Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The extracellular matrix mechanics in the vasculature

Abstract

Mechanical stimuli from the extracellular matrix (ECM) modulate vascular differentiation, morphogenesis and dysfunction of the vasculature. With innovation in measurements, we can better characterize vascular microenvironment mechanics in health and disease. Recent advances in material sciences and stem cell biology enable us to accurately recapitulate the complex and dynamic ECM mechanical microenvironment for in vitro studies. These biomimetic approaches help us understand the signaling pathways in disease pathologies, identify therapeutic targets, build tissue replacement and activate tissue regeneration. This Review analyzes how ECM mechanics regulate vascular homeostasis and dysfunction. We highlight approaches to examine ECM mechanics at tissue and cellular levels, focusing on how mechanical interactions between cells and the ECM regulate vascular phenotype, especially under certain pathological conditions. Finally, we explore the development of biomaterials to emulate, measure and alter the physical microenvironment of pathological ECM to understand cell–ECM mechanical interactions toward the development of therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanotransduction in vascular cells.
Fig. 2: Overview of the overlapping pathologic changes in vascular cells and their ECM.
Fig. 3: Selected approaches to measure cell–ECM mechanical interactions.
Fig. 4: Modeling vascular ECM in both large vessels and the microvasculature.

Similar content being viewed by others

References

  1. Rogers, W. J. et al. Age-associated changes in regional aortic pulse wave velocity. J. Am. Coll. Cardiol. 38, 1123–1129 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Vatner, S. F. et al. Vascular stiffness in aging and disease. Front. Physiol. 12, 762437 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jaganathan, S. K., Supriyanto, E., Murugesan, S., Balaji, A. & Asokan, M. K. Biomaterials in cardiovascular research: applications and clinical implications. Biomed. Res. Int. 2014, 459465 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Attwell, D., Mishra, A., Hall, C. N., O’Farrell, F. M. & Dalkara, T. What is a pericyte? J. Cereb. Blood Flow Metab. 36, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kruger-Genge, A., Blocki, A., Franke, R. P. & Jung, F. Vascular endothelial cell biology: an update. Int. J. Mol. Sci. 20, 4411 (2019).

  6. Blatchley, M. R. & Gerecht, S. Reconstructing the vascular developmental milieu in vitro. Trends Cell Biol. 30, 15–31 (2020).

    Article  PubMed  Google Scholar 

  7. Tourovskaia, A., Fauver, M., Kramer, G., Simonson, S. & Neumann, T. Tissue-engineered microenvironment systems for modeling human vasculature. Exp. Biol. Med. 239, 1264–1271 (2014).

    Article  Google Scholar 

  8. Scarpellino, G., Munaron, L., Cantelmo, A. R. & Fiorio Pla, A. Calcium-permeable channels in tumor vascularization: peculiar sensors of microenvironmental chemical and physical cues. In From Malignant Transformation to Metastasis: Ion Transport in Tumor Biology, 111–137 (Springer, 2020).

  9. Schnellmann, R. et al. Stiffening matrix induces age-mediated microvascular phenotype through increased cell contractility and destabilization of adherens junctions. Adv. Sci. 9, 2201483 (2022). This paper shows that on-demand hydrogel stiffening induces endothelial cell contractility, resulting in compromised vascular networks.

    Article  CAS  Google Scholar 

  10. Zimmerman, E., Geiger, B. & Addadi, L. Initial stages of cell–matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys. J. 82, 1848–1857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta, V. & Grande-Allen, K. J. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc. Res. 72, 375–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Jin, K. A microcirculatory theory of aging. Aging Dis. 10, 676–683 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, L. et al. Age-related changes of the cutaneous microcirculation in vivo. Gerontology 52, 142–153 (2006).

    Article  PubMed  Google Scholar 

  14. Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Birch, H. L. Extracellular matrix and ageing. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science, 169–190 (Springer, 2018).

  16. Xu, J. & Shi, G. P. Vascular wall extracellular matrix proteins and vascular diseases. Biochim. Biophys. Acta 1842, 2106–2119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leclech, C., Natale, C. F. & Barakat, A. I. The basement membrane as a structured surface—role in vascular health and disease. J. Cell Sci. 133, jcs239889 (2020). This paper details the mechanical, structural and topographical properties of BMs across tissue types.

  18. Moiseeva, E. P. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc. Res. 52, 372–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Stratman, A. N. & Davis, G. E. Endothelial cell–pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc. Microanal. 18, 68–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Bonkowski, D., Katyshev, V., Balabanov, R. D., Borisov, A. & Dore-Duffy, P. The CNS microvascular pericyte: pericyte–astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8, 8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barallobre-Barreiro, J. et al. Extracellular matrix in vascular disease, part 2/4: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 2189–2203 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Camasao, D. B. & Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today Bio 10, 100106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hopper, S. E. et al. Comparative study of human and murine aortic biomechanics and hemodynamics in vascular aging. Front. Physiol. 12, 746796 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Raines, E. W. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int. J. Exp. Pathol. 81, 173–182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye, G. J., Nesmith, A. P. & Parker, K. K. The role of mechanotransduction on vascular smooth muscle myocytes’ [corrected] cytoskeleton and contractile function. Anat. Rec. 297, 1758–1769 (2014).

    Article  CAS  Google Scholar 

  26. Kim, S. A., Sung, J. Y., Woo, C. H. & Choi, H. C. Laminar shear stress suppresses vascular smooth muscle cell proliferation through nitric oxide–AMPK pathway. Biochem. Biophys. Res. Commun. 490, 1369–1374 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Leley, S. P., Ciulla, T. A. & Bhatwadekar, A. D. Diabetic retinopathy in the aging population: a perspective of pathogenesis and treatment. Clin. Interv. Aging 16, 1367–1378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scioli, M. G., Bielli, A., Arcuri, G., Ferlosio, A. & Orlandi, A. Ageing and microvasculature. Vasc. Cell 6, 19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pober, J. S. & Sessa, W. C. Inflammation and the blood microvascular system. Cold Spring Harb. Perspect. Biol. 7, a016345 (2014).

    Article  PubMed  Google Scholar 

  30. Mitchell, G. F. Arterial stiffness and hypertension: chicken or egg? Hypertension 64, 210–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Kohn, J. C., Lampi, M. C. & Reinhart-King, C. A. Age-related vascular stiffening: causes and consequences. Front. Genet. 6, 112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ferland-McCollough, D., Slater, S., Richard, J., Reni, C. & Mangialardi, G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol. Ther. 171, 30–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vilela-Martin, J., Cosenso-Martin, L. & Valente, F. Influence of antihypertensive treatment on MMP-9 levels in controlled hypertensive individuals. J. Hypertens. 36, e46 (2018).

    Article  Google Scholar 

  34. Valente, F. M. et al. Plasma levels of matrix metalloproteinase-9 are elevated in individuals with hypertensive crisis. BMC Cardiovasc. Disord. 20, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yabluchanskiy, A. et al. Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 306, H1398–H1407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Craighead, D. H., Wang, H., Santhanam, L. & Alexander, L. M. Acute lysyl oxidase inhibition alters microvascular function in normotensive but not hypertensive men and women. Am. J. Physiol. Heart Circ. Physiol. 314, H424–H433 (2018). This paper shows that sensitivity to LOXL2 inhibition changes depending on normotensive versus hypertensive conditions.

    Article  PubMed  Google Scholar 

  37. Steppan, J. et al. Tissue transglutaminase modulates vascular stiffness and function through crosslinking-dependent and crosslinking-independent functions. J. Am. Heart Assoc. 6, e004161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gimbrone, M. A. Jr. & Garcia-Cardena, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamin, R. & Morgan, K. G. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J. Physiol. 590, 4145–4154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Romer, L. H., Birukov, K. G. & Garcia, J. G. Focal adhesions: paradigm for a signaling nexus. Circ. Res. 98, 606–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Jain, M. & Chauhan, A. K. Role of integrins in modulating smooth muscle cell plasticity and vascular remodeling: from expression to therapeutic implications. Cells 11, 646 (2022).

  42. Tsimbouri, P. M. Adult stem cell responses to nanostimuli. J. Funct. Biomater. 6, 598–622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, Q. W., Edvinsson, L. & Xu, C. B. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells. BMC Cell Biol. 10, 52 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shimokawa, H., Sunamura, S. & Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 118, 352–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Gu, Y. & Gu, C. Physiological and pathological functions of mechanosensitive ion channels. Mol. Neurobiol. 50, 339–347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai, A. et al. Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biol. Rev. Camb. Philos. Soc. 97, 604–614 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci. 117, 2449–2460 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Strassheim, D. et al. RhoGTPase in vascular disease. Cells 8, 551 (2019).

  50. Chapados, R. et al. ROCK controls matrix synthesis in vascular smooth muscle cells: coupling vasoconstriction to vascular remodeling. Circ. Res. 99, 837–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Huveneers, S., Daemen, M. J. & Hordijk, P. L. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ. Res. 116, 895–908 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Piera-Velazquez, S. & Jimenez, S. A. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol. Rev. 99, 1281–1324 (2019). This paper summarizes the pathobiology of endothelial-to-mesenchymal transition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Filosa, J. A., Yao, X. & Rath, G. TRPV4 and the regulation of vascular tone. J. Cardiovasc. Pharmacol. 61, 113–119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jackson, W. F. Ion channels and vascular tone. Hypertension 35, 173–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, L. et al. Role of transient receptor potential vanilloid 4 in vascular function. Front. Mol. Biosci. 8, 677661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P. & Owens, G. K. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J. Biol. Chem. 276, 341–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Goncharov, N. V., Nadeev, A. D., Jenkins, R. O. & Avdonin, P. V. Markers and biomarkers of endothelium: when something is rotten in the state. Oxid. Med. Cell. Longev. 2017, 9759735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shu, X. et al. Endothelial nitric oxide synthase in the microcirculation. Cell. Mol. Life Sci. 72, 4561–4575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petsophonsakul, P. et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 39, 1351–1368 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Zhao, Y. et al. Role of PI3K in the progression and regression of atherosclerosis. Front. Pharmacol. 12, 632378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ponticos, M. & Smith, B. D. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J. Biomed. Res. 28, 25–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Boopathy, G. T. K. & Hong, W. Role of Hippo pathway–YAP/TAZ signaling in angiogenesis. Front. Cell Dev. Biol. 7, 49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. DeLoach, S. S. & Townsend, R. R. Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin. J. Am. Soc. Nephrol. 3, 184–192 (2008).

    Article  PubMed  Google Scholar 

  65. Najjar, S. S. et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J. Am. Coll. Cardiol. 51, 1377–1383 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 31, 2338–2350 (2010).

    Article  Google Scholar 

  67. Ferruzzi, J., Di Achille, P., Tellides, G. & Humphrey, J. D. Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function. PloS ONE 13, e0201379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Linka, K., Cavinato, C., Humphrey, J. D. & Cyron, C. J. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning. Acta Biomater. 147, 63–72 (2022).

  69. Shahid, M. & Buys, E. S. Assessing murine resistance artery function using pressure myography. J. Vis. Exp. https://doi.org/10.3791/50328 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Martin, S. et al. Polymer hydrogel particles as biocompatible AFM probes to study CD44/hyaluronic acid interactions on cells. Polymer 102, 342–349 (2016).

    Article  CAS  Google Scholar 

  71. Radmacher, M. Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol. 83, 347–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Engler, A. J., Rehfeldt, F., Sen, S. & Discher, D. E. Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83, 521–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Müller, D. J., Helenius, J., Alsteens, D. & Dufrêne, Y. F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  PubMed  Google Scholar 

  74. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mao, Y. et al. In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl. Phys. Lett. 95, 013704 (2009).

    Article  Google Scholar 

  76. Meng, H., Chowdhury, T. T. & Gavara, N. The mechanical interplay between differentiating mesenchymal stem cells and gelatin-based substrates measured by atomic force microscopy. Front. Cell Dev. Biol. 9, 1639 (2021).

    Article  Google Scholar 

  77. Sharma, S. & Gimzewski, J. K. Application of AFM to the nanomechanics of cancer. MRS Advances 1, 1817–1827 (2016).

    Article  CAS  Google Scholar 

  78. Rape, A. D., Zibinsky, M., Murthy, N. & Kumar, S. A synthetic hydrogel for the high-throughput study of cell–ECM interactions. Nat. Commun. 6, 8129 (2015).

    Article  PubMed  Google Scholar 

  79. Norman, M. D., Ferreira, S. A., Jowett, G. M., Bozec, L. & Gentleman, E. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nat. Protoc. 16, 2418–2449 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Viji Babu, P. K., Rianna, C., Mirastschijski, U. & Radmacher, M. Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy. Sci. Rep. 9, 12317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Maynard, S. A. et al. Nanoscale molecular quantification of stem cell–hydrogel interactions. ACS Nano 14, 17321–17332 (2020). This paper shows approaches to quantify cell–hydrogel interaction at a molecule level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Puckert, C. et al. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness. Acta Biomater. 106, 156–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Henderson, E., Haydon, P. & Sakaguchi, D. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1944–1946 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Taubenberger, A. V., Hutmacher, D. W. & Muller, D. J. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng. Part B Rev. 20, 40–55 (2014).

    Article  PubMed  Google Scholar 

  85. Chièze, L. et al. Quantitative characterization of single-cell adhesion properties by atomic force microscopy using protein‐functionalized microbeads. J. Mol. Recognit. 32, e2767 (2019).

    Article  PubMed  Google Scholar 

  86. Dao, L., Gonnermann, C. & Franz, C. M. Investigating differential cell–matrix adhesion by directly comparative single-cell force spectroscopy. J. Mol. Recognit. 26, 578–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Rubies, C. et al. Long-term strenuous exercise promotes vascular injury by selectively damaging the tunica media: experimental evidence. JACC Basic Transl. Sci. 7, 681–693 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. He, X. et al. A new role for host annexin A2 in establishing bacterial adhesion to vascular endothelial cells: lines of evidence from atomic force microscopy and an in vivo study. Lab. Invest. 99, 1650–1660 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dudiki, T. et al. Microglia control vascular architecture via a TGFβ1 dependent paracrine mechanism linked to tissue mechanics. Nat. Commun. 11, 986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Achner, L. et al. AFM-based nanoindentation indicates an impaired cortical stiffness in the AAV-PCSK9DY atherosclerosis mouse model. Pflugers Arch. 474, 993–1002 (2022).

  91. Rickel, A., Sanyour, H. & Hong, Z. Pleiotropic effect of statin on vascular smooth muscle cell mechanics and migration. Biophys. J. 121, 263A (2022).

    Article  Google Scholar 

  92. Chan, X. Y. et al. HIF2A gain-of-function mutation modulates the stiffness of smooth muscle cells and compromises vascular mechanics. iScience 24, 102246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chtcheglova, L. A., Wildling, L., Waschke, J., Drenckhahn, D. & Hinterdorfer, P. AFM functional imaging on vascular endothelial cells. J. Mol. Recognit. 23, 589–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Trache, A. & Meininger, G. A. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. J. Biomed. Opt. 10, 064023 (2005).

    Article  PubMed  Google Scholar 

  95. Harjumäki, R. et al. AFM force spectroscopy reveals the role of integrins and their activation in cell–biomaterial interactions. ACS Appl. Bio Mater. 3, 1406–1417 (2020).

    Article  PubMed  Google Scholar 

  96. Bayer, R. J. Mechanical Wear Fundamentals and Testing, Revised and Expanded (CRC, 2004).

  97. Song, M. J. et al. Mapping the mechanome of live stem cells using a novel method to measure local strain fields in situ at the fluid–cell interface. PLoS ONE 7, e43601 (2012).

  98. Hall, M. S. et al. Toward single cell traction microscopy within 3D collagen matrices. Exp. Cell Res. 319, 2396–2408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kubow, K. E. et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Gómez-González, M., Latorre, E., Arroyo, M. & Trepat, X. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2, 300–317 (2020).

    Article  Google Scholar 

  101. Kaylan, K. B., Kourouklis, A. P. & Underhill, G. H. A high-throughput cell microarray platform for correlative analysis of cell differentiation and traction forces. J. Vis. Exp. https://doi.org/10.3791/55362 (2017).

  102. Shakiba, D. et al. The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast–collagen interactions. ACS Nano 14, 7868–7879 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Hur, S. S. et al. Traction force microscopy for understanding cellular mechanotransduction. BMB Rep. 53, 74–81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Uroz, M. et al. Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium. Nat. Mater. 18, 1015–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Wei, Z., Schnellmann, R., Pruitt, H. C. & Gerecht, S. Hydrogel network dynamics regulate vascular morphogenesis. Cell Stem Cell 27, 798–812 (2020). This paper shows that viscoelastic dynamic hydrogels facilitate vascular morphogenesis in vitro and angiogenesis in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yuan, H. et al. Synthetic fibrous hydrogels as a platform to decipher cell–matrix mechanical interactions. Proc. Natl Acad. Sci. USA 120, e2216934120 (2023). This paper uses live-cell rheology and TFM to better understand the intricate interactions between cells and the matrix within polyisocyanide hydrogels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin, Y., Leartprapun, N., Luo, J. C. & Adie, S. G. Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging. Nat. Commun. 13, 3465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mulligan, J. A., Bordeleau, F., Reinhart-King, C. A. & Adie, S. G. Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy. Biomed. Opt. Express 8, 1152–1171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Álvarez-González, B. et al. Two-layer elastographic 3-D traction force microscopy. Sci. Rep. 7, 39315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Staunton, J. R., So, W. Y., Paul, C. D. & Tanner, K. High-frequency microrheology in 3D reveals mismatch between cytoskeletal and extracellular matrix mechanics. Proc. Natl Acad. Sci. USA 116, 14448–14455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hagiwara, M., Maruyama, H., Akiyama, M., Koh, I. & Arai, F. Weakening of resistance force by cell–ECM interactions regulate cell migration directionality and pattern formation. Commun. Biol. 4, 808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nikolić, M., Scarcelli, G. & Tanner, K. Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophys. J. 121, 3586–3599 (2022). This paper uses optical tweezers and Brillouin microscopy to measure the mechanical interactions between cells and their surrounding ECM as well as the mechanical properties of the microenvironment in which the cells reside.

    Article  PubMed  Google Scholar 

  114. Landau, S. et al. Tissue-level mechanosensitivity: predicting and controlling the orientation of 3D vascular networks. Nano Lett. 18, 7698–7708 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Guo, S. et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett. 21, 2497–2504 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Rosenfeld, D. et al. Morphogenesis of 3D vascular networks is regulated by tensile forces. Proc. Natl Acad. Sci. USA 113, 3215–3220 (2016). This paper demonstrates that tensile forces guide angiogenesis and blood vessel structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lai, A. et al. Piezo1 response to shear stress is controlled by the components of the extracellular matrix. ACS Appl. Mater. Interfaces 14, 40559–40568 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Yarbrough, D. & Gerecht, S. Engineering smooth muscle to understand extracellular matrix remodeling and vascular disease. Bioengineering 9, 449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song, H.-H. G., Rumma, R. T., Ozaki, C. K., Edelman, E. R. & Chen, C. S. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22, 340–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, Y., Kankala, R. K., Ou, C., Chen, A. & Yang, Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact. Mater. 9, 198–220 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Baker, B. M., Trappmann, B., Stapleton, S. C., Toro, E. & Chen, C. S. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13, 3246–3252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, W. et al. A double-network poly (Nɛ-acryloyl l-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Acta Biomater. 33, 131–141 (2016).

    Article  PubMed  Google Scholar 

  123. Zhang, G. et al. Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs. Biotechnol. Bioeng. 118, 3787–3798 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Wu, C. et al. Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment. J. Control. Release 344, 249–260 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Yuan, Y., Fan, D., Shen, S. & Ma, X. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem. Eng. J. 433, 133859 (2022).

    Article  CAS  Google Scholar 

  126. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article  Google Scholar 

  128. Cohen, N. P., Foster, R. J. & Mow, V. C. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Carvalho, E. M. & Kumar, S. Lose the stress: viscoelastic materials for cell engineering. Acta Biomater. 163, 146–157 (2022).

  130. Ma, Y. et al. Viscoelastic cell microenvironment: hydrogel‐based strategy for recapitulating dynamic ECM mechanics. Adv. Funct. Mater. 31, 2100848 (2021).

    Article  CAS  Google Scholar 

  131. Galli, M., Comley, K. S., Shean, T. A. & Oyen, M. L. Viscoelastic and poroelastic mechanical characterization of hydrated gels. J. Mater. Res. 24, 973–979 (2009).

    Article  CAS  Google Scholar 

  132. Rubiano, A. et al. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater. 67, 331–340 (2018).

    Article  PubMed  Google Scholar 

  133. van Hoorn, H., Kurniawan, N. A., Koenderink, G. H. & Iannuzzi, D. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. Soft Matter 12, 3066–3073 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).

    Article  CAS  Google Scholar 

  135. Hobson, E. C. et al. Resonant acoustic rheometry for non-contact characterization of viscoelastic biomaterials. Biomaterials 269, 120676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aliabouzar, M. et al. Spatiotemporal control of micromechanics and microstructure in acoustically-responsive scaffolds using acoustic droplet vaporization. Soft Matter 16, 6501–6513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wong, L. et al. Substrate stiffness directs diverging vascular fates. Acta Biomater. 96, 321–329 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Smith, Q. et al. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci. Adv. 3, e1602883 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Xie, S.-A. et al. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: role of DNA methyltransferase 1. Biomaterials 155, 203–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Alderfer, L., Russo, E., Archilla, A., Coe, B. & Hanjaya-Putra, D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J. 35, e21498 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Hanjaya‐Putra, D. et al. Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J. Cell. Mol. Med. 14, 2436–2447 (2010).

    Article  PubMed  Google Scholar 

  142. Bordeleau, F. et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl Acad. Sci. USA 114, 492–497 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Wei, Y. et al. Programmable DNA hydrogels as artificial extracellular matrix. Small 18, 2107640 (2022).

    Article  CAS  Google Scholar 

  144. Juliar, B. A. et al. Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels. Biomaterials 230, 119634 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Xu, R., Boudreau, A. & Bissell, M. J. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28, 167–176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zamani, M. et al. Single-cell transcriptomic census of endothelial changes induced by matrix stiffness and the association with atherosclerosis. Adv. Funct. Mater. 32, 2203069 (2022).

  147. Zhou, S.-w et al. The substrate stiffness at physiological range significantly modulates vascular cell behavior. Colloids Surf. B Biointerfaces 214, 112483 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Blatchley, M. R., Hall, F., Wang, S., Pruitt, H. C. & Gerecht, S. Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis. Sci. Adv. 5, eaau7518 (2019). This paper uncovers the mechanism by which hypoxia, co-jointly with matrix viscoelasticity, guides cluster-based vasculogenesis using an oxygen-controllable hydrogel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lewis, D. M., Blatchley, M. R., Park, K. M. & Gerecht, S. O2-controllable hydrogels for studying cellular responses to hypoxic gradients in three dimensions in vitro and in vivo. Nat. Protoc. 12, 1620–1638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Blatchley, M. R. et al. Discretizing three-dimensional oxygen gradients to modulate and investigate cellular processes. Adv. Sci. 8, 2100190 (2021).

    Article  CAS  Google Scholar 

  151. Indana, D., Agarwal, P., Bhutani, N. & Chaudhuri, O. Viscoelasticity and adhesion signaling in biomaterials control human pluripotent stem cell morphogenesis in 3D culture. Adv. Mater. 33, 2101966 (2021).

    Article  CAS  Google Scholar 

  152. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Adebowale, K. et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 20, 1290–1299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hong, Y. et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun. 10, 2060 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Abduljauwad, S. N. & Ahmed, H.-U.-R. Enhancing cancer cell adhesion with clay nanoparticles for countering metastasis. Sci. Rep. 9, 5935 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang, X. et al. Dynamic photoelectrical regulation of ECM protein and cellular behaviors. Bioact. Mater. 22, 168–179 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Bella, J. & Humphries, M. J. Cα-H···O=C hydrogen bonds contribute to the specificity of RGD cell–adhesion interactions. BMC Struct. Biol. 5, 4 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhang, K. et al. Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 32, 2111465 (2022).

    Article  CAS  Google Scholar 

  159. Li, X. et al. Nanofiber–hydrogel composite-mediated angiogenesis for soft tissue reconstruction. Sci. Transl. Med. 11, eaau6210 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Wang, D. Tuning Interfacial Biomolecule Interactions with Massively Parallel Nanopore Arrays. PhD Thesis, Colorado State Univ. (2021).

  161. Park, S. E., Georgescu, A., Oh, J. M., Kwon, K. W. & Huh, D. Polydopamine-based interfacial engineering of extracellular matrix hydrogels for the construction and long-term maintenance of living three-dimensional tissues. ACS Appl. Mater. Interfaces 11, 23919–23925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jeon, O., Kim, T.-H. & Alsberg, E. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior. Acta Biomater. 136, 88–98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang, Q. et al. A novel hydrogel-based combination therapy for effective neuroregeneration after spinal cord injury. Chem. Eng. J. 415, 128964 (2021).

    Article  CAS  Google Scholar 

  164. Zhu, C. et al. Novel enzymatic crosslinked hydrogels that mimic extracellular matrix for skin wound healing. J. Mater. Sci. 53, 5909–5928 (2018).

    Article  CAS  Google Scholar 

  165. Machour, M., Szklanny, A. A. & Levenberg, S. Fabrication of engineered vascular flaps using 3D printing technologies. J. Vis. Exp. https://doi.org/10.3791/63920 (2022).

  166. Rodríguez-Soto, M. A. et al. Small diameter cell-free tissue-engineered vascular grafts: biomaterials and manufacture techniques to reach suitable mechanical properties. Polymers 14, 3440 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wang, Z. et al. Rapid vascularization of tissue-engineered vascular grafts in vivo by endothelial cells in co-culture with smooth muscle cells. J. Mater. Sci. Mater. Med. 23, 1109–1117 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Gaharwar, A. K., Singh, I. & Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 5, 686–705 (2020).

    Article  CAS  Google Scholar 

  169. Thomsen, M. S., Routhe, L. J. & Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab. 37, 3300–3317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. de Oliveira, R. C. & Wilson, S. E. Descemet’s membrane development, structure, function and regeneration. Exp. Eye Res. 197, 108090 (2020).

    Article  PubMed  Google Scholar 

  171. Allen, P., Melero‐Martin, J. & Bischoff, J. Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J. Tissue Eng. Regen. Med. 5, e74–e86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rhodes, J. M. & Simons, M. The extracellular matrix and blood vessel formation: not just a scaffold. J. Cell. Mol. Med. 11, 176–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Marchand, M., Monnot, C., Muller, L. and Germain, S., 2019, May. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. In Seminars in Cell & Developmental Biology (Vol. 89, pp. 147-156). Academic Press.

  174. Duca, L. et al. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc. Res. 110, 298–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Brooke, B. S., Bayes-Genis, A. & Li, D. Y. New insights into elastin and vascular disease. Trends Cardiovasc. Med. 13, 176–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Grenier, S., Sandig, M. & Mequanint, K. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells. J. Biomed. Mater. Res. A 82, 802–809 (2007).

    Article  PubMed  Google Scholar 

  177. Goonoo, N., Bhaw-Luximon, A., Bowlin, G. L. & Jhurry, D. An assessment of biopolymer-and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polym. Int. 62, 523–533 (2013).

    Article  CAS  Google Scholar 

  178. Xu, C., Inai, R., Kotaki, M. & Ramakrishna, S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10, 1160–1168 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Ji, C. & McCulloch, C. A. TRPV4 integrates matrix mechanosensing with Ca2+ signaling to regulate extracellular matrix remodeling. FEBS J. 288, 5867–5887 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Givens, C. & Tzima, E. Endothelial mechanosignaling: does one sensor fit all? Antioxid. Redox Signal. 25, 373–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gordon, E., Schimmel, L. & Frye, M. The importance of mechanical forces for in vitro endothelial cell biology. Front. Physiol. 11, 684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wagenseil, J. E. & Mecham, R. P. Elastin in large artery stiffness and hypertension. J. Cardiovasc. Transl. Res. 5, 264–273 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Matsuzaki, Y., John, K., Shoji, T. & Shinoka, T. The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care. Appl. Sci. 9, 1274 (2019).

Download references

Acknowledgements

T.B. is a Ford Foundation Predoctoral Fellow. Several studies described from the Gerecht laboratory were funded by a grant from the Air Force Office of Scientific Research (FA9550-20-1-0356 to S.G.).

Author information

Authors and Affiliations

Authors

Contributions

D.W. and S.G. prepared the manuscript outline. D.W. and T.B. drafted the tables and figures. D.W., T.B., L.S. and S.G. wrote and edited the manuscript.

Corresponding author

Correspondence to Sharon Gerecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Sara Baratchi, Ngan Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Brady, T., Santhanam, L. et al. The extracellular matrix mechanics in the vasculature. Nat Cardiovasc Res 2, 718–732 (2023). https://doi.org/10.1038/s44161-023-00311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00311-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing