletion of CK2a (csnk2al), we found signifi-
cantly reduced MK ploidy and abrogated proplatelet formation with
the development of significant macrothrombocytopenia. Remarkably,
csnk2a 1™ mice displayed a highly comparable pattern of MK dis-
tribution within the bone marrow, the same MK characteristics with
premature fragmentation, and reduced proplatelet formation with
subsequent thrombocytopenia as mice upon treatment with the ACSL
or GPAT inhibitor (Fig. 7).

Theseidentified mechanismsin MK maturation and thrombopoie-
sisare of potential interest to deepen our understanding of how altera-
tions in lipid metabolism in diseases such as obesity or metabolic
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syndrome, both associated with thrombotic cardiovascular complica-
tions, might interfere with platelet production.

In this study, we aimed to establish an MK-specific multiomics
workflow to comprehensively analyze MK lipid metabolism. We dem-
onstrated that the MK lipidome remodeling during MK maturation and
proplatelet formation involves ACSL-dependent or GPAT-dependent
lipid metabolism. As a result from a shift toward anionic membrane
properties during MK maturation, the altered MK lipidome may pro-
mote specific signaling complexes and kinases, such as CKIP-1/CK2a,
thatarecritically involved in thrombopoiesis. However, further analy-
ses linking anionic membrane remodeling to kinase changes in pro-
platelet formation are ultimately warranted to tackle the question of
how lipids control platelet production and properties.

Methods

Materials and standards

Antibodies. Rabbit anti-a-tubulin (Thermo Fisher Scientific, PAS-
19489), rat anti-CD42b monoclonal (clone Xia.G7, Emfret, M042-1),
rat FITC anti-mouse CD41 (BioLegend, 133904), rabbit anti-CSNK2A1
(Abcam, ab76040), mouse anti-CKIP-1 (Santa Cruz Biotechnology,
sc-376355), mouse anti-GAPDH (Thermo Fisher Scientific, MA5-15738),
goat anti-rabbit secondary antibody (Life Technologies, A21069),
goat anti-rat secondary antibody (Life Technologies, A11006), don-
key anti-mouse secondary antibody (LI-COR, 926-32212), Alexa Fluor
594-conjugated anti-CD105 antibody (BioLegend, 120418), Alexa Fluor
546-conjugated anti-CD105 (self-generated, clone MJ7/18, ref. 60), anti-
CD42a(GPIX) AlexaFluor 488 derivative (self-generated, pOp6, ref. 61).

Chemicals. DRAQ5 DNA stain (Thermo Fisher Scientific, 62251), Alexa
Fluor 488 phalloidin (Life Technologies, A12379), antibody diluent
(Zytomed, ZUC025-100), Roti-Load (Roth, K929.1), bovine serum
albumin (BSA) (PanReac AppliChem, A1391,0500), triacsin C (Cay-
man Chemical, 10007448), FSG67 (Focus Biomolecules, 10-4577),
mounting medium (Invitrogen, P36961), poly-L-lysine (Sigma-Aldrich,
P8920-100ML, 0.1%), paraformaldehyde (PFA) (Otto Fischar GmbH &
Co.KG, 27246), Cell Lysis Buffer (Cell Signaling Technology, 9803S),
Protease/Phosphatase Inhibitor Cocktail (Cell Signaling Technology,
5872S), FcR Blocking Reagent mouse (Miltenyi Biotec, 130-092-575),
PureLink RNase A (Invitrogen, 12091-021), propidium iodide (Invit-
rogen, P1304MP), EZ-Link Sulfo-NHS-Biotin (SNB) (Thermo Fisher
Scientific, 11851185), EZ-Link NHS-Biotin (NB) (Thermo Fisher Scien-
tific,10381394), L-lysine (Sigma-Aldrich, L5501), triethylamine (Sigma-
Aldrich, 90335), medetomidine (Pfizer), midazolam (Roche), fentanyl
(Janssen-Cilag), recombinant TPO (ImmunoTools, 12343615).

Chemicals specific for lipid analysis: formic acid (BioSolve,
6914143), ULC/MS-grade methanol (BioSolve, 13684102), ULC/MS-
grade water (BioSolve, 23214102), ULC/MS-grade acetonitrile (ACN)
(BioSolve,1204102), methyl tert-butyl ether (MTBE) (VWR, 34875-1L),
ammonium acetate (Merck, 73594-25G-F), ammonium formate (Sigma-
Aldrich, 70221-25G-F), HPLC-grade phosphoric acid (Sigma-Aldrich,
79617-250ML, 85-90%), chloroform (Sigma-Aldrich, 650498-1L), iso-
propanol (IPA) (Sigma-Aldrich,1010402500).

Chemicals specific for protein analysis: formic acid (VWR, 84865-
180P), ULC/MS-grade methanol (VWR, 83638320), ULC/MS-grade
water (Honeywell, 14263-2L), ULC/MS-grade ACN (Honeywell, 34967-
2.5L), urea (Merck, 1084871000), triethylammonium bicarbonate
(TEAB) (Sigma-Aldrich, 18597-100ML), sodium dodecyl sulfate (SDS)
(GERBU, 1212), dithiotreitol (DTT) (Sigma-Aldrich, APOSBIMB1015-
25G), iodoacetamide (IAA) (Sigma-Aldrich, 16125-25G), Trypsin/Lys-C
Mix Mass Spec Grade (Promega, V5073), trifluoroacetic acid (TFA)
(Sigma-Aldrich, T6508-100ML).

Peptide standards. Standard peptide [Glu']-Fribrinopeptide B
(sequence EGVNDNEEGFFSAR, Sigma-Aldrich, F3261), standard pep-
tide M48 (sequence TTPAVLDSDGSYFLYSK, PSL), standard peptide

HKO (sequence VLETKSLYVR, PSL), standard peptide HK1 (sequence
VLETK(e-AC)SLYVR, PSL).

Lipid standards. Mouse SPLASH LIPIDOMIX Mass Spec Standard
(Avanti Polar Lipids, 330710X-1EA) consisting of PC 15:0-18:1(d7), PE
15:0-18:1(d7), PS 15:0-18:1(d7), PG 15:0-18:1(d7) (as internal standard
for PG and CL), P115:0-18:1(d7), PA 15:0-18:1(d7), LPC 18:1(d7), LPE
18:1(d7) (as internal standard for all lysophospholipids except LPC),
SE 18:1(d7), PC-ether (PCO-a) 18:0-18:1(d9), PE-ether (PEO-a) 18:0-
18:1(d9), DG15:0-18:1(d7), TG 15:0-18:1(d7)-15:0 and SM d18:1-18:1(d9);
Ceramide/Sphingoid Internal Standard Mixture Il (Avanti Polar Lipids
LM6005-1EA) consisting of sphingosine (SPB) d17:1, sphinganine (SPB)
d17:0, sphingosine-1-P (SPBP) d17:1, sphinganine-1-P (SPBP) d17:0, SM
d18:1/12:0, Cer d18:1/12:0, glucosylceramide (GlcCer) d18:1/c12:0 (as
internal standard for HexCer), lactosylceramide (LacCer) d18:1/12:0 (as
internal standard for dihexosylceramide (Hex2Cer)) and ceramide-1-P
(CerP) d18:1/12:0; cholesterol-d7 (Avanti Polar Lipids, 700041P); lys-
osphingomyelin (LSM)-d7 (Avanti Polar Lipids, 860639P); PS14:0-14:0
(Avanti Polar Lipids, 840033P) (self-generated biotinylated internal
standard for biotin-PS).

Animal models

Csnk2al®”** mice were generated elsewhere®. For MK-specific or
platelet-specific deletion of CK2a, csnk2al®** mice were crossed with
Pf4-Cre transgenic mice (TheJackson Laboratory, 008535) and studied
at the age of 12-14 weeks. All animal experiments were performed
according toDirective 2010/63/EU of the European Parliament on the
protection of animals used for scientific purposes and were approved
by local authorities (Regierungsprisidium Tiibingen) following the
ARRIVE guidelines (protocols M01/20G and M03/19M).

For in vivo treatment studies, 6-week-old C57BL6/) mice, were
treated daily intraperitoneally with either 0.285 mg per kg (body
weight) triacsin C, 5 mg per kg (body weight) FSG67 or dimethylsul-
foxide (DMSO) over a period of 7 days. Concentrations were adapted
according torefs. 63,64.

Bone marrow isolation and MK differentiation

For the bone marrow isolation, a centrifugation protocol previously
published by ref. 65 was used. Briefly, 10-14-week-old, male C57BL/6)
mice (The Jackson Laboratory) were anesthetized using isoflurane and
killed by cervical dislocation following the institutional guidelines and
the German law for the welfare of animals. Both femorawere dissected
and cleaned, cut open at the knee side, and placed with the cut side
facingdownina 0.5-ml Eppendorftube with a pre-pierced hole in the
bottom. The tube was placed into a 1.5-ml tube, pre-filled with 100 pl
of DMEM (supplemented with 1% penicillin/streptomycin and 10%
FBS) and centrifuged for1 minat 2,600 x gat room temperature (21°C
(69.8°F)). Next, 1 ml of supplemented medium was added, and bone
marrow cells were resuspended, then filtered through a pluriStrainer
Mini (70 pm), and the strainer was rinsed with 1 ml of medium. After-
ward, cells were centrifuged for 5 minat300 x gat room temperature,
and the supernatant was removed.

To induce MK differentiation, the freshly isolated bone marrow
cells (pool of five individual animals) were cultivated in 10-cm cell
culture dishes containing supplemented DMEM, and differentiation
was initiated by adding (1%) recombinant TPO. Cells were cultivated
at 37 °C, 5% CO, for different periods of time. On days 1, 3 and 7, cells
were collected (1,000 r.p.m.,5 min) and resuspended in 950 pl of PBS.
The cell suspension was carefully pipetted on atwo-phase BSA gradient
(bottom, 1.5 ml 3% BSA in PBS; top, 1.5 ml 1.5% BSA in PBS) to separate
cells by weight. After 40 min, the supernatant was removed, and the cell
pellet was washed three times with 500 pl of PBS. Cells were counted
in a Neubauer chamber and adjusted to 200,000 cells per tube. Cell
pellets were shock-frozen in liquid nitrogen and stored at —-80 °C for
later multiomics analysis.
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Immunofluorescence microscopy

Forimmunofluorescence microscopy of MKs, cells were isolated and
purified as described above and cultivated for 1,3 and 7 days. After iso-
lation via BSA gradient, 5,000 MKs were seeded on chamber slides pre-
coated with 0.1% poly-L-lysine for 60 minat 37 °Cand furtherincubated
for 1h. Cells were fixed for 15 min with 4% PFA at room temperature,
washed three times for 3 min each with PBS, 10 min with PBS and 0.1%
Triton X-100, and again three times for 3 min each with PBS. Cells were
further incubated with 1% BSA in PBS to block the unspecific binding
of antibodies. Cells were stained with either the primary antibodies
Alexa Fluor 488 phalloidin (1:200 in antibody diluent) and a-tubulin
(1:400 in antibody diluent) or CD42b (1:100 in antibody diluent), or
CD42d (1:300in antibody diluent). After overnight incubation at 4 °C
and washing three times for 3 min each with PBS, secondary antibodies
(anti-rabbit Alexa Fluor 568,1:300 in PBS; anti-rat Alexa Fluor 488,1:300
in PBS) were applied for 2 h at room temperature. After three washes
for 3 min each with PBS, nuclei were stained for 15 min with DRAQS
stain (1:1,000), washed again with PBS, and mounted using amounting
medium. An LSM510 confocal laser scanning microscope (Zeiss) and
ZEN Blue software (Zeiss) were used for the analysis.

Protein and lipid extraction

Samples, consisting of 200,000 cells per tube, were used for lipid
and protein extraction following the SIMPLEX protocol previously
described by ref.18.Inbrief, 225 pl of methanol and the internal stand-
ard mixture were added to all samples, and cell pellets were homog-
enized through 2-5 min of ultrasonication. Two blanks used as quality
controls were processed in parallel, one with and the other without
internal standards. Next, 750 pl of MTBE were added, and samples were
incubated for1hat950 r.p.m.at4 °C. Toinduce phase separation, 188 pl
of water (HPLC-grade) were added, and samples were incubated onice
for 5 min. After a10-min centrifugation step at 10,000 x g at 4 °C, the
upper organic phase (containing GPs, GLs, SPs and STs) was carefully
removed and dried under a gentle nitrogen flow. The dried organic
phase was reconstituted in 100 pl of IPA/methanol/CHCl, (4:2:1, v/v/v)
containing 7.5 mM ammonium acetate for lipid analysis. To complete
protein precipitation, 527 pl of methanol were added to the lower
aqueous phase, and samples were stored for 2 h at -20 °C, following
centrifugation for 30 min at 12,000 x gat 4 °C. The protein pellet was
dried and further subjected to protein analysis.

Protein analysis

Proteomics sample preparation. Protein samples were diluted 1:2in
lysis buffer (8 M urea, 50 mM TEAB, 5% SDS), then heated at 90 °C for
5min, and protein concentrations were determined using a Pierce BCA
Protein Assay Kit (Thermo Scientific). For enzymatic digestion, 20 pg
of protein were used, and ProtiFi S-Trap technology was applied®. In
short, solubilized proteins were reduced and carbamidomethylated
by adding 64 mM DTT and 48 mM IAA, respectively. Before loading
the samples onto S-Trap mini cartridges (ProtiFi), trapping buffer (90%
(v/v) methanol, 0.1 M TEAB) was added. Subsequently, samples were
thoroughly washed and then digested using Trypsin/Lys-C Mix for2 h
at37 °C.Finally, peptides were eluted, dried, and stored at —20 °C until
LC-MS analysis.

Label-free proteomics. LC-MS/MS analysis was performed as
described previously®”*. In brief, reconstitution of dried peptide
samples was achieved by adding 5 pl of 30% formic acid containing
four synthetic standard peptides. Afterward, samples were diluted with
40 pl of loading solvent (97.9% H,0, 2% ACN, 0.05% TFA), of which 5 pl
wereinjected into the Dionex UltiMate 3000 nano high-performance
liquid chromatography (HPLC) system (Thermo Fisher Scientific).
A pre-column (2 cm x 75 pum, PepMap 100 C18, Thermo Fisher Sci-
entific) run at a flow rate of 10 pl min™ using mobile phase A (99.9%
H,0, 0.1% formic acid) was used to pre-concentrate peptides before

chromatographic separation. Peptides were then separated on an
analytical column (25 cm x 75 pm, 25 cm, Aurora Series emitter column,
lonOpticks) by applying aflow rate of 300 nl min™and using agradient
of 8-40% mobile phase B (79.9% ACN, 20% H,0, 0.1% formic acid) over
155 min, resulting in a total LC run time of 195 min including washing
and equilibration steps. A timsTOF Pro mass spectrometer (Bruker)
withacaptive sprayionsourcerunat1,700 Vwas used for MS analysis.
ThetimsTOF Prowas operated in parallel accumulation-serial fragmen-
tation (PASEF) mode, and moderate MS data reduction was applied.
Further parameters included a scan range (m/z) from 100 to 1,700 to
record MS and MS/MS spectraand a1l/kO scanrange of 0.60-1.60 V.s/
cm?resultingina ramp time of 100 ms to achieve trapped ion mobility
separation. All experiments were performed with ten PASEF MS/MS
scans per cycle, leading to a total cycle time of 1.16 s. Furthermore,
the collision energy was ramped as a function of increasing ion mobil-
ity from 20 eV to 59 eV, and the quadrupole isolation width was set to
2 Thfor m/z<700 and 3 Th for m/z>700. All samples were analyzed
intechnical duplicates.

Label-free proteomics data analysis. The publicly available soft-
ware package MaxQuant (v1.6.17.0) running the Andromeda search
engine was used for proteinidentification and label-free quantification
(LFQ)™. Therefore, raw data were searched against the Swiss-Prot data-
base Mus musculus (v220621 with 17,519 entries). Search parameters
included an allowed peptide tolerance of 20 ppm, amaximum of two
missed cleavages, carbamidomethylation on cysteines as fixed modi-
fication, methionine oxidation, and N-terminal protein acetylation
as variable modification. A minimum of two peptides per protein, of
which atleast one hasto be unique for each protein, was setasasearch
criterium for positive identifications. In addition, the ‘match between
runs’ optionwas applied, using a 0.7-min match time window, amatch
ionmobility window of 0.05,a20-min alignment time window, and an
alignment ion mobility of 1. A false discovery rate (FDR) of <0.01 was
set for all peptide and protein identification. LC-MS data evaluation
and statistical analysis were accomplished using the Perseus soft-
ware (v1.6.14.0)"". Identified proteins were first filtered for reversed
sequences and common contaminants and annotated according to
differentiation time points. Before statistical analysis, LFQ intensity
values were log,-transformed, means of technical duplicates were
calculated, and proteins were additionally filtered for their number
ofindependentidentifications (aminimum of three identificationsin
at least one group). Two-sided t-tests and statistics for volcano plots
were performed by applying an FDR cutoff of 0.05 and an SO of 0.1,
whereby SO controls the relative importance of the ¢-test P value and
difference between the means. Figure visualization was done using
OriginPro (v2021), RStudio (v1.4.1106) and Instant Clue (v0.10.10)".

Protein network and cluster analysis. For the generation of protein
networks, we divided our proteomics datainto two groups: kinases and
lipid-binding proteins. All proteins that were significantly regulated
on either day were used for network analysis using STRING. Networks
generated wereloadedin Cytoscape (v3.9.1). For protein clustering, the
MCODE application inside the Cytoscape interface was used with the
following conditions: network scoring including loops with a degree
cutoff of 2, cluster finding with fluffing using a node density cutoff of
0.8 and node score cutoff of 0.24 with K-core of 2and max depth of 100.

Lipid analysis

Shotgun lipidomics. A Q Exactive HF (Thermo Fisher Scientific) cou-
pledtoaTriVersaNanoMate ion source (Advion Biosciences) was used
for directinfusion experiments. Atotal of 12 pl of the sample were deliv-
ered over 14 min with a backpressure of 0.95 psi. After 6 min, polarity
switching from +1.25 kVto-1.25 kV was applied to acquire mass spectra
inboth positive and negative ion modes in one measurement. Full MS
spectracovering the mass range 0f350-1200 m/zin both positive and
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negative modes were acquired with a resolution of 240,000, an AGC
target of 1le6, and amaximum IT of 105 ms. MS1acquisition was followed
by data-independent acquisition of precursor masses at aninterval of
1,001 Da. The precursorisolation window was 1 Da, and normalized col-
lision energy (nCE) was 21% and 26% for positive and negative modes,
respectively. MS2 spectra were acquired with a resolution of 60,000,
an AGC target of 1e5, and a maximum IT of 105 ms.

Targeted lipidomics. Analysis of SPand ST was performed as previously
described by ref.73.Inclusionlists for targeted measurements were gener-
ated using LipidCreator (v1.2.0). For thereversed-phase LC, the UltiMate
3000 system was equipped with an Ascentis Express C18 main column
(150 mm x 2.1 mm, 2.7 um, Supelco) and fitted with a guard cartridge
(50 mm x 2.1mm, 2.7 um, Supelco) inacolumnovenset to 60 °C.Solvent
Awas ACN/H,0 (3:2, v/v), solvent Bwas IPA/ACN (9:1, v/v), and both con-
tained 0.1% formicacid, 10 mM ammonium formate and 5 uM phosphoric
acid. The separation was carried out with a flow rate of 0.5 ml min™ with
the following 25-min-long gradient: initial, 30% B; 0-2 min, hold 30% B;
2-3min, 30-56.1% B; 3-4 min, 56.1-58.3% B; 4-5.5 min, 58.3-60.2% B;
5.5-7 min, 60.2-60.6%B; 7-8.5 min, 60.6-62.3% B; 8.5-10 min, 62.3-64%
B;10-11.5min, 64-64.5%B;11.5-13 min, 64.5-66.2% B;13-14.5 min, 66.2-
66.9%B;14.5-15 min, 66.9-100% B;15.0-19.0 min, hold100% B; 19 min, 5%
B;19-22 min, hold 5% B; 22 min, 30% B; 22-25 min, hold 30% B. The injector
needle was automatically washed with 30% B and 0.1% phosphoric acid,
and avolume of 5 pl per sample was injected.

The LC was coupled to a QTRAP 6500+ (Applied Biosystems
Sciex) with an electrospray ion source (Turbo Vion source). MS scans
were acquired in positive ion mode with the following source set-
tings: curtain gas, 30 arbitrary units; temperature, 250 °C; ion source
gas |, 40 arbitrary units; ion source gas I, 65 arbitrary units; collision
gas, medium; ion spray voltage, +5,500 V; declustering potential,
+100 V/-100 V; entrance potential, +10 V; exit potential, +13 V. For
the scheduled multiple reaction monitoring, Q1 and Q3 were set to
unit resolution. The detection window was set to 2 min, and the cycle
time was set to 0.5 s. Data were acquired with Analyst (v1.7.2, Applied
Biosystems Sciex).

Lipid identification and quantification. All spectra from shotgun
experiments were converted to centroid mode using msConvert
(v3.0.20186-dd907d757) and analyzed using LipidXplorer (v1.2.8.1)
under the following settings: MS1, mass tolerance of 5 ppm with an
intensity threshold of 1e5; MS2, mass tolerance of 10 ppm with an
intensity threshold of 5e4. For lipid identification, molecular frag-
mentation query language queries, based on the previous work from
refs. 74,75, were compiled to match precursor and fragment ions to
recognize lipid species. The detection and quantification of GLs (DG
and TG) were used in positiveion mode. GPs (cardiolipin (CL), LPA, LPI,
LPG,LPC,LPE, PA, PG, PC, PCO, PE, PEO, Pland PS) were identified and
quantifiedin negativeionmode. All signal intensities were normalized
to the corresponding deuterated internal standard (Mouse SPLASH
LIPIDOMIX Mass Spec Standard). Protein concentrations, determined
by the Pierce BCA Protein Assay Kit, were used to quantify all lipid
species. TGs and CLs were quantified based on precursor intensities
(Supplementary Table1).

SPs (Cer, HexCer, Hex2Cer, Sulfo-HexCer (SHexCer), LSM, SPBP,
SPB and SM) and STs (ST and SE) were identified and quantified by
LC-MS analysis (Supplementary Table 2). Integration of peaks from tar-
geted measurements was performed using Skyline (v21.1.0.146). Lipid
species abundance was calculated using peak areas and quantified to
therespective internal standard (Ceramide/Sphingoid Internal Stand-
ard Mixture II; cholesterol-d7) and protein amount described above.

Generation of biotinylated PS standards
Abiotinylated PSinternal standard was generated for quantification of
biotin-labeled PS species within the biological sample. The generation

of biotinylated standards was performed according to the protocol of
ref. 76. Inbrief,1 mg of PS14:0_14:0 standard (Avanti Polar Lipids) was dis-
solvedin330 pl of chloroform/methanol (2:1, v/v), and 6 mg of NBwere
added. After vortexing, 3.3 pl of triethylamine (Sigma) were added and
incubated for 30 minat room temperature. Excess NB was sedimented
by centrifugation for 5 min at 500 x gat room temperature. The super-
natant was transferred into a new glass vial. The sediment was washed
once with330 pl of 2:1 CHCl;/methanol, vortexed and centrifuged, and
the supernatant was combined from the previous step. After drying
under nitrogen flow, the biotinylated standard was resuspended in
600 pl of methanol for HPLC purification. An Agilent 1200 Series LC
systemwithaDiscovery C18 column (250 mm x 4.6 mm, 5 pm) was used
with the following conditions: temperature, 22 °C; flow rate,1 ml min;
gradientelution profile, 50%B (A, water + 5 mM ammonium acetate; B,
methanol + 5 mM ammonium acetate) to 100% B over 15 min, held at
100% B for 20 min, thenre-equilibrated to 50% B. Ultraviolet absorbance
was measured at 205 nm. Six times, 100 pl wereinjected and all fractions
were manually collected, combined and dried using a Genevac and
resuspended in200 pl of methanol. The standard was transferred into
aclean, pre-weighted glass vial, dried and weighted again. The standard
concentration was adjusted to100 ng pl™ inmethanol and stored under
nitrogengas at—80 °C. The derivatization of the standard was validated
by directinjectiononanamaZonspeedion ETD trap instrument.

Surface labeling of externalized PS

Biotinylation of cell surface-exposed PS was performed based on the
protocol from ref. 76. A cell-impermeable reagent (SNB) was used to
label PS on the outer leaflet, and a cell-permeable reagent (NB) was
used for quantification of total PS content. In brief, MK cell suspen-
sions containing 200,000 cells per sample were equally divided in two
tubes (100,000 cells each) and treated with either 43 pl of 22 mM SNB
inPBS or 20 pl of20 mM NB in DMSO for 10 minat room temperature.
To SNB-treated cells, 72 pl of 250 mM L-lysine in PBS were added and
incubated for another 10 min at room temperature to quench excess
SNB. To NB samples, 95 pl of LC-grade water were added to reach the
final extraction volume of 315 pl. Samples were transferred into 5-ml
polypropylene Eppendorftubes and subjected to the SIMPLEX protocol
asdescribedinthesection ‘Protein and lipid extraction’ usingatripled
amountof all solvents. For normalization of lipid intensities, 10 pl of a
self-generated biotinylated PS standard (biotin-PS14:0_14:0,10 ng pl™)
and 5 pl of Mouse SPLASH mix (Avanti Polar Lipids) were added prior
to extraction. Dried lipid extracts were resuspended in 25 pl of butanol
solvent (1-butanol:IPA:H,0, 8:23:69, v/v/v + 5 mM phosphoricacid), and
lipids were identified using targeted LC-MS/MS.

Reversed-phase LC-MS/MS of biotinylated PS

Lipid extracts were separated by reversed-phase HPLC according to
ref. 77 with minor adaptions. For separation, an Ascentis Express C18
column (150 mm x 2.1 mm, 2.7 um, Supelco) fitted with a guard car-
tridge (50 mm x 2.1 mm, 2.7 um, Supelco) was used. Mobile phase A
was ACN/H,0 (60:40, v/v), mobile phase B was IPA/ACN (90/10, v/v),
and both contained 10 mM ammonium formate and 0.1% formic acid.
Thetemperatures of the autosampler and the column oven were set to
10°Cand 60 °C, respectively. Separation was carried out with aflow rate
of 0.5 ml min™ with the following 35-min-long gradient: initial, 30% B;
0.0-3.0 min, hold 30% B; 3.0-15.0 min, ramp to 75% B; 15.0-17.0 min,
ramp to 100% B; 17.0-30.0 min, to 5% B; 30.1-35.0 min, to 30% B. The
injector needle was automatically washed with 30% B, and a volume of
5 plpersample were injected.

TheLCwascoupledtothe QExactive HF instrument, and datawere
acquiredin negativeion mode. The following electrospray ionization
(ESI) source parameters were applied: spray voltage, 3.8 kV; capillary
temperature, 270 °C; sheath gas flow rate, 50; auxiliary gas flow rate,
15; auxiliary gas heater temperature, 380 °C; S-lens RF level, 60. FullMS
spectrafrom 500to 1,200 m/zwere acquired in negative mode witha
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resolutionof 60,000, an AGC target of 106, and amaximum IT of 50 ms.
For MS/MS, aresolution of 30,000, an AGC target of 105, amaximum
IT of 115 ms and an nCE of 24 were applied.

Identification and quantification of biotinylated PS

Integration of peaks from targeted measurements was performed using
Skyline (v21.1.0.146). The top two abundant PS species (PS18:0_18:1and
PS18:0_20:4) were monitored. For theidentification of biotinylated PS,
both FAsand the neutralloss of the biotinylated PS headgroup (m/z, 313)
were used. Lipids were quantified on the MS1level. Lipid species abun-
dancewas calculated using peak areas and quantified to the respective
internal standard (biotinylated PS to B-PS14:0_14:0, unlabeled PS to PS
15:0 18:1(d7)). Toaccount for differences in PS totalamount throughout
the samples, the summed intensity of labeled and unlabeled PS within
each sample were used to normalize the amount of labeled PS. A ratio
was calculated of externalized:total PS. Day 1 was set to 1 and used as
areference to calculate relative changes during megakaryopoiesis.

Validation of shotgun lipidomics data by targeted LC-MS/MS
Trends of selected lipid species shown in Fig. 4c were validated by tar-
geted LC-MS/MStoincrease confidencein the dataobtained by shotgun
lipidomics. After extraction of lipids by SIMPLEX, the dried lipid phase
was resuspendedin 50 pl of butanolsolvent (1-butanol:IPA:H,0, 8:23:69,
v/v/v+5mMphosphoricacid) and separated by reversed-phase LC-MS/
MS. LC parameters are as described in the section ‘Reversed-phase
LC-MS/MS of biotinylated PS. The LC was coupled to the Q Exactive HF
instrument applying the following ESIsource parameters: spray voltage,
4.0 kVand3.8 kVin positive and negative modes, respectively; capillary
temperature, 270 °C; sheath gas flow rate, 50; auxiliary gas flow rate, 15;
auxiliary gas heater temperature, 380 °C; S-lens RF level, 60. GLs were
analyzed in positive mode, and GPs were analyzed in negative mode.
Except for TG and CL, all lipids were quantified on the MS2 level. High-
resolution MS full scanand parallel reaction monitoring were performed
in one measuring cycle (MS1: 0.0-35.0 min negative mode, resolu-
tion 60,000, 350-1500 m/z; 13.0-35.0 min positive mode, resolution
30,000, 400-900 m/z; MS2: 0.0-16.0 min negative mode, resolution
30,000, nCE 24;13.0-16.0 min positive mode, resolution 30,000, nCE
21). AnAGC target of 10°and 10° and amaximumIT of 50 msand 115 ms
were used in full scan and parallel reaction monitoring, respectively. A
pooled sample was measured inboth polarities separately to verify the
identification and acquire MS2 data for TG and CL.

Visualization and network analysis

For further investigation of common patternsin the lipid profiles, we
performed both similarity-based clustering and network analysis based
on the analysis approach of ref. 12. In the first step, we compared all
lipids with each other pairwise. For each lipid, we computed the mean
abundances for days 1, 3 and 7, which we denote as a lipid profile. For
each lipid pair, we compared their lipid profiles using Pearson cor-
relation. Theresult is a quadratic similarity matrix m. For the network
analysis, we have drawn a graph in which we connected all lipids with
each otherthat had a cosine similarity >99%in m.For the cluster analy-
sis, we sorted mrow-wise and column-wise equally. To do so, we applied
hierarchical clustering on the columns of m with cosine similarity and
unweighted average clustering. The resultis asorted matrix m.Since we
were interested in lipid profiles even with anticorrelation, we worked
only with the absolute values of m. Along the diagonal of the sorted
matrix m, we searched for the biggest nonintersecting squared areas,
where all values within the squares have a Pearson correlation value of
>99%. Theresults are presented in Fig. 3e—h. Networks were generated
using Cytoscape (v3.9.1).

Cell vitality assay
Cell vitality of control and inhibitor-treated MKs was determined by a
Promega CellTiter-Glo 2.0 Assay, based on the quantification of ATP and

indication of metabolically active cells, as doneinref. 78. Experiments
were performed according to the manufacturer’s protocol. Per 96 wells,
10,000 MKs were seeded in TPO-supplemented DMEM. Inhibitors of
phospholipid synthesis (160 uM FSG67, 5 uM triacsin C), 1 uM iono-
mycin or DMSO were added to the cells in single wells and cultivated
for 0,3 and 7 days. lonomycin was added to cells as a positive control
for apoptotic cells. Plates were equilibrated to room temperature for
approximately 30 minbefore the addition of CellTiter-Glo 2.0 reagent
(equilibratedto 22 °C). The reagent was added toeach wellinal:1ratio
of reagent:cell culture medium, mixed and incubated for 2 min on an
orbital shaker to induce cell lysis. After 10 min, luminescence signals
were recorded using a GloMax-Multi Detection System (Promega,
9300-002).

Subcellular protein fractionation

Subcellular protein fractions were obtained using the Subcellular
Protein FractionationKit for Cultured Cells (Thermo Scientific, 78840)
following the manufacturer’s instructions with some modifications.
MKswere isolated after cultivation for O daysand 7 days in TPO-supple-
mented DMEM and washed withice-cold PBS. One hundred thousand
cells were pelleted by centrifugation for 2 min at 500 x g. Cell pellets
were dried, 100 pl of ice-cold CEB containing protease inhibitors
(1:100) were added, and cell pellets were incubated for 30 minat 4 °C
while mixing on an end-over-end shaker. After centrifugation for
5 min at 500 x g, the supernatant was collected, and to the remain-
ing cell pellet, 100 pl of ice-cold MEB containing protease inhibitors
(1:100) were added, vortexed for 5 s and incubated for 10 min at 4 °C
while mixing. The supernatant (membrane fraction) was collected
after 5 min of centrifugation at 3,000 x g and frozen at -80 °C until
immunoblot analysis.

Immunoblot analysis

Immunoblot analysis was performed using the prepared membrane
fraction of cultivated MKs (day 0 and day 7) in the absence or presence
oftheinhibitors. After centrifugation for 15 min at 20,000 x gat4 °C,
the supernatant was collected, and the protein concentration was
measured using a Bradford assay from Bio-Rad. Forimmunoblotting,
protein was loaded in 12% gels and electrotransferred onto a nitrocel-
lulose membrane, followed by blocking with 5% nonfat milk or 5% BSA
for1hatroomtemperature. Afterward, the membrane was incubated
with the primary antibody against CSNK2A1 (1:1,000), PKHO1/CKIP-1
(1:200) or GAPDH (1:1,000) overnight at 4 °C. After washing with TBS-
T, the blots wereincubated with fluorochrome-conjugated secondary
antibodies (1:15,000) for 1 hat room temperature. After washing, anti-
body binding was detected with an Odyssey infrared imaging system
(LI-COR). Bands were quantified with ImageJ (National Institutes of
Health)”.

Functional assessment of megakaryopoiesis
To validate the importance of the observed lipidomic changes on
megakaryopoiesis, inhibitors of two enzymes involved in phospho-
lipid biosynthesis were used. Weadded 160 pM FSG67, 5 uM triacsin C
or vehicle control (DMSO) to the cell suspensions 24 h after the start
of cultivation.

Lipidomicanalysis (see the section ‘Lipid analysis’) was performed
onMKsisolated viaBSA gradient on day O (before the addition of inhibi-
tors and control) and after 7 days of cultivation.

Proplatelet formation assay

Proplatelet formation assays were performedintriplicates on 48-well
plates. After isolation via BSA gradient after 3 days of cultivation,
15,000 cells per well were seeded. Proplatelet formation was exam-
ined every 6 h by microscopy (ECLIPSE Ti2, NIS-Elements imaging
software, Nikon). Ratios of proplatelet-forming MKs compared with
non-proplatelet-forming MKs were calculated.
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MK polyploidization

Ploidy measurements were performed according to ref. 1. In brief, the
bone marrow of femora from B6 mice was flushed and homogenized.
Cells were cultivated in 10-cm cell culture dishes containing DMEM
(supplemented with 1% penicillin/streptomycin and 10% FBS), and dif-
ferentiation was initiated by adding (1%) recombinant TPO. After 5 days
of cultivation, the cell suspension was carefully pipetted on atwo-phase
BSA gradient (bottom, 1.5 mI 3% BSA in PBS; top, 1.5 ml1.5% BSA in PBS)
toseparate cellsby weight. After 40 min, the supernatant was removed,
andthecell pellet was washed three times with 500 pl of PBS. Nonspecific
bone marrow binding was blocked by incubation with 0.02 mg ml™ FcR
Blocking Reagent. Afterward, MKs were stained using FITC-conjugated
anti-CD41antibody, and the cells were subsequently washed once with
2 mMEDTA in PBS. Then, cells were washed with PBS (5 min at 300 x g)
and fixed in PBS containing 1% PFA/0.1% EDTA. Fixed cells were washed
with PBS (10 minat 300 x g) and permeabilized in PBS containing 0.1%
Triton X-100. Finally, DNA was stained using 50 pg ml™ propidiumiodide
staining solution containing 100 pg ml™ RNase A and 2mM EDTA in
PBS. Analysis was performed by flow cytometry (BD FACSCalibur, BD
Biosciences) and FlowJo software (Tree Star, Inc.) (Supplementary Fig. 1).

2P-IVM

Mice were anesthetized by intraperitoneal injection of 0.5 mg per g
(body weight) medetomidine, 5 mgper g (body weight) midazolam and
0.05 mg per g (body weight) fentanyl. A1-cm midline incision was made
to expose the frontoparietal skull, while carefully avoiding damage to
thebonetissue. Forimmobilization of the head, the mice were placed
onacustom-built metal stage equipped with astereotactic holder.Bone
marrow vasculature was visualized by injection of anti-CD105 Alexa
Fluor 546 (0.6 pg per g (body weight)), and MKs and platelets were
visualized by injection of anti-CD42a (GPIX) Alexa Fluor 488 derivative
(0.8 ug per g (body weight)). Images were acquired on an upright two-
photon fluorescence microscope (TCS SP8 MP, Leica Microsystems)
equipped witha x25water objective withanumerical aperture of1.0. A
tunable broadband Ti:sapphire laser (Chameleon, Coherent) was used
at 780 nm to capture Alexa Fluor 488 and 546 fluorescence. For each
mouse, four to eight z-stacks with a step size of 0.51 um were recorded
from different positions in the bone marrow. Proplatelet-forming
MKs were counted, and MK morphology was categorized as normal or
fragmented by a blinded experimenter. ImageJ was used to generate
movies (Supplementary Videos1-3).

Immunofluorescence staining on femora cryosections

Femora of inhibitor-treated or csnk2a1®”* and csnk2a1”*"#* mice
were fixed with 4% PFA in 5 mM sucrose solution (Sigma-Aldrich),
transferred into 10% sucrose in PBS and dehydrated using a graded
sucrose series (10%-20%-30%). Subsequently, femorawere embedded
in Cryo-Gel (Leica) and shock-frozen in liquid nitrogen. Cryosections
with a thickness of 5 pm were generated using a CryoJane Tape Trans-
fer System (Leica) and probed with a self-conjugated FITC-anti-CD41
antibody (1:100) for specific labeling of MKs and platelets, Alexa Fluor
647-conjugated anti-CD105 antibody (1:300) for endothelium detec-
tion,and DRAQS (1:1,000) for nuclei staining. Samples were visualized
using a Leica Stellaris 5 (LMB RO39a) confocal microscope.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datahave been deposited at MetaboLights (MTBLS6082, MTBLS6083
and MTBLS6084) and the Proteomics Identification Database (PRIDE)
(PXD037622). All other data supporting the findings in this study are
included in the main article and associated files. Source data are pro-
vided with this paper.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Protein regulation highlighting key proteins involved
inlipid metabolism. Related to Fig. 1. a, Volcano plots of -log,, p-values over
log, fold changes of all identified proteins onday 0, 1, 3 and 7 of MK maturation.
P-values were corrected using the Benjamini-Hochberg correction with an

FDR cut-off of 0.05. b,c, Proteins of fatty acid transport pathways (b) as well
asidentified phospholipases (c) are depicted. A two-sided t-test was used for
statistical analysis. Benjamini-Hochberg correction was applied to p-values using

an FDR cut-off<0.05 (*P < 0.05, **P < 0.01, ***P < 0.001). d, Network highlighting
proteins involved in lipid metabolism. Edges are correlations of r > 0.85. Nodes
represent proteins and the node color the associated lipid category (left). The
network on the right is color-coded based on the log, fold change of proteins
regulated from day O to day 7. Pure red indicates an FC > 2 and pure blue an

FC <-2.Data are combined from 3 independent biological experiments and mean
values are shown. Error bars represent standard deviations.
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Extended Data Fig. 2| Fuzzy c-means clustering of down-regulated proteins during MK maturation. Related to Fig. 1. Protein cluster (C1-C18) showing overall
downregulation. Number of proteins and their median are denoted in individual plots as well as the associated cluster (C1-C18). The assignment of proteins to clusters
can be found in the Source Data. Threshold = 85.
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Extended Data Fig. 3| Fuzzy c-means clustering of up-regulated proteins during MK maturation. Related to Fig. 1. Protein cluster (C19-C39) showing overall
upregulation. Number of proteins and their median are denoted inindividual plots as well as the associated cluster (C19-C39). The assignment of proteins to clusters
canbe found in the Source Data. Threshold = 85.
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Extended Data Fig. 5| Quantitative elucidation at the FA level of lipids in the main lipid categories. Related to Fig. 2. a-d, Radar charts displaying the relative
intensity of lipid species of mature MKs organized according to their lipid category, including GP, SP, GL, and STs. GPs and GLs were analyzed with shotgun lipidomics

while SPs and STs were analyzed with targeted lipidomics.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| MS2 spectra for the structural elucidation of (neutralloss of class specific headgroup), indicate structure specific fragments.
representative lipid species. Related to Fig. 4. Al MS2 spectra were acquired Scan polarity isindicated on the upper left side of each panel. The fragments
usingacollision energy of 21% in positiveion mode and 24 % innegativeionmode  annotated were used for lipid identification. Quantification of lipid species on
atRm/z,,,0f30000. GP (glycerol phosphate backbone), FA (fatty acyl), HG the molecular species level is based on FA intensities. CL and TG were quantified
(class specific head group fragment), IP (inositol phosphate), I (inositol) and NL on MSl level based on precursor intensities.
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Extended Data Fig. 8 | Exclusion of media lipid composition and apoptosis
as confounding factors for observed lipidomic changes in MKs. Related
toFig. 4. a, Distribution of main lipid classes from mature MKs (day 3,n =3)
aswellas FBS (n =11) used for cell culture supplementation. Lipid quantities
were normalized to volume. b, Proteomic analysis of pro- and anti-apoptotic
markers in MKs. A two-sided t-test was used for statistical analysis. Benjamini-
Hochberg correction was applied to p-values using an FDR cut-off < 0.05

(*P <0.05,**P <0.01,**P < 0.001). c, ATP cell vitality assay showing MKs treated
withinhibitors. lonomycin was used as positive control for apoptotic cells. The
measured luminescence was normalized to the control for each day to display
changes relative to the control baseline (dark grey). d, PS externalization

during megakaryopoiesis. The two most abundant PS species were monitored.
Externalization was calculated by dividing the amount of biotinylated PS
onthe cell surface by the total biotinylated PS, as described in the methods.
Lipid quantities of day 1were used as reference and set to 1. All other days were
calculated as ratios relative to day 1 (n = 5). All data show the mean of at least 3
biological replicates. One biological replicate was comprised of 5individual
animals. Ina-b, error bars represent standard deviations. In d, boxplot whiskers
represent the minimum and maximum. The boundaries of the box represent
the 25th and 75th percentile. Middle black lines represent the mean and black
squares indicate the median.
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Extended Data Fig. 9 | Analysis of the megakaryocytes upon inhibition of
phospholipid biosynthesis. Related to Fig. 5. a, Lipidome analysis showing
the relative quantities (mean + SD, n = 4) per lipid class of control and inhibitor
treated MKs on day 7. Non-treated day O MKs were used as baseline control and
lipid quantities were set to1and the standard deviation is depicted as dotted
lines. Changes for all lipid classes were calculated as ratios relative to control day

0. Atwo-sided t-test was used for statistical analysis. All days were tested against
day 7 control (*P < 0.05, **P < 0.01, **P < 0.001). b, Arithmetic means + SD (n = 5-7)
of MKs of Triacsin C, FSG67 or vehicle treated mice per visual field of in vivo
imaging in the BM vasculature of the frontoparietal skull of mice. ¢, Arithmetic
mean +SD (n =5-7) of MKs and MK area of Triacsin C, FSG67 or vehicle treated
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No data was collected.

Data analysis LipidCreator (version 1.2.0) was used for creating transition lists for targeted lipidomics analysis.
LipidXplorer (version 1.2.8.1) was used for lipid identification of direct-infusion MS/MS data.
MSConvert (version 3.0.20186-dd907d757) was used for centroiding shotgun lipidomic data.

Skyline (version 21.1.0.146) was used to search and quantify the targeted lipids.

Analyst (version 1.7.2) was used to acquire targeted lipidomic data.

Cytoscape (version 3.9.1) was used to generate protein networks and identify protein clusters.
MaxQuant (version 1.6.17.0) was for label-free protein quantification.

Perseus (version 1.6.14.0) was used for post-processing of MaxQuant searches and statistical testing.
InstantClue (version 0.10.10) was used for visualization of proteomic data (volcano plots).

OriginPro (version 2021) was used for statistical analysis and data visualization.

Rstudio (version 1.4.1106) was used for data visualization.

NIS Elements Imaging software (version 5.21.00) was used for examination of proplatelet formation.
ZEN Blue (version 2.3) was used for the analysis of immunofluorescence microscopy images.

LAS X (version 5.1.0) was used for the analysis of femora cryosections.

FlowJo software (version 10.8.0) was used for analysis of flow cytometry data.

ImageJ software (NIH) (version 1.53a) was used for immunoblot analysis and generation of movies.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Lipidomics data have been deposited at Zenodo (DOI:10.5281/zenodo0.8186280) for immediate access. After publication, data will be further accessible at
Metabolights (MTBLS6082, MTBLS6083, MTBLS6084). Proteomics data have been deposited at PRIDE (PXD037622).

Protein sequences were obtained from the publicly available SwissProt database mus musculus (v220621 with 17519 entries).

All other data supporting the findings in this study are included in the main article and associated files. Source data are provided with the manuscript

Field-specific reporting
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Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined taking into account the 3 R's for animal experimentation and the expected experimental variability. At least 3
biological replicates were used for lipidomics or proteomic analysis of MKs. For biochemistry approaches sample sizes were at least n=5 unless
stated otherwise. Sample sizes were chosen on the basis of standard power calculations (with a=0,05 and power of 0.8) performed for similar
experiments.

Data exclusions  No data was excluded from the analysis.

Replication For lipidomics analysis, the full set of samples was measured at least twice, to verify observed trends. Proteomic data was acquired only once
from three biological replicates in technical duplicates. For biochemistry approaches experimental findings were replicated at least five times
independently with different animals to guarantee maximum reproducibility, described in detail in each figure legend. In addition, the main
conclusions are supported by several different experiments using different techniques (Lipidomics, proteomics and functional phenotypic
analysis in vitro and in vivo). All attempts at experimental replication were successful.

Randomization  Animals were taken from different litters and cages, and placed randomly based on the experiments. For lipidomics analysis of MK, groups
and samples were allocated in random order to eliminate time dependent effects on sample preparation. For investigation regarding csnk2al

mice, animals were selected for a posteriori analysis based on their genotype.

Blinding The investigators were blinded during the experiments and the result analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology |:| MRI-based neuroimaging

|Z Animals and other organisms
|:| Human research participants

|:| Clinical data

XXX X [

Antibodies

Antibodies used Details of all antibodies are provided within the Methods.
Rabbit anti-a-tubulin (Thermo Fisher Scientific, PA5-19489), 1:400, polyclonal
rat anti-CD42b, monoclonal (Emfret, M042-1), 1:100, Xia.G7
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rat FITC anti-mouse CD41 (Biolegend, 133904), 1:100, MWReg30

rabbit anti-CSNK2A1 (Abcam, ab76040), 1:1000, EP1963Y

mouse anti-CKIP1 (Santa Cruz, sc-376355), 1:200, A-12

mouse anti-GAPDH (Thermo Fisher Scientific, MA5-15738), 1:1000, GA1R

goat anti-rabbit secondary antibody (Life Technologies, A21069), 1:300, polyclonal

goat anti-rat secondary antibody (Life Technologies, A11006), 1:300, polyclonal

donkey anti-mouse secondary antibody (LI-COR, 926-32212), 1:15000, polyclonal
Alexa594-conjugated anti-CD105 antibody (BioLegend, 120418), 1:300, MJ7/18
Alexa546-conjugated anti-CD105 (self-generated, clone MJ7/1860), 0.6 pg/g body weight
anti-CD42a (GPIX) Alexa Fluor 488 derivative (self-generated, pOp661), 0.8 pug/g body weight

Validation Antibodies were previously validated for immunofluorescence of mouse tissue either in the laboratory of ourselves or
commercial supplier. For specificity statements see manufacturers websites.
Rabbit anti-a-tubulin: https://www.thermofisher.com/antibody/product/alpha-Tubulin-Antibody-Polyclonal/PA5-19489
rat anti-CD42b: https://www.emfret.com/fileadmin/user_upload/Datasheets/M042-1_XiaG7.pdf
rat FITC anti-mouse CD41: https://www.biolegend.com/en-us/products/fitc-anti-mouse-cd41-antibody-5896
rabbit anti-CSNK2A1: https://www.abcam.com/products/primary-antibodies/csnk2al-antibody-ep1963y-ab76040.html
mouse anti-CKIP1: https://datasheets.scbt.com/sc-376355.pdf
mouse anti-GAPDH: https://www.thermofisher.com/antibody/product/GAPDH-Loading-Control-Antibody-clone-GA1R-
Monoclonal/MA5-15738
goat anti-rabbit secondary antibody: https://www.thermofisher.com/antibody/product/Goat-anti-Rabbit-1gG-H-L-Secondary-
Antibody-Polyclonal/A-21069
goat anti-rat secondary antibody: https://www.thermofisher.com/antibody/product/Goat-anti-Rat-1gG-H-L-Cross-Adsorbed-
Secondary-Antibody-Polyclonal/A-11006
donkey anti-mouse secondary antibody: https://www.licor.com/bio/reagents/irdye-800cw-donkey-anti-mouse-igg-secondary-
antibody
Alexa594-conjugated anti-CD105 antibody: https://www.biolegend.com/en-us/products/alexa-fluor-594-anti-mouse-cd105-
antibody-15440
Alexa546-conjugated anti-CD105: Zehentmeier, S., et al., Eur J Immunol., 2014, PMID: 24777940
anti-CD42a (GPIX) Alexa Fluor 488 derivative: Nieswandt, B., et al., Blood, 2000, PMID: 11001906
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For normal MK differentiation experiments, MKs from bone marrow of 10-14 weeks old, male C57BL/6J mice (Jackson
Laboratory) were used.
Csnk2allox/lox mice were generated elsewhere (PMID: 23290496). For megakaryocyte (MK)/platelet-specific deletion of CK2aq,
csnk2allox/lox mice were crossed with Pf4-Cre transgenic mice (Jackson Laboratory, #008535) and male mice were studied at
the age of 12-14 weeks.
For in vivo treatment studies, C57BL6/J male mice with approximately 20 g body weight were used.
Mouse housing underlies a 12 hours light/12 hours dark cycle. Temperatures of 65-75°F (~18-23°C) with 40-60% humidity are
provided. Water and food are accessible ad libitum.

Wild animals The study did not involve wild animals.
Field-collected samples The study did not involve samples collected from the field.
Ethics oversight All animal experiments were performed according to the Directive 2010/63/EU of the European Parliament on the protection of

animals used for scientific purposes and were approved by local authorities (Regierungsprasidium Tubingen) following the
ARRIVE guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|X| All plots are contour plots with outliers or pseudocolor plots.

Q

|X| A numerical value for number of cells or percentage (with statistics) is provided. s
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Methodology 2
Sample preparation The bone marrow of femora bones from mice was flushed and homogenized. Cells were cultivated in 10 cm cell culture dishes

containing DMEM (supplemented with 1 % penicillin / streptomycin and 10 % FBS) and differentiation was initiated by adding
(1%) recombinant TPO. After 5-day cultivation, the cell suspension was carefully pipetted on a two-phase BSA gradient (bottom:
1.5 ml 3 % BSA in PBS, top: 1.5 ml 1.5 % BSA in PBS) to separate cells by weight. After 40 minutes, the supernatant was removed




and the cell pellet was washed 3 times with 500 pl PBS. Non-specific BM binding was blocked by incubation with 0.02 mg/ml FcR
Blocking Reagent. Afterwards, MKs were stained using FITC-conjugated anti-CD41 antibody and the cells were subsequently
washed once with 2 mM EDTA in PBS. Cells then were washed with PBS (5 min at 300 xg) and fixed in PBS containing 1%
PFA/0.1% EDTA. Fixed cells were washed with PBS (10 min at 300 xg) and permeabilized in PBS containing 0.1% TritonX-100.

Finally, DNA was stained using 50 pg/ml propidium iodide staining solution containing 100 pug/ml RNaseA and 2 mM EDTA in PBS.

Analysis was performed by flow cytometry (BD FACSCalibur, Biosciences) and FlowJo software (Tree Star Inc).
Instrument BD FACSCalibur, Biosciences
Software FlowJo software 10.8.0 (Tree Star Inc)
Cell population abundance  Megakaryocyte abundance was assessed using CD41 and ranged between 70-90%.

Gating strategy To determine the ploidy distribution of megakaryocytes, cells were identified by FSC and SSC values. CD41+ cells were
considered MK’s and plotted against propidium iodide signal. Quantification was performed by histogram analysis.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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