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Lipid-associated macrophages transition 
to an inflammatory state in human 
atherosclerosis, increasing the risk of 
cerebrovascular complications
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Jiangming Sun    2, Mihaela Nitulescu2, Moustafa Attar    1, Esther Lutgens    5, 
Steffen Schmidt6, Marie W. Lindholm6, Robin P. Choudhury    7, 
Ismail Cassimjee1,8, Regent Lee8, Ashok Handa8, Isabel Goncalves2,3, 
Stephen N. Sansom    1,9  & Claudia Monaco    1,9 

The immune system is integral to cardiovascular health and disease. 
Targeting inflammation ameliorates adverse cardiovascular outcomes. 
Atherosclerosis, a major underlying cause of cardiovascular disease, is 
conceptualized as lipid-driven inflammation in which macrophages play 
a nonredundant role. However, evidence emerging so far from single-cell 
atlases suggests a dichotomy between lipid-associated and inflammatory 
macrophage states. Here, we present an inclusive reference atlas of 
human intraplaque immune cell communities. Combining single-cell RNA 
sequencing (scRNA-seq) of human surgical carotid endarterectomies 
in a discovery cohort with bulk RNA-seq and immunohistochemistry in 
a validation cohort (the Carotid Plaque Imaging Project), we reveal the 
existence of PLIN2hi/TREM1hi macrophages as a Toll-like receptor (TLR)-
dependent inflammatory lipid-associated macrophage state linked to 
cerebrovascular events. Our study shifts the current paradigm of lipid-
driven inflammation by providing biological evidence for a pathogenic 
macrophage transition to an inflammatory lipid-associated phenotype and 
for its targeting as a new treatment strategy for cardiovascular disease.

Atherosclerosis is the underlying pathology in a large majority of 
cases of myocardial infarction and is a major factor in ischemic stroke. 
Phase III clinical trials have recently provided evidence that targeting 
inflammation ameliorates cardiovascular outcomes1,2. Evidence has 

accumulated over several years in support of the concept of athero-
sclerosis as lipid-driven inflammation. This concept largely centers on 
the biology of the so-called foam cell, the hallmark of atherosclerosis3. 
Accumulation and retention of cholesterol-rich lipoproteins is a major 
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small T cell cluster with expression of interferon (IFN) response genes 
(including ISG15), as well as a cluster with a transcriptional signature 
compatible with a mucosal-associated invariant T (MAIT) cell subpopu-
lation (KLRB1, ZBTB16, RORA and SLC4A10). Finally, we found two NK 
cell populations. The larger population was marked by expression of 
XCL1 and XCL2, whereas the second FCGR3A+ (CD16+) NK cell popula-
tion shared expression of PRF1, GZMB, GZMH, GZMA and GNLY with the 
CD8 Teff cell cluster (Fig. 1b–d, Extended Data Fig. 2a–c and Source Data 
Fig. 1). Our manual cluster annotation was consistent with the results 
of automatic cell-type prediction that was performed by assessing 
overrepresentation of curated sets of known cell-type markers in the 
clusters17 (Extended Data Fig. 2d) and by mapping cells to reference 
single-cell datasets with Azimuth18 (Extended Data Fig. 2e,f). This 
analysis confirmed the similarity of the discovered MAIT cell popu-
lation to blood MAIT cells (Extended Data Fig. 2f), consistent with a 
recent report that these cells are present in atherosclerotic plaques19.

The in-depth analysis of MNPs (n = 4,533 cells) identified four 
conventional dendritic cell (cDC) clusters and eight macrophage popu-
lations (Fig. 2a–d, Extended Data Fig. 3a–f and Source Data Fig. 2).  
As expected, the cDC clusters included a cDC2 (CD1C, CLEC10A and 
FCER1A) subset and a cDC1 (CLEC9A, IRF8 and SNX3) cluster. In addi-
tion, we found two subpopulations not yet reported in single-cell 
studies of human plaques. The first subpopulation was a mature cDC2 
cluster that expressed the immune checkpoint genes (CD40, CD200, 
TNFRSF4 (encoding OX40) and CD274 (encoding PDL-1), as well as 
LAMP3, MARCKSL1 and IDO1) that are compatible with the newly char-
acterized mature DCs enriched in immunoregulatory molecules (mreg-
DCs) in cancer20 (Extended Data Fig. 4a). The second subpopulation 
consisted of recently described AXL and SIGLEC6 (AS)-expressing DCs21 
that featured genes related to both cDC2 and plasmacytoid DCs (pDCs) 
(as shown in Extended Data Fig. 4b), and currently has no known role in 
disease. The remaining eight MNP subsets included a C1Q cluster with 
efferocytic function, an HMOX1+ cluster, two LAM clusters (the previ-
ously reported TREM2hi subset and an unreported PLIN2hi/TREM1hi LAM 
cluster), a small IFN-responsive cluster, two calgranulin (S100A8/9/12) 
clusters and an IL-10+/TNFAIP3+ cluster (Fig. 2a–c, Extended Data  
Fig. 3a–d and Source Data Fig. 2). The S100A8/IL-1B− MNP cluster 
was characterized by a lack of inflammatory signature and a stress 
response signature (DNAJB1, HSPA1A and HSPA1B) similar to a recently 
described cluster in the lungs of patients with coronavirus disease 2019  
(COVID-19) (ref. 22). The S100A8/IL-1B+ MNP cluster was character-
ized by the expression of genes in the inflammasome pathway: IL1B, 
NLRP3; pro-inflammatory cytokines or chemokines TNF, CCL3, CCL4 
and CCL20, pro-inflammatory transcription factors CEBPB and NFKB1 
and receptor TLR2 and genes related to senescence and apoptosis 
(CDKN1, PTGER2, PTGS2 and MCL1) (Fig. 2b and Extended Data Fig. 3a,b). 
Although it shared a high expression of IL1B with S100A8/IL1B+ MNP, 
the IL-10+/TNFAIP3+ MNP cluster was characterized by the additional 
expression of the anti-inflammatory cytokine IL10, the nuclear fac-
tor κB (NF-κB) inhibitor TNFAIP3 and the anti-inflammatory receptor 
GPR183. A similar cluster was identified in murine atherosclerosis10. 
Overall, our annotation of the myeloid phenotypes was consistent with 
predictions from automatic cell identification algorithms (Extended 
Data Fig. 3e,f). However, these algorithms suggested that the S100A8 
clusters may have been comprised of monocytes. Finally, we reana-
lyzed the MNP data using an alternative Seurat-based workflow23,24.  

perpetuating factor of inflammation within the vessel wall4,5. Lipid-
associated macrophages (LAMs) are not unique to atherosclerosis 
but are a common denominator of several human diseases of differ-
ent pathogenesis, including myelin degenerating diseases6, nonal-
coholic steatohepatitis (NASH)7 and obesity8. Recent advances in 
single-cell biology have identified a common LAM state across these 
diseases, namely the triggering receptor expressed on myeloid cells 2 
high (TREM2hi) macrophages9. The lack of inflammation signatures in 
TREM2hi macrophages9–11 is, however, at odds with the central tenet of 
atherogenesis as lipid-driven inflammation12.

Using single-cell transcriptomics to profile approximately 22,000 
CD45+ live cells derived from human carotid endarterectomy speci-
mens (‘discovery cohort’), combined with bulk RNA-seq and immu-
nohistochemistry in the Carotid Plaque Imaging Project (CPIP) study 
(‘validation cohort’), we identify a community of perilipin 2hi (PLIN2hi)/
TREM1hi plaque macrophages that couples transcriptomic signatures 
of lipid accumulation and inflammation. Trajectory analysis, ligand–
receptor interaction analysis, and histological and functional studies 
show that intraplaque LAMs transition from a TREM2hi homeostatic to 
a PLIN2hi/TREM1hi inflammatory transcriptional state, and that TLR2 
signaling is important in this phenotypic switch. In the CPIP cohort 
(n = 115), the transcriptional and protein signature of inflammatory 
LAMs is enriched in plaques from patients with carotid artery disease 
who recently experienced an ischemic cerebrovascular event compared 
with those who did not. Our study reveals the cellular basis of lipid-
driven inflammation in human atherosclerosis and links it to plaque 
vulnerability to complications, highlighting new avenues for treatment 
of cardiovascular disease.

Results
T cells and mononuclear phagocytes in human carotid plaques
Our discovery cohort consisted of six patients undergoing carotid 
endarterectomy. Tissues were enzymatically digested, sorted for live 
CD45+ cells and subjected to scRNA-seq. After removing low-quality 
cells and doublets (see Methods, Supplementary Fig. 1), we retained a 
total of n = 20,943 cells comprising all major immune cell types known 
to be present in plaques, including T cells, mononuclear phagocytes 
(MNPs), B cells, plasma cells and mast cells (Extended Data Fig. 1).  
As previously reported11, T cells formed the majority of CD45+ cells 
(mean frequency, 52%), followed by MNPs (mean frequency, 18%) 
(Extended Data Fig. 1). To investigate the cellular heterogeneity pre-
sent within the T/natural killer (NK) lymphocyte and MNP cell com-
partments, we performed more granular analyses of each of these 
major cell subsets separately using the Scanpy toolkit13 and Harmony 
integration algorithm14.

In total, we found 11 clusters of T and NK cells (Fig. 1a,b). In agree-
ment with previous studies11, most T/NK cells present in these human 
plaques displayed a mature resident phenotype with activation and 
exhaustion markers such as CCL5, CD69, NR3C1, PDCD1, KLRG1 and 
GZMK. CD4 T cells formed four clusters: a regulatory T (Treg) cell cluster, 
a central memory T (TCM) cell cluster, an effector memory T (TEM) cell 
cluster, and a small cluster displaying high expression of exhaustion 
markers CXCL13, NR3C1 and PDCD1. CD8 T cell populations included 
a high GZMK/IFNG expressing TEM population, a signature recently 
associated with inflammaging15 and immune activation16, and a cyto-
toxic CD8+ effector T (Teff) cell cluster. We also noted the presence of a 

Fig. 1 | Identification of plaque T and NK cell populations with cytotoxic and 
activation signatures. a–d, Cells identified as CD4 T, CD8 T, NK and proliferating 
cells in the overall analysis (n = 15,052 cells) were extracted and analyzed 
separately. a, The UMAP shows the 11 identified lymphocyte subpopulations. 
b,c, The expression of selected automatically discovered cluster marker genes 
(BH-adjusted P < 0.05, two-sided Wilcoxon tests) and known cell-type marker 
genes is shown on the UMAP (b) and summarized in the dot plot, where the color 
of the dots represents average expression and size represents the percentage of 

cells within the cluster that express it (c). Additional cluster markers are shown in 
Extended Data Fig. 2a,b. d, Selected KEGG pathways and GO biological processes 
(BP) and molecular functions (MF) that showed significant overrepresentation in 
the cluster marker genes (color of the dots represents odds ratio from one-sided 
Fisher exact tests, and size of the dots represents the number of genes enriched 
in category or cell type; BH-adjusted P < 0.1). P values for individual marker genes 
and pathways are provided in Source Data Fig. 1.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research | Volume 2 | July 2023 | 656–672 658

Article https://doi.org/10.1038/s44161-023-00295-x

0

5

−5 0 5 10

UMAP 1

U
M

AP
 2

NK FCGR3A+
CD4 Exh.

CD4 TEM

CD4 TCM

CD4 Treg

Proliferating

CD8 TEM

CD8 IFN resp.

CD8 Te�

NK XCL1+

MAIT

a b

c

d

FCGR3A XCL1 MKI67

GZMK GZMH PRF1

CTLA4 SELL KLRB1

TRAC CD8A NKG7

−5 0 5 10 −5 0 5 10 −5 0 5 10

0

5

0

5

0

5

0

5

UMAP_1

U
M

AP
_2

CD8  IFN resp

CD8 TEM

CD8 Te�

NK FCGR3A+

NK XCL1+

CD4 TEM

CD4 Treg

CD4 TCM

CD4 Ex.

Proliferating

MAIT

CD3D
CD8A

CD4
IFN

G
CCL4

CCL5
CD69

CXCR4
GZMK

GZMA

GZMH
GZMB

GNLYPRF1

ZNF6
83

FC
GR3A

KLR
F1

KLR
C1
XCL2

KLR
B1
RORA

ZBTB
16

SLC
4A10

CD40LGIL7
R

FO
XP3

TN
FR

SF18

TN
FR

SF4
CCR7

PDCD1

NR3C1

CXCL13

MKI67

−2
−1
0
1
2
3

Average expression

Percent expressed
0
25
50
75

4

8

16

32

Odds.ratio

n_fg

4
8

16

32

64

Response to type I interferon
DNA replication

Regulation of interleukin−6 production
Negative regulation of inflammatory response

MAPK signaling pathway
MHC class I protein complex binding

Response to interferon−gamma
Translational initiation

Cellular defense response
Cytolysis

Antigen processing and presentation
Cell killing

MHC protein binding
Th17 cell di�erentiation

PD−L1 expression and PD−1 checkpoint..
Leukocyte chemotaxis

Regulation of interleukin−2 production
 IL−17 signaling pathway

 B cell activation
TNF signaling pathway

Category
GO BP
KEGG
GO MF

Expression
level

Min

Max

C
D

8 
 IF

N
 re

sp

C
D

8 
T EM

C
D

8 
T e�

N
K 

FC
G

R3
A+

N
K 

XC
L1

+

C
D

4 
T EM

C
D

4 
T re

g

C
D

4 
T C

M

C
D

4 
Ex

.

Pr
ol

ife
ra

tin
g

M
AI

T

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research | Volume 2 | July 2023 | 656–672 659

Article https://doi.org/10.1038/s44161-023-00295-x

cDC2
C1Q

cDC1

HMOX1+

S100A8/IL1B+

S100A8/IL1B–

TREM2hi

PLIN2hi/TREM1hi

IL10+/TNFAIP3+

AXL
CCR7

CLE
C9A

CD1C
CD74

HLA
−D

RA
CSF1R

VSIG
4
F13

A1
MRC1

PRDX1

NUPR1

HMOX1
APOE

TR
EM2

CD9
CD36

FA
BP4

FA
BP5

OLR
1
PLIN

2

TR
EM1

CCL7
CCL2 IL1

B
IL1

0
VCAN

S10
0A8

S10
0A9

CSF3
R

DNAJB
1

IFI
6

IFN-responsive

Mature cDC2
AS DC

HMOX1

S100A8/IL1B+

S100A8/IL1B–

C1Q

5

10

15

0 5 10 15 20

UMAP 1

U
M

AP
 2 TREM2hi

PLIN2hi/TREM1hi

cDC2

cDC1

AS DC

Mature cDC2

IL10+/TNFAIP3+

IFN resp

a b

c

d

LAMP3 CLEC9A SIGLEC6

C1QA HLA−DRB5 CD1C

CD9 HMOX1 FOLR2

TREM1 PLIN2 TREM2

S100A8 IL10 IL1B

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

5

10

15

5

10

15

5

10

15

5

10

15

5

10

15

UMAP_1

U
M

AP
_2 Expression

level

Min

Max

Percent expressed
0
25
50
75

100

Average expression

−1 0 1 2 3

Response to type I interferon

S1
00

A8
/IL

1B
+

C
1Q

IL
10

+ /T
N

FA
IP

3+

PL
IN

2hi
/T

RE
M

1hi

TR
EM

2hi

S1
00

A8
/IL

1B
–

H
M

O
X1

+

Endolysosome
Oxidative phosphorylation

Ferroptosis
 Lipid storage

PPAR signaling pathway
Glycolysis/gluconeogenesis

 ECM−receptor interaction
Response to decreased oxygen levels

Antioxidant activity
Cholesterol transport

Detoxification
Cholesterol e�lux

Phagosome
Clathrin−coated endocytic vesicle

Receptor−mediated endocytosis
Lysosome

Complement and coagulation cascades
Respiratory burst

NF−kappa B signaling pathway
RAGE receptor binding

Cytokine activity
IL−17 signaling pathway
TNF signaling pathway

Response to lipopolysaccharide

4
8
16
32
64

Odds.ratio

n_fg
4
8
16

32

Category
GO BP
KEGG
GO MF

IF
N

-r
es

p.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research | Volume 2 | July 2023 | 656–672 660

Article https://doi.org/10.1038/s44161-023-00295-x

This analysis confirmed that identification of the PLIN2hi/TREM1hi LAM 
subpopulation was robust to the choice of normalization and integra-
tion algorithm (Extended Data Fig. 5a–d).

PLIN2hi/TREM1hi inflammatory LAMs in human carotid plaques
Next, we sought to characterize the identified macrophage populations 
in more detail. The C1Q cluster is defined by high expression of the com-
plement family (C1QA, C1QB and C1QC). The C1q complement is known 
to enhance phagocytosis and efferocytosis25, have anti-inflammatory 
function through inhibition of TLR signaling26 and anti-atherogenic 
action through binding of intravenous immunoglobulin (IVIg)27. 
The HMOX1+ cluster expressed genes involved in heme degradation 
(HMOX1), iron processing and export (FTL, SLC40A1 and NUPR1), and 
antioxidative function (SELENOP and PRDX1), as well as lysosomal 
proteases (CTSB and CTSD), lysosomal genes (LAMP2, LGMN, LIPA and 
GPNMB) and genes involved in lipoprotein metabolism (APOC2, APOE, 
LRP1 and NPC2) (Fig. 2c,d and Extended Data Fig. 3a–c), sharing features 
with previously described populations in murine plaques28,29.

Next, we investigated the phenotype of the PLIN2hi/TREM1hi and 
TREM2hi LAM clusters. These populations shared a lipid-associated 
transcriptional signature that included fatty acid-binding proteins 
(FABP4 and FABP5) and lipid scavenger receptors (CD36 and MARCO). As 
previously described8,11, the transcriptional profile of the TREM2hi LAM 
cluster is consistent with the expression of NR1H3—the gene encoding 
the transcription factor LXRa and a signature of lipid uptake, lysosomal 
metabolism, antioxidative functions, matrix remodeling, cholesterol 
metabolism and efflux, with a notable lack of inflammatory genes  
(Fig. 2c,d and Extended Data Fig. 3a–c). The PLIN2hi/TREM1hi LAM clus-
ter was previously unidentified and is characterized by the unique com-
bination of the highest expression of PLIN2, which encodes perilipin 
2, a protein that coats intracellular lipid droplets and a lipid storage 
marker30, and the innate immune receptor TREM1. The PLIN2hi/TREM1hi 
cluster lacked expression of genes involved in lysosomal degradation 
and cholesterol efflux, but it expressed the inflammatory genes TREM1, 
TNF, CEBPB and IL1B. The expression of genes involved in apoptosis, 
antiproliferation and survival such as G0S2, BTG1, BCL2A1, IER3, BNIP3L 
and MCL1 suggested that cells in this cluster may have been undergo-
ing apoptosis. Among all MNPs, the PLIN2hi/TREM1hi LAMs expressed 
a unique chemokine signature with transcripts for CCR2 ligand CCL2 
and CCL7, as well as CCL20, CXCL1, CXCL2, CXCL3 and CXCL8, which 
was shared with inflammatory MNP clusters (Fig. 2c,d and Extended 
Data Fig. 3a–c).

Weaker expression of PLIN2 was observed in foamy TREM2hi and 
S100A8/IL-1B+ MNPs (Fig. 2b,c), but we noted that its expression, along 
with that of CCL2 and TREM1, was highest in the PLIN2hi/TREM1hi subset 

compared with all other myeloid and nonmyeloid subsets (Extended 
Data Fig. 6). To further characterize these cells, we performed pseu-
dobulk-level differential expression analyses to compare the PLIN2hi/
TREM1hi cluster with all of the other myeloid subpopulations. These 
analyses confirmed that the expression of PLIN2, TREM1 and CCL2 
was significantly higher in the PLIN2hi/TREM1hi subset than in any of 
the other myeloid clusters across the patient samples (Extended Data  
Fig. 7a–e and Source Data Fig. 3).

PLIN2hi/TREM1hi LAMs in community scRNA-seq datasets
Next, we sought to establish whether PLIN2hi/TREM1hi macrophages 
are a reproducible feature of human atherosclerosis. We reanalyzed 
the macrophage populations from two available community scRNA-
seq datasets. The researchers in ref. 31 performed single-cell analysis 
of coronary atherosclerotic plaques from eight patients. We found 
that the majority of the macrophages from this study had a phenotype 
similar to our C1Q cluster, likely due to inclusion of the coronary adven-
titia (Supplementary Fig. 2a–c). The researchers in ref. 32 performed a 
single-cell analysis of three human carotid atherosclerosis specimens. 
We reanalyzed the myeloid cells separately and identified ten clusters 
of myeloid cells (Extended Data Fig. 8a–h). These included two LAM 
populations expressing CD36, FABP4 and FABP5 that were marked by 
high expression of TREM1, PLIN2 and CCL2 (C1) or by high expression 
of TREM2 (C3), respectively (Extended Data Fig. 8g).

Next, we investigated whether an equivalent of the human PLIN2hi/
TREM1hi LAM population exists in mouse atherosclerosis models by 
performing an integrated analysis of six existing murine myeloid 
datasets10,33–37. In these mouse datasets, we found that Trem1 was exclu-
sively expressed by monocytes (Supplementary Fig. 3a–c). A gene 
signature comprised of 1:1 gene orthologs of human TREM2hi LAM 
marker genes was found to be highly expressed in murine Trem2hi mac-
rophages, while a gene signature similarly derived from human PLIN2hi/
TREM1hi LAMs was predominately expressed in murine monocytes 
(Supplementary Fig. 3d–g and Supplementary Table 1). These obser-
vations were confirmed by cross-species transfer of the cluster labels 
using the scANVI algorithm38 (Supplementary Fig. 3h). The apparent 
absence of an obvious murine macrophage phenotype similar to that 
of human PLIN2hi/TREM1hi LAMs (Supplementary Fig. 3h) suggests that 
there may be a divergent division of labor between monocytes and 
macrophages or that the duration of current mouse models may not 
be sufficient to reproduce this feature of human disease.

Trajectory analysis links TREM2hi to PLIN2hi/TREM1hi LAMs
To further explore the phenotypes of our human plaque macrophages, 
we computed per-cell lipid handling, inflammation and apoptosis 

Fig. 2 | Plaque myeloid cells harbor diverse subsets of macrophages with 
distinct gene signatures of functional association. a–d, Cells identified as 
macrophages or cDCs in the overall analysis (n = 4,533 cells; average of n = 747 
cells per patient) were extracted and analyzed separately. a, The UMAP shows 
the 12 identified myeloid subpopulations. b,c, The expression of selected 
automatically discovered cluster marker genes (BH-adjusted P < 0.05, two-sided 
Wilcoxon tests; Extended Data Fig. 3c) and known cell-type marker genes is 
shown on the UMAP (b) and summarized in the dot plot, where the color of the 

dots represents average expression and size represents the percentage of cells 
within the cluster that express it (c). Additional cluster markers are shown in 
Extended Data Fig. 3a–c. d, Selected KEGG pathways and GO biological processes 
(BP) and molecular functions (MF) that showed significant overrepresentation in 
the cluster marker genes (color of the dots represents odds ratio from one-sided 
Fisher exact tests, and size of the dots represents the number of genes enriched 
in category or cell type; BH-adjusted P < 0.1). P values for individual marker genes 
and pathways are provided in Source Data Fig. 2.

Fig. 3 | Trajectory analysis of plaque macrophage populations. a–j, The 
plaque macrophages (n = 3,628 cells; see Fig. 2) were extracted, and RNA-velocity 
analysis70 was performed on the relationship between the eight macrophage 
clusters. a, The arrows on the UMAP indicate the directions of the predicted 
future transcriptional states of the cells. b–d, Per-cell scores for lipid metabolism 
(b), apoptosis (c) and inflammation (d) were computed with AUCell82 using 
custom gene lists (see Methods, Supplementary Table 1) and visualized on the 
UMAP. e,f, Targeted RNA-velocity analysis (e) and CytoTRACE random walk 
analysis85 (see also Extended Data Fig. 8e) (f) of the TREM2hi and PLIN2hi/TREM1hi 
populations. g, The volcano plot shows genes differentially expressed between 

the TREM2hi and PLIN2hi/TREM1hi populations. Significantly differentially 
expressed genes are in red (DESeq2 patient-level pseudobulk analysis, paired 
Wald tests, BH-adjusted P < 0.1). Additional pairwise analysis between PLIN2hi/
TREM1hi and all other macrophage clusters is shown in Extended Data Fig. 8.  
h, Selected GO and KEGG pathways associated with gene expression differences 
between the TREM2hi and PLIN2hi/TREM1hi populations (FGSEA analysis, genes 
ranked by the DESeq2 test statistic, BH-adjusted P values < 0.05). i,j, PLIN2+/
TREM1+ (red arrows), PLIN2+/TREM2+ (blue arrows) and TREM1+/TREM2+/PLIN2+ 
(black arrows) plaque areas shown by immunostaining on human carotid plaque 
specimens. Scale bars, 100 μm (staining was performed on n = 5 plaques).
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scores using sets of genes related to each process (see Methods, Sup-
plementary Table 2). This analysis confirmed that the PLIN2hi/TREM1hi 
subset was the only one in the plaque to simultaneously display signa-
tures of lipid handling, inflammation and apoptosis, suggesting that 
they represented a terminal inflammatory LAM state (Fig. 3a–d and 
Extended Data Fig. 9a).

Next, we applied partition-based graph abstraction (PAGA) 
analysis39 to assess the similarity between the MNP clusters. The high-
est degree of connectivity was observed between the C1Q, HMOX1, 
TREM2hi and PLIN2hi/TREM1hi populations. The two calgranulin-
expressing and IL10+/TNFAIP3+ populations were adjacent in the graph 
but showed weaker connectivity (Extended Data Fig. 9b,c).

RNA-velocity analyses on uniform manifold approximation and 
projection (UMAP) and PAGA graphs supported the presence of three 
putative differentiation trajectories within the MNP clusters (Fig. 3a 
and Extended Data Fig. 9d): (1) from HMOX1+ to C1Q, (2) from S100A8/
IL1B− to the overtly pro-inflammatory S100A8/IL1B+ population, and (3) 
from TREM2hi to inflammatory PLIN2hi/TREM1hi LAMs. The predicted 
connection between TREM2hi and PLIN2hi/TREM1hi was of particular 
interest because it linked the two putative LAM states. We therefore 
applied a second, RNA-velocity-independent approach to investigate 
the possibility that LAMs might transition between these two pheno-
types. Consistent with the RNA-velocity results, random walk analysis 
(CellRank, CytoTRACE kernel) also predicted that TREM2hi could dif-
ferentiate into inflammatory PLIN2hi/TREM1hi LAMs (Fig. 3e,f) but 
did not provide support for differentiation in the opposite direction 
(Extended Data Fig. 9e).

Then, we performed a targeted investigation of the differences 
between the two LAM states. As expected, the PLIN2hi/TREM1hi LAMs 
showed significantly higher expression of PLIN2 along with higher 
expression of the apoptosis-related gene SPINK1, the pro-inflammatory 
cytokine IL1B, chemokine CCL2, TLR2 and VCAN (which encodes the 
TLR2 ligand versican40). PLIN2hi/TREM1hi displayed relative pathway 
enrichments for genes associated with apoptosis and inflammation. In 
contrast, TREM2hi showed higher expression of the matrix metallopro-
teinases MMP7, MMP9 and MMP14, as well as LPL and C1QA, along with 
pathway enrichments for oxidative phosphorylation and cholesterol 
metabolism (Fig. 3g,h and Source Data Fig. 3).

Finally, we investigated the spatial niches occupied by PLIN2hi/
TREM1hi and TREM2hi LAMs in situ in human plaques. Immunohisto-
chemistry showed that the two LAM subsets were found in different 
locations: TREM2+/TREM1− LAMs predominantly were superficially 
located and adjacent to the fibrous cap, whereas TREM1+/TREM2− LAMs 
were located deeper in the lipid core, close to lipid clefts. Cells express-
ing both TREM2 and TREM1 were also identifiable in the proximity of 
both subsets, lending support to the concept of a transition within 
LAMs (Fig. 3i,j).

TLR signaling mediates the transition between the two LAMs
To identify candidate drivers of the TREM2hi to PLIN2hi/TREM1hi LAM 
transition, we searched for potential ligand–receptor interactions 

between the major cell types present in the plaque using the Network 
Analysis Toolkit for Multicellular Interactions (NATMI)41. The highest 
number of potential interactions and ligand–receptor pair specifici-
ties were found within the MNP compartment (Fig. 4a). They included 
ligand interactions with TLR2 (VCAN_TLR2) and TLR4 (S100A8/9_TLR4)  
(Fig. 4b), as well as interactions with the low-density lipoprotein recep-
tor-related protein (LRP1) that are associated with pathways involved 
in pro-inflammatory signaling and lipid handling, respectively.

To investigate the ability of candidate factors to promote plaque 
macrophage phenotypes, we established an ex vivo stimulation assay 
using human CSF1-dependent monocyte-derived macrophages 
(hMDMs). To mimic the atherosclerotic plaque soluble milieu, we used 
atheroma cell conditioned medium (ACCM) as a source of activation42. 
Because the ligand–receptor interactions through TLR2 and TLR4 were 
highly specific to the predicted macrophage–macrophage interactions 
(Fig. 4b), we also stimulated the hMDMs with a panel of TLR stimuli, 
including oxidized low-density lipoprotein (oxLDL), TLR2 ligand FSL-1 
and TLR4 ligand LPS. Stimulation with ACCM upregulated TREM1 and 
dowregulated TREM2 gene expression (TREM1, P = 0.0005; TREM2, 
P = 0.024; Fig. 4c,d and Source Data Fig. 4). TREM1 upregulation was 
also confirmed at the protein level (Extended Data Fig. 10a,b and Source 
Data Extended Data Fig. 10). Exposure to ACCM also increased the 
expression of PLIN2 (P = 0.03), CCL2 (P = 0.04), IL1B (P = 0.002) and 
TLR2 (P = 0.003) (Fig. 4e–i). This demonstrates that soluble mediators 
derived from atherosclerotic plaque-resident cell populations can 
activate inflammatory LAM programming.

TLR stimulation of the hMDMs with oxLDL enhanced PLIN2 
expression (P = 0.002; Fig. 4e), but did not fully reproduce per se the 
cluster-specific gene signature of PLIN2hi/TREM1hi cells. FSL-1 (TLR2) 
and LPS (TLR4) stimulation both downregulated expression of TREM2 
(P = 0.004 and P = 0.008, respectively; Fig. 4d), with TLR2 stimula-
tion significantly upregulating gene and protein expression of TREM1  
(Fig. 4c and Extended Data Fig. 10a,b). FSL-1 (TLR2) also induced 
PLIN2hi/TREM1hi LAM cluster-specific CCL2 gene expression in the 
hMDMs (P = 0.012; Fig. 4f). These data show that ex vivo TLR signaling 
can induce an inflammatory LAM phenotype similar to that observed 
in the atheroma. In support of the concept that the inflammatory LAM 
state might involve TLR2 signaling, the PLIN2hi/TREM1hi plaque LAMs 
had significantly higher expression of TLR2 and VCAN (Fig. 3g). In 
contrast, TLR4 expression did not show significantly higher expression 
in PLIN2hi/TREM1hi LAMs (adjusted P = 0.56; Extended Data Fig. 10c), 
suggesting that TLR2 might be crucial for the inflammatory activation 
of LAMs.

To functionally implicate TLR2 in the phenotypic switch to inflam-
matory LAMs, we silenced TLR2 expression in hMDMs using locked 
nucleic acid antisense oligonucleotides (LNA-ASOs) targeting TLR2 
prior to stimulation with the ACCM to model the human atheroma 
microenvironment. The TLR2 agonist FSL-1 was used as control. LNA-
TLR2 achieved efficient knockdown of TLR2 expression in hMDMs 
(Fig. 4k). Knockdown of TLR2 led to a significant decrease in induction 
of TREM1, PLIN2, IL1B and CCL2 gene expression after exposure to 

Fig. 4 | Cell–cell interaction analysis suggests a central role for macrophages 
in the immune cell communication network of the human atherosclerotic 
plaque. a–o, Cell–cell interactions between major immune cell types were 
investigated using NATMI41 to determine the number of ligand–receptor pairs 
that connected each pair of cell types. a, The overall cell-connectivity-summary 
network is summarized in the heat map (cells expressing ligands are shown in 
rows, and cells expressing receptors are shown in columns). The number of 
significant ligand–receptor pairs is indicated for each interaction. The heat 
map is colored according to the NATMI specificity score (product of ligand 
specificity × receptor specificity). b, Selected examples of predicted ligand–
receptor interactions (y axis; ordered by specificity) between the given source 
and target cell populations (x axis) are shown in a heat map. c–j, Gene expression 
of TREM1 (c), TREM2 (d), PLIN2 (e), CCL2 (f), IL6 (g), IL1B (h), TLR2 (i) and TLR4 (j) 

was measured in hMDMs treated with TLR4 ligand (LPS, 1 ng ml−1), TLR2 ligand 
(FSL-1, 100 ng ml−1), oxLDL (25 μg ml−1) or ACCM for 24 h. Data are reported as 
relative gene expression compared with housekeeping gene (n = 17 biologically 
independent donors from seven independent experiments for all genes, with the 
exception of IL6 where n = 13 biologically independent donors were analyzed from 
five independent experiments; values reported as mean ± s.e.m., one-way analysis 
of variance (ANOVA), mixed-effect analysis). Blocking TLR2 in hMDMs abrogated 
the effect of ACCM. hMDMs were treated with LNA-ASOs targeting TLR2 
(Methods) for 3 days prior to a 24-h treatment with TLR2 ligand (FSL-1, 100 ng ml−1) 
or ACCM. k–o, Gene expression of TLR2 (k), TREM1 (l), PLIN2 (m), CCL2 (n) and IL1B 
(o) was measured. Data are reported as relative gene expression compared with 
housekeeping gene (n = 3 biologically independent donors from two independent 
experiments; values reported as mean ± s.e.m., two-way ANOVA).
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ACCM, whereas it prevented decrease in TREM2 (Fig. 4l–o and Source 
Data Fig. 4). FSL-1-dependent gene induction was also prevented  
(Fig. 4l–o), albeit FSL-1 and ACCM differed in their ability to modulate 
PLIN2 expression (Fig. 4c–j), suggesting differences in the biological 
action of exogenous and endogenous TLR2 agonists.

PLIN2hi/TREM1hi signature correlates with vascular events
To understand the clinical relevance of PLIN2hi/TREM1hi inflammatory 
LAMs, we used the CPIP biobank samples as a validation cohort (Fig. 5a 
and Supplementary Table 3). We performed immunohistochemistry 
on 37 carotid plaque sections (n = 19 asymptomatic and n = 18 sympto-
matic). We found a colocalization of TREM1 and PLIN2 in plaque areas 
positive for CD68 and Oil Red O (neutral lipids) (Fig. 5b and Extended 
Data Fig. 10d). Quantification of the immune-positive areas demon-
strated a positive and significant correlation between TREM1 and PLIN2 
staining (ρ = 0.61, P < 0.0001, Spearman test; Fig. 5c).

Targeted analysis of bulk transcriptomic profiles from 78 carotid 
endarterectomies (n = 51 symptomatic and n = 27 asymptomatic) from 
the CPIP also showed a significant positive correlation between TREM1 
and PLIN2 gene expression levels (ρ = 0.81, P < 0.0001, Spearman test; 
Fig. 5d). In addition, strong positive correlations were found between 
the expression of both TREM1 and PLIN2 and key macrophage marker 
genes, suggesting that macrophages were the principal source of 
expression of these genes (Extended Data Fig. 10e). The CPIP cohort 
data thus demonstrate that coordinated TREM1 and PLIN2 expression 
is also present within undissociated human carotid plaque tissues.

Finally, in the CPIP data and relative to asymptomatic plaques, 
plaques from symptomatic patients show higher gene expression, 
as well as greater plaque area stained positive for TREM1 and PLIN2  
(Fig. 5e,f). Plaques with high PLIN2/TREM1 expression (determined using 
a tertile scoring system described in Methods) displayed higher gene 
expression levels of TLR2 (P = 8 × 10−7) along with higher expression of 
chemokines found to be transcribed by this population in the single-cell 
analysis (CCL2, P = 2.7 × 10−7; CXCL2, P = 5.0 × 10−5; CXCL3, P = 3.6 × 10−4; 
and CXCL8, P = 1.2 × 10−9) compared with plaques with low PLIN2/TREM1 
expression (Fig. 5g), reproducing the unique chemotactic profile fea-
tures of these cells. Plaques with high PLIN2hi/TREM1hi signature gene 
profiles were also significantly more likely to belong to patients who 
recently experienced stroke or transient ischemic attack (odds ratio 
(OR) = 7, P = 6.6 × 10−4, Fisher exact test; Fig. 5h), further underscor-
ing the association of this macrophage transcriptional signature with 
symptomatic atherosclerosis. This validation study in the CPIP cohort 
supports our identification of the PLIN2hi/TREM1hi LAMs by scRNA-seq 
and indicates that PLIN2hi/TREM1hi macrophages are associated with 
carotid plaque complications leading to cerebrovascular events.

Discussion
Atherosclerotic plaque composition is a key determinant of coronary 
and cerebrovascular syndromes in humans. A deep understanding of 
the cellular transcriptional states underpinning human atherosclerotic 

plaque composition allows for the identification of targetable cellular 
drivers. Our study of the human atheroma provides a high-resolution 
atlas of the immune cell landscape of this tissue. In our myeloid atlas, 
known subsets were identified, including TREM2hi, C1Q and calgran-
ulin-expressing MNPs11,43–45. We resolved expected subsets not yet 
reported in single-cell biology studies of human atherosclerosis, that 
is, HMOX1+ macrophages sharing features with previously described 
populations in murine plaques28,29,46, a mature cDC2 cluster previously 
identified in cancer20 expressing a plethora of immune checkpoints 
with a role in atherogenesis47,48, AXL and SIGLEC6 (AS)-expressing DCs21, 
and IL-10+/TNFAIP3+ MNPs expressing both extracellular (IL-10) and 
intracellular (A20) means to antagonize NF-κB-driven inflammation 
and atherogenesis45,47. Finally, we identified a previously unknown 
subset of TLR-dependent PLIN2hi/TREM1hi inflammatory LAMs, whose 
signature is enriched in carotid plaques of patients who experienced 
a cerebrovascular event.

To date, single-cell studies have suggested a dichotomy between 
lipid-associated and inflammatory macrophage states in atheroscle-
rosis. LAMs identified in several human diseases6–8,49,50 appear to share 
a common transcriptional program of the TREM2hi macrophages9. 
TREM2 has been repeatedly demonstrated in a number of models as a 
driver of lipid homeostasis, and its loss is associated with dysregulated 
cholesterol efflux and consequent cholesterol ester accumulation8,51,52. 
Our dataset reveals that the TREM2hi phenotype is not the only tran-
scriptional state of LAMs. We discovered the transcriptional state of the 
human inflammatory LAMs in situ, the PLIN2hi/TREM1hi macrophages, 
the sole subset in which transcriptional signatures of lipid loading and 
inflammation are coupled. Moreover, PLIN2hi/TREM1hi LAMs exhibit a 
unique chemokine signature with transcripts for pro-atherogenic CCR2 
ligands CCL2 and CCL7 with a nonredundant role in atherogenesis and 
monocyte recruitment53. This transcriptomic signature suggests that 
PLIN2hi/TREM1hi macrophages may help to orchestrate the recruitment 
of other immune cells within atherosclerotic plaques.

PLIN2 is the main protein associated with lipid droplets in adi-
pocytes and macrophages and is a marker of lipid accumulation30. 
PLIN2 was found to be negatively correlated with cholesterol efflux 
in macrophages30, consistent with the decrease in TREM2, LXR and its 
downstream ATP-binding cassette (ABC) transporters in the gene sig-
nature of PLIN2hi/TREM1hi. Deficiency of PLIN2 in the murine model of 
atherosclerosis protects from atherogenesis30. In addition, vulnerable 
plaque in humans was found to have significantly higher expression 
of perilipin compared with stable plaque54. TREM1 acts as a master 
switch of innate immune responses triggered by pathogens, where it 
magnifies the pro-inflammatory response by synergizing with classical 
pattern-recognition receptors (TLR and NOD)55. TREM1 promotes lipid 
accumulation and apoptosis by inhibiting lipid efflux56,57 and is linked 
to a larger necrotic core in murine models of atherogenesis56,57, in line 
with the maladaptive lipid-handling profile of the PLIN2hi/TREM1hi 
macrophages. TREM1 deficiency upregulates TREM2 expression and 
prevents loss of homeostasis in stroke51.

Fig. 5 | Symptomatic plaques have more cells associated with the 
inflammatory TREM1 LAM signature. a, The CPIP biobank samples were used 
as validation cohort following the illustrated diagram (diagram created by 
BioRender). b, Plaque areas positive for CD68, PLIN2, TREM1 and Oil Red O were 
shown to stain the same areas (marked by rectangles) by immunostaining on 
human carotid plaque specimens. Scale bars, 1 mm (whole carotid section image) 
and 100 μm (in the magnified images; representative image from n = 37 stained 
plaques). An additional staining example with the corresponding antibody 
controls is shown in Extended Data Fig. 10a. c, The plaque area that stained 
positive for TREM1 correlated positively with the PLIN2 plaque area (Spearman 
test was used for the correlation analysis; n = 37). d, TREM1 and PLIN2 gene 
expression, assessed by bulk RNA-seq in carotid plaque samples collected from 
the CPIP biobank, were strongly correlated (n = 78; Spearman rank correlation 
test). e,f, Plaque areas stained positive (% of total plaque area) for PLIN2 and 
TREM1 (n = 19 asymptomatic and n = 18 symptomatic; Mann–Whitney U-test was 

used for group comparisons; e), as well as gene expression levels of PLIN2 and 
TREM1 (n = 51 symptomatic and n = 27 asymptomatic; Student’s t-test was used 
for group comparisons; f), were significantly higher in symptomatic plaques 
than in asymptomatic plaques. g, Human carotid plaque gene expression levels 
of TLR2, TLR4, CCL2, CXCL2, CXCL3 and CXCL8 comparing TREM1/PLIN2 high-
expressing and TREM1/PLIN2 low-expressing plaques from the CPIP cohort 
(see Methods). Data are presented as log2(CPM) compared between the two 
groups using two-sided Student’s t-test. h, Distribution of symptomatic and 
asymptomatic patients in TREM1/PLIN2 high-expressing versus TREM1/PLIN2 
low-expressing plaques from the CPIP cohort (n = 32 high and n = 46 low, OR = 7, 
P = 6.6 × 10−4, Fisher exact test). Boxes indicate interquartile range (IQR; 25th 
and 75th percentiles); center line indicates median (50th percentile); whiskers 
indicate minimum (within lower quartile − 1.5 × IQR) to maximum (within upper 
quartile + 1.5 × IQR).
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Our study highlights potential similarities and differences between 
human and murine LAMs in atherosclerosis. Whereas the TREM2hi mac-
rophage transcriptional signature was conserved across both species, 
this did not appear to be the case for the human inflammatory LAM 
signature. This is in agreement with existing literature showing that 
mouse foamy macrophages have a homeostatic signature with little 
inflammation10,33,37. Human disease is a multifactorial and chronic 
process that spans over several decades58, and we cannot exclude the 
possibility that feeding a high-fat, high-cholesterol diet for longer than 
in the available datasets might be required to observe an inflammatory 
evolution of LAMs in mouse aorta.

Macrophage plasticity is thought to be essential for the establish-
ment of context-dependent macrophage subsets59. Our trajectory 
analysis predicts that the TREM2hi macrophage is not a static tran-
scriptional state but that it can transition toward an inflammatory  
PLIN2hi/TREM1hi LAM phenotype. This computational trajectory 
appeared distinct from the trajectory leading to the calgranulin-
expressing MNPs, suggesting that two distinct routes might exist 
for inflammatory macrophage polarization in the plaque. The pre-
dicted transition was phenocopied in vitro by the exposure of human 
CSF1-dependent macrophages to human atheroma cell conditioned 
medium, underscoring the importance of the specialized milieu of the 
plaques for local MNP phenotypes.

Although the biology of TREM1 (refs. 51,56,57,60) and TREM2 
(refs. 8,52) is well established, a mechanism for transition between 
different LAM states has not been previously elucidated. TLRs are 
innate immune receptors for microbial patterns and danger signals61. 
TLR2 and TLR4 and downstream signaling adapter MyD88 have pro-
atherogenic functions in murine models, and they recognize modi-
fied lipoproteins in concert with scavenger receptors contributing to 
foam cell formation4,5. Their role in human atherosclerosis is less well 
defined. We previously showed that inflammation in human athero-
sclerosis cell isolates is driven by TLR2, and to a lesser extent TLR4, 
via the IL-1R/TLR signaling adaptor MyD88 (ref. 42). However, the cell 
responsible for the signaling could not be pinpointed without single-
cell biology. TLR2 was differentially expressed in inflammatory LAMs 
compared with TREM2hi LAMs. Using ligand–receptor interaction 
analysis and functional studies in vitro, we reveal the key contribution 
of TLR2 signaling in the LAM transition toward PLIN2hi/TREM1hi LAMs, 
indicating that danger signaling plays a role in LAM switching toward an 
activated state. We and others11 identify VCAN–TLR2 ligand–receptor 
pairing potentially involved in macrophage–macrophage crosstalk in 
the human plaque, indicating that potential endogenous ligands may 
contribute to this phenotypic switching. Further studies are required 
to identify the precise components of the atherosclerosis milieu that 
are responsible for TLR signaling.

In further support for the existence of PLIN2hi/TREM1hi LAMs, 
bulk RNA-seq and immunohistochemistry data from the CPIP cohort 
showed strong correlations, and in the latter, costaining between 
PLIN2, TREM1 and CD68, excluding the possibility of a tissue digestion 
artifact. Our immunohistochemistry validation confirms the existence 
of two distinct LAMs that occupy different topographical niches within 
the human atherosclerotic plaque, with TREM2+/PLIN2+ being placed 
in proximity of the fibrous cap and TREM1+/PLIN2+ placed deeper in the 
lipid core, close to lipid clefts. Our study provides reliable markers to 
readily identify inflammatory LAMs in situ in humans.

The inflammatory LAM signature was significantly associated with 
a high risk of cerebrovascular events in the CPIP study. Bulk RNA-seq 
data and immunohistochemistry consistently showed that both gene 
expression levels and immunopositive areas of TREM1 and PLIN2 were 
greater in plaques from patients who experienced symptomatic carotid 
disease. Concomitantly high expression of both TREM1 and PLIN2 in 
human plaques was associated with higher CD68, chemokine and TLR2 
transcripts, in close agreement with the transcriptional features of the 
PLIN2hi/TREM1hi LAMs present in the discovery cohort. Importantly, 

joint high expression of both TREM1 and PLIN2 in human carotid 
plaques was associated with a significantly higher incidence of cer-
ebrovascular symptoms compared with plaques with a low expression 
of both. In summary, we identify PLIN2hi/TREM1hi LAMs as an important 
component of the intraplaque atherogenic inflammatory response that 
is associated with the occurrence of cerebrovascular events.

In conclusion, our single-cell dataset provides a valuable refer-
ence atlas for future studies of human atherosclerotic syndromes. 
We report the PLIN2hi/TREM1hi inflammatory LAM transcriptional 
state with features of a cellular culprit of disease. We show that TLR 
signaling has a prominent role in the induction of inflammatory LAMs. 
Our data reconcile the concept of atherosclerosis as lipid-driven 
inflammation with the single-cell biology of human atheroma, with 
substantial relevance to the debate on the inflammatory basis of 
atherosclerosis and to its translation into clinical practice. These find-
ings underscore the importance of selective targeting of intraplaque 
lipid-driven inflammatory pathways rather than generic immune-
modulation strategies.

Methods
Patient population for scRNA-seq data (discovery cohort)
The study was approved by UK National Research Ethics Services 
(RREC2989 and RREC08/H0706/129). The study population consists 
of patients who underwent carotid endarterectomy at Oxford Univer-
sity Hospitals National Health Service Trust. Patients gave their written 
informed consent to have their discarded and anonymized plaque tis-
sue collected as part of the Oxford Peripheral Vascular Disease Study 
(OxPVD). A total of six patients’ carotid plaques were analyzed for 
the current study. Patients were defined as symptomatic if they expe-
rienced symptoms (stroke, transient ischemic attack or amaurosis 
fugax) with a carotid plaque with a degree of stenosis greater than 70%. 
Asymptomatic carotid plaques were associated with no documented 
clinical symptoms but had indication for carotid endarterectomy due 
to a high degree of stenosis, according to North American Symptomatic 
Carotid Endarterectomy Trial (NASCET) or European Carotid Surgery 
Trial (ECST) criteria62,63.

Carotid plaque processing for single-cell analysis and 
supernatant collection
Carotid plaques were directly collected at the operation in cold RPMI 
medium (Gibco, 21875-034) supplemented with 5% fetal bovine serum 
(FBS; Biosera, FB-1001/500) and processed within 12 h. Cell suspensions 
from freshly digested tissues were obtained following a previously 
published protocol64. In brief, the tissue was extensively washed in RPMI 
and finely minced, and tissue fragments were incubated in collagenase 
type I (400 units ml−1; Sigma, C9722), elastase type III (5 units ml−1; Wor-
thington, LS006365) and DNase (300 units ml−1; Sigma, D5025), with 
1 mg ml−1 soybean trypsin inhibitor (Sigma, T6522), 2.5 μg ml−1 poly-
mixin B (Sigma, P4932) and 2 mM CaCl2, in RPMI medium 1640 with 5% 
FBS in a shaker at 37 °C for 45 min. Cell suspension was filtered through 
an 80-μm Nylon mesh and washed in media. Collected cells were incu-
bated with live/dead stain at 1:1,000 in PBS at 4 °C for 10 min. Cells were 
then washed with FACS buffer (PBS with 2% FBS), stained for CD45 
antibody (5 μl per 100 μl; BioLegend, 103108) at room temperature (RT, 
21 °C) for 30 min, then washed twice with FACS buffer, resuspended 
in a final FACS buffer volume of 500 μl, filtered through an Easy Strain 
100-μm cell strainer and sorted for live CD45+ cells using FACSAria III 
(BD Biosciences) (sorting strategy shown in Supplementary Fig. 4). 
For the generation of ACCM, human atheroma cells were isolated with 
the same enzymatic protocol as per scRNA-seq and cultured for 24 h 
in serum-free medium at 106 cells ml−1, followed by centrifugation at 
300 × g and cryopreservation in aliquots for consistency. Contamina-
tion with LPS was excluded by the sensitive limulus amebocyte assay 
in the ACCM, the enzymatic mixtures and all reagents used for the cell 
preparation and culture.
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Generation of droplet-based scRNA-seq data
Sorted live CD45+ cells were resuspended in RPMI with 5% FBS at a con-
centration of 1,000 cells μl−1 before loading ~16,000 cells onto the  
10x Genomics Chromium platform. Gene expression libraries were 
prepared using the 10x Genomics Single Cell 3′ Reagent Kits v2 following 
the user guide (CG00052). The final libraries were loaded on the Illu-
mina HiSeq 4000 sequencing platform using a 28 bp/98 bp read length 
configuration and targeting a minimum depth of 50,000 reads per cell.

Computational analysis of the scRNA-seq data
Sequence reads were mapped using 10x Genomics Cell Ranger multi 
pipeline (cellranger v6.0.0) with the 10x human reference transcrip-
tome (v2020-A). The CellBender ‘remove-background’ tool was applied 
to the raw Cell Ranger count matrices to eliminate technical artifacts 
(including ambient RNA)65, providing n = 34,456 cells. Cells with >500 
genes and <5% mitochondrial reads (n = 23,011 cells) were retained for 
downstream analysis. Random downsampling was applied to normal-
ize the median number of unique molecular identifiers (UMIs) per cell 
between the samples (downsampleMatrix function, DropletUtils R 
package)66. Scrublet67 was then used to filter out n = 928 doublets (cells 
with Scrublet score ≥ mean Scrublet score + 2 s.d.), leaving n = 22,083 
cells for further analysis.

For analyses of the full manifold or separate regions, counts were 
normalized and log1p-transformed using Scanpy13. Highly variable 
genes (HVGs) were identified per condition (asymptomatic versus 
symptomatic) using the scanpy.pp.highly_variable_genes function 
(with batch_key=‘sample_id’ and flavor=‘seurat_v3’ sorting first by 
‘highly_variable_nbatches’ and then by ‘highly_variable_rank’). In each 
case, we retained the union of the top 2,000 HVGs for each condition for 
downstream analysis. Variation associated with cycle effects (G2M and 
S phase difference), total UMI number and percentage of mitochondrial 
counts were regressed out68. HVGs were used as input for principal 
component analysis (PCA), and 20–30 principal components (PCs) 
were retained based on inspection of the variance ratio plots. Sample 
integration was performed using the Harmony algorithm14.

Clustering analysis of the integrated data was performed with 
pipeline_scxl.py (https://github.com/sansomlab/tenx)44. An exact 
neighbor graph was computed with Scikit-learn69 as implemented 
in scVelo70 (n = 20 neighbors, Euclidean distance metric) and used to 
compute UMAPs and for Leiden clustering across the range of reso-
lutions. Clustering resolutions were compared using the clustree R 
package71. Significant cluster markers were identified (Seurat Find-
markers function, Wilcoxon tests, Benjamini–Hochberg (BH)-adjusted 
P value < 0.05). Initial draft analyses of all cells and the lymphoid and 
myeloid subregions identified several small clusters of low-quality or 
likely contaminant cells, which were excluded from the final analysis 
(n = 1,140 cells). For each of the final analyses of the sanitized set of 
n = 20,943 cells, HVGs were rediscovered and the analysis was per-
formed as described. For the final all-cells analysis, 2,709 HVGs were 
identified, 30 PCs were retained and a clustering resolution of 0.6 
was applied, then clusters were combined in ten main cell types and 
reported in Extended Data Fig. 1b,c. For the final lymphoid cell region 
analysis, 2,891 HVGs were identified, 30 PCs were retained and a clus-
tering resolution of 0.8 was applied. For the final myeloid cell region 
analysis, 2,882 HVGs were identified, 30 PCs were retained and a clus-
tering resolution of 0.8 was applied. Clusters were annotated based on 
automatic cell-type predictions made with the SingleR R package72 and 
manual inspection of the discovered marker genes. To further confirm 
our cell annotations, we performed (1) reference-based mapping of our 
cells using the Azimuth R package18 and the Azimuth Lung v2 (HLCA)73–81 
and PBMC reference datasets, and (2) gene set overrepresentation 
analysis of cluster marker genes using xCell gene sets17.

To confirm that our identification of myeloid cell subsets was 
robust, we used an alternative Seurat-based workflow24. For this analy-
sis, normalization was peformed using the sctransform algorithm23. 

HVGs were then identified per condition (asymptomatic versus symp-
tomatic) using Seurat’s FindVariableFeatures function (with selection.
method=‘vst’ and nfeatures=2000). Dataset integration was performed 
(Seurat’s IntegrateData) using a precomputed AnchorSet generated 
by FindIntegrationAnchors. Finally, PCA and UMAP were calculated, 
the nearest-neighbor graph was constructed using 30 PCs and clusters 
were identified using the default Louvain algorithm from the FindClus-
ters function of the Seurat workflow.

Gene set overrepresentation analysis of cluster marker genes 
was performed using one-sided Fisher exact tests (as implemented in 
the gsfisher R package, https://github.com/sansomlab/gsfisher) with 
Gene Ontology (GO) Biological Process (BP), Cellular Component 
(CC) and Molecular Function (MF); Kyoto Encyclopedia of Genes and 
Genomes (KEGG) annotations; and xCell gene sets17. For this analysis, 
cluster-specific gene universes were defined as those genes expressed 
in at least 10% of cells (either within or outside the cluster of interest). 
BH-adjusted P values were computed separately for each ontology.

Macrophages (n = 3,628 cells) were extracted from the myeloid 
region for targeted analyses. Connectivity was assessed using PAGA39. 
Gene set scores (for inflammation, apoptosis and lipid signatures) 
were computed using the AUCell algorithm82. The sets of genes used 
for this analysis are listed in Supplementary Table 2. RNA velocity of 
the macrophage clusters was performed with Velocyto83 and scVelo70 
(minimum of 20 unspliced and 20 spliced counts per gene, HVG 
selection as described above, generalized dynamical model). The 
CytoTRACE kernel84 from the CellRank85 Python toolkit was used to 
perform random walks on a pseudotime transition matrix constructed 
from a k-nearest neighbor (KNN) graph. Differentially expressed genes 
(DEGs) in TREM2hi versus PLINhi/TREM1hi populations were identified 
from patient-level pseudobulks (DESeq2 (ref. 86) analyis; 547 signifi-
cant DEGs; paired Wald test, BH-adjusted P < 0.1) (Source Data Fig. 3). 
Gene set enrichment analysis with FGSEA87 was performed using the 
n = 15,835 genes tested for differential expression (ranked according 
to the test statistic) and implementing the multilevel procedure with 
GO BP, CC and MF and KEGG pathway annotations. To help remove 
redundant pathways, we applied the FGSEA collapsePathways function 
(Source Data Fig. 3). BH-adjusted P values were calculated separately 
for each ontology.

For cell–cell communication analysis, NATMI was used 
(default parameter –interDB lrc2p) to search for possible interac-
tions between literature-supported ligand–receptor pairs from the 
connectomeDB2020 database41. The count matrix was first filtered 
to remove lowly expressed genes (genes detected in less than ten 
cells were filtered out). Interactions with a ligand–receptor detection 
rate > 0.2 and with Edge average expression derived specificity > 0.1 
were visualized using custom scripts.

Reanalysis of community-available scRNA-seq datasets
We reanalyzed the scRNA-seq count matrix from ref. 32 for human 
carotid samples (GSE159677). Cells with >200 genes, <4,000 genes 
and <10% mitochondrial reads were retained for downstream analysis. 
Cell barcodes with Scrublet67 scores ≥ mean Scrublet score + 2 s.d. 
were filtered out to exclude likely cell multiplets. Counts were nor-
malized and log1p-transformed using Scanpy13. HVGs were identified 
using the scanpy.pp.highly_variable_genes function (with n_top_
genes=3000, flavor=‘seurat_v3’ and batch_key=‘patient’). Variation 
associated with cycle effects (G2M and S phase difference), total UMI 
number and percentage of mitochondrial counts were regressed 
out68. HVGs were used as input for integration to remove the batch 
effect using scVI (batch_key=‘sample_id’ n_latent=30). The neighbor 
graph and UMAP were computed using Scanpy, then Leiden clus-
tering was implemented across the range of resolutions. For the 
myeloid analysis, clusters 1, 11 and 12 from the atherosclerotic core 
were extracted and reanalyzed separately using the same approach 
(starting from the HVG discovery step).
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We also analyzed the count matrix from ref. 31 (GSE131780). The 
raw count matrix was preprocessed in R using Seurat as described 
previously9. A total of 1,889 macrophage barcodes were extracted 
and reanalyzed using Scanpy. Lowly expressed genes with less than 
ten counts were removed, and counts were normalized and log1p-
transformed. A total of 2,000 HVGs were identified using the scanpy.
pp.highly_variable_genes function (flavor=‘seurat_v3’, span=0.5, 
batch_key=‘Sample’, sorting first by ‘highly_variable_nbatches’ and 
then by ‘highly_variable_rank’). log1p-transformed values were scaled 
(max_value=10), PCA was performed and 50 PCs were retained for 
downstream analysis. Sample integration was performed using the 
bbknn algorithm. Cells were clustered using the Leiden algorithm 
(resolution = 1) and visualized using UMAP (minimum distance = 0.1). 
Reference-based integration with our discovery cohort was performed 
using scANVI with either dataset as a reference. In both cases, the refer-
ence dataset was used to pretrain an scVI model (batch_key=‘sample_id’, 
n_latent=30, n_layers=2, max_epochs=400). After setting up the scANVI 
model (max_epochs=20), the query dataset was loaded, and cluster 
labels were predicted (max_epochs=100).

For murine investigation, six publicly available scRNA-seq data-
sets from atherosclerotic mouse aortas were reanalyzed (GSE97310 
(ref. 33), GSE116240 (ref. 10), GSE123587 (ref. 37), GSE154817 (ref. 34), 
E-MTAB-10743 (ref. 35) and GSE135310 (ref. 36)). Sequence reads were 
aligned using the 10x Genomic Cell Ranger multi pipeline (cellranger 
v6.0.0) and the 10x mouse reference genome mm10 (GENCODE 
vM23/Ensembl98). High-quality cells with <7.5% mitochondrial reads 
and >200 genes were retained for downstream analysis. For all down-
stream analyses, cell counts were normalized and log1p-transformed 
using Scanpy. HVGs were identified across all samples using the 
scanpy.pp.highly_variable_genes function (flavor=‘seurat_v3’, sort-
ing first by ‘highly_variable_nbatches’ and then by ‘highly_variable_
rank’). For quality control, samples were integrated using the bbknn88 
algorithm and 3,000 HVGs (batch_key=‘sample_id’). A total of 2,335 
doublets were removed using Scrublet. Doublets were identified as 
cells with Scrublet score > median + 2 s.d. per sample or if >70% of 
cells within a cluster were identified as doublets. In addition, 606 
contaminating nonimmune cells (endothelial cells, fibroblasts, 
smooth muscle and platelets) were excluded from downstream 
analysis, resulting in 37,212 immune cells that were reintegrated 
using scVI89 (batch_key=sample_id, n_latent=50) to resolve the Ptprc 
(CD45) landscape. Low-resolution clustering analysis was performed 
as described above with pipeline_scxl.py (https://github.com/ 
sansomlab/tenx) to identify major cell types (T cells, B cells, neu-
trophils and MNPs). MNP clusters were identified using singleR 
(ImmGenData and MouseRNAseqData as reference) and by Itgam, 
Adgre1, Fcgr1 and Flt3 expression and were subsetted for down-
stream analysis. Initial draft analysis of MNPs identified 528 con-
taminating neutrophils and T cells that were removed for the final 
analysis (final analysis = 33,377 cells). A total of 2,000 HVGs were 
rediscovered (batch_key=‘study’). Variation associated with total 
number of UMIs was regressed out using the sc.regress_out function. 
In Scanpy, log1p-transformed values were scaled (max_value=10), 
PCA was performed and 50 PCs were retained for downstream analy-
sis. Sample integration was performed using the bbknn algorithm. 
Cells were clustered using the Leiden algorithm (resolution = 2) and 
visualized using UMAP (minimum distance = 0.1). The pyorthomap 
package (https://github.com/vitkl/orthologsBioMART, https://doi.
org/10.5281/zenodo.3666961) was used to map gene orthologs 
between species, and only genes with 1:1 conversions between 
mouse and human were retained for reference-based integration 
of both datasets using scANVI38. First, the reference dataset was 
used to pretrain an scVI model (batch_key=‘sample_id’, n_latent=30, 
n_layers=2, max_epochs=400). After setting up the scANVI model 
(max_epochs=20), the query dataset with ortholog gene names was 
loaded, and cluster labels were predicted (max_epochs=100). Gene 

scores of relevant human gene lists (Supplementary Table 1) in the 
mouse dataset were calculated using the scanpy.tl.score_genes func-
tion after finding mouse 1:1 ortholog gene names using pyorthomap.

Human plaque bulk RNA-seq from the CPIP
Human carotid plaque samples were obtained from the CPIP biobanks 
(Lund University, Skåne University Hospital, Malmö, Sweden). Indica-
tions for surgery were degree of stenosis >70% (verified by duplex ultra-
sound) and associated symptoms (stroke, transient ischemic attack or 
amaurosis fugax) or no symptoms but a degree of stenosis >80%. The 
study complies with the Declaration of Helsinki, and all patients have 
provided written informed consent, as previously described90. Ethical 
permission has been obtained from the Lund University review board 
(reference number 472/2005).

Gene expression of TREM1, PLIN2, associated cytokines and cell 
markers91 were assessed from the global transcriptome RNA-seq (78 
plaques: 51 with symptoms <31 days and 27 without symptoms). Clini-
cal characteristics are presented in Supplementary Table 3. TRIzol was 
used for RNA extraction, and ribosomal RNA clearing was performed 
using a Ribo-Zero Magnetic Kit (Epicentre). Strand-specific librar-
ies were prepared with a ScriptSeq v2 RNA-Seq Library Preparation 
Kit (Epicentre), as previously described92. RNA was sequenced using 
the Illumina HiSeq 2000 and NextSeq platforms. Transcript-level 
quantification was conducted using Salmon27 based on transcriptome 
release 27 of GENCODE in mapping-based mode. Gene counts were 
summarized using tximport28 and were normalized between samples 
using a trimmed mean of M values (TMM) by edgeR93. Batch effects of 
sequencing platforms were adjusted by an empirical Bayes method94. 
Finally, gene expression level was shown in log2-transformed counts 
per million (CPM).

An index to identify plaques with a high expression of both TREM1 
and PLIN2 was generated by dividing plaques in tertiles based on TREM1 
and PLIN2 gene expression levels. The two generated tertile scores were 
then added to a summarized score ranging from 2 to 6. Plaques with 
a combined TREM1/PLIN2 score of 5–6 were considered to be high-
expressing plaques, and those with a score of 2–4 were considered to 
be low-expressing plaques (cut off by median). Gene expression levels 
of CCL2, CXCL2, CXCL3, CXCL8, TLR2 and TLR4 were then compared 
between the two groups using Student’s t-test using IBM SPSS Statistics 
v28 and GraphPad Prism v9.

Human carotid plaque histology from the CPIP
Carotid plaques from 37 patients were obtained from the CPIP 
biobank. A 1-mm fragment from the most stenotic region of the 
plaque was cryosectioned into 8-μm sections for histological analy-
ses. To investigate potential colocalization between PLIN2, TREM1 
and TREM2 expression, the frozen plaque tissue sections were fix-
ated in 4% buffered formaldehyde solution (Histolab Products AB) 
overnight. The tissue was then dehydrated in increasing alcohol 
concentrations, cleared in xylen and embedded in Histowax (Histolab 
Products AB). PLIN2 was stained using a primary rabbit anti-human 
PLIN2 antibody (Sigma, HPA016607) and MACH 3 Rabbit HRP Polymer 
(Biocare Medical, RP531H). TREM1 was stained using a rabbit anti-
human monoclonal TREM1 antibody (Abcam, ab 225861) and a MACH 
3 Rabbit HRP Polymer. TREM2 was stained using a rabbit anti-human 
polyclonal TREM2 antibody (Invitrogen PA5-119690) and a MACH 3 
Rabbit HRP Polymer.

To stain neutral lipids, sections were fixed with HistoChoice 
(Amresco), dipped in 60% isopropanol and then in 0.4% Oil Red O in 
60% isopropanol (for 20 min). Macrophages (CD68) were stained using 
a primary mouse anti-human monoclonal CD68 antibody (DakoCyto-
mation, M0814), diluted to 1:100 in 10% rabbit serum, and a secondary 
rabbit anti-mouse polyclonal antibody (DakoCytomation, E0413), 
diluted to 1:200 in 10% rabbit serum. The stained plaque area of each 
component was analyzed using BioPix iQ v2.1.8.

http://www.nature.com/natcardiovascres
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131780
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97310
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116240
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123587
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123587
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10734
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135310
https://github.com/sansomlab/tenx
https://github.com/sansomlab/tenx
https://github.com/vitkl/orthologsBioMART
https://doi.org/10.5281/zenodo.3666961
https://doi.org/10.5281/zenodo.3666961


Nature Cardiovascular Research | Volume 2 | July 2023 | 656–672 669

Article https://doi.org/10.1038/s44161-023-00295-x

Culture of hMDMs
Human peripheral monocytes were isolated from single-donor platelet-
phoresis residues purchased from the North London Blood Transfusion 
Service. Peripheral blood mononuclear cells (PBMCs) were isolated by 
Ficoll-Hypaque centrifugation (specific density, 1.077 g ml−1; Sigma-
Aldrich, 10771). The monocyte population was enriched by negative 
selection of unlabeled target cells using a human monocyte enrich-
ment kit (Pan Monocyte Isolation kit, Miltenyi Biotec, 130-096-537), 
according to the manufacturer´s protocol. The isolated monocytes 
were cultured in RPMI 10% FBS supplemented with macrophage colony-
stimulating factor (M-CSF) for 6 days, after which they underwent spe-
cific treatments. Cells were treated with TLR2 ligand FSL-1 (100 ng ml−1; 
InvivoGen, tlr-fsl), TLR4 ligand LPS (1 ng ml−1; Enzo Life Sciences, ALX-
581-010-L002) or supernatant from ACCM (described above) diluted 
2:1, or were left untreated. Cells underwent all treatments for 24 h, after 
which RNA and intact cells were collected for reverse transcription-
quantitative polymerase chain reaction (RT–qPCR) and flow analysis. 
For the TLR2 knockdown experiments, the following antisense oligonu-
cleotides (LNA-ASOs; Roche Pharma Research and Early Development, 
RNA Therapeutics Research, Roche Innovation Center Copenhagen, 
Hørsholm, Denmark, patent number WO2020011869A2) were used: 
LNA-Ctrl (TGATaagacattTATT) and LNA-TLR2 (TGCttggtttgggaAT), 
where an uppercase letter represents an LNA nucleoside, LNA C are 
all 5-methyl C, and a lowercase letter represents a DNA nucleoside and 
all internucleoside linkages are phosphorothioate internucleoside 
linkages. Cells were treated at day 3 with either LNA-Ctrl or LNA-TLR2 
at a concentration of 10 μM in RPMI 10% FBS with M-CSF until the end 
of the experiment. At day 6, cells were treated with either TLR2 ligand 
FSL-1 (100 ng ml−1, InvivoGen, tlr-fsl) or supernatant from ACCM, or 
were left untreated. Cells underwent all treatments for 24 h, after 
which RNA was collected for RT–qPCR analysis. Data were analyzed 
using GraphPad Prism v9.

RNA extraction and RT–qPCR
Total RNA from monocyte-derived macrophages was isolated 
using an RNeasy Mini Kit (Qiagen, 74106), according to the manu-
facturer’s instructions. RNA was reverse transcribed (Super-
Script II, Invitrogen), and RT–qPCR was performed to quantify 
relative transcript level using the TaqMan system (Thermo Fisher 
Scientific): bActin (Hs01060665_g1), TREM1 (Hs00218624_m1), TREM2 
(Hs00219132_m1), TLR2 (Hs00610101_m1), TLR4 (Hs01060206_m1), 
IL-1B (Hs01555410_m1), IL-6 (Hs00174131_m1), PLIN2 (Hs00605340_m1) 
and CCL2 (Hs00234140).

Flow cytometry
Around 106 monocyte-derived macrophages per treatment were col-
lected, washed and resuspended in 100 μl of FACS buffer. Cells were 
labeled with live/dead dye (Invitrogen, L34975) and anti-TREM1 (5 μg 
per 100 μl; BioLegend, 314906) at 4 °C for 30 min. Then, cells were 
washed, fixed in cell fix at a dilution of 1:10 (BD CellFIX 34181) for 10 min 
and resuspended in FACS buffer processed with an LSR II cytometer 
(BD Biosciences) (gating strategy shown in Supplementary Fig. 4), then 
analyzed using FlowJo software v10.5.3 (Tree Star Inc.).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data from the human CPIP cohort presented in this study will be 
shared in group form, on reasonable request and in compliance with the 
Swedish General Data Protection Regulation (GDPR) due to data con-
fidentiality of living subjects and ethical and/or legal issues. Requests 
for data should be directed to I.G. (Isabel.Goncalves@med.lu.se). 
The time frame for response to requests from the authors is 4 weeks. 

Requesters will be required to sign a data access agreement to ensure 
the appropriate use of the study data. The scRNA-seq data that support 
the findings of this study have been deposited in the National Center for 
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) 
under the accession code GSE210152. All other data supporting the 
findings in this study and included in the main article and associated 
files were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo) 
and the European Molecular Biology Laboratory (EMBL) European 
Bioinformatics Institute (EBI) (https://www.ebi.ac.uk). For murine data, 
the following datasets were downloaded: GSE97310 (ref. 33), GSE116240 
(ref. 10), GSE123587 (ref. 37), GSE154817 (ref. 34), E-MTAB-10743  
(ref. 35) and GSE135310 (ref. 36). For human analysis, the following 
datasets were downloaded: GSE131780 (ref. 31) and GSE159677 (ref. 32).

Code availability
Analysis of single-cell data was performed using ‘tenx’ bioinformatic 
pipelines (https://github.com/sansomlab/tenx). Gene set overrepre-
sentation analysis of cluster marker genes was performed using the 
gsfisher R package (https://github.com/sansomlab/gsfisher).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Single-cell RNA sequencing of human atherosclerotic 
plaque. Atherosclerotic plaques were collected from n = 6 patients undergoing 
CEA, enzymatically digested, sorted for CD45+ cells and subjected to scRNA-seq 
analysis using 10x Chromium platform (Diagram created by Biorender)  
(a). The barplots show the frequencies of the clusters distribution in the different 
patients (b). Unsupervised Leiden clustering of the integrated dataset identified 

n = 10 distinct clusters encompassing all major immune cell populations (c).  
The clusters were annotated by classical marker gene expression and by their top 
marker genes (BH adjusted p < 0.05; Wilcoxon tests) (d,e). Automatic cell type 
predictions computed using Azimuth18 to map cells to the Lung v2 (HLCA)73–81 
reference data set (f). Gene set over-representation analysis of cluster markers 
using sets of known cell type marker genes from xCell17(g).
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Extended Data Fig. 2 | T and NK cell cluster markers and per-patient 
frequency. Supplementary marker genes for the T and NK populations are shown 
in the dot plot as (see also Fig. 1c) (a). The heatmaps shows the top marker genes 
for the T and NK cell populations (b). The barplots show the frequencies of the 

T and NK cell clusters in the different patients (c). Gene set over-representation 
analysis of cluster markers using sets of known cell type marker genes from 
xCell17(d). Automatic cell type predictions computed using Azimuth to map the 
data to the Lung v2 (HLCA) (e) and PBMC18(f) reference datasets.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Myeloid cell clusters markers and per-patient 
frequency. Supplementary marker genes for the myeloid clusters are shown in 
the dot plots (see also Fig. 2C) (a, b). The heatmaps shows the top marker genes 
for the myeloid clusters (c). The barplots show the frequencies of the myeloid 
clusters in the different patients (D). The asterisks in (c) and (d) mark the position 

of the PLIN2hi/TREM1hi cluster. Automatic cell type predictions performed using 
Azimuth18 to map cells to the Lung v2 (HLCA) reference dataset (e). Gene set over-
representation analysis of cluster markers using sets of known cell type marker 
genes from xCell17(f).
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Extended Data Fig. 4 | Confirmation of dendritic cell sub-population 
annotations using known marker genes from the literature. To confirm our 
annotation of the individual DC subpopulations we examined the expression 
of known marker genes in our clusters. The dotplot shows the expression of the 

mReg DC population markers reported in ref. 20 (their Fig. 4b) in our myeloid 
clusters (a). The dotplot shows the expression of the DC populations markers 
reported in ref. 21 (their Fig. 1d) in our myeloid clusters (b).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Alternative clustering analysis of myeloid data using 
a Seurat-based workflow. For this analysis, data normalisation was performed 
using the sctransform algorithm23 and integration was performed using Seurat24 
as described in the methods. The UMAP shows the identified clusters (Louvain 
clustering algorithm) (a). The expression of selected markers of each cluster 
are shown on UMAP (b). The dotplot shows the expression of the marker genes 

from Fig. 2c in the Seurat clusters (cluster 3 comprises of PLIN2hi/TREM1hi 
macrophages) (c). The Alluvial plot shows the mapping between the clusters 
from Fig. 2 (cluster_id.main) and the clusters identified using the Seurat based 
workflow (Cluster_id.sct) (nearly all of the cells in the PLIN2hi/TREM1hi cluster 
from Fig. 2 map to cluster 3 from the Seurat-based workflow) (d).
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Extended Data Fig. 6 | Expression of PLIN2hi/TREM1hi signature genes in 
all identified immune cell populations. The boxplots show the expression 
of CD68, PLIN2, TREM1, TREM2, IL1B and CCL2 in all the immune cell clusters 
identified. The clusters correspond to those shown in Suppl. Figure 1 (for the B, 
Plasma, Mast and pDC populations), Fig. 2 (for the T/NK cell clusters) and Fig. 3 
(for the myeloid clusters). Normalised per-patient pseudobulk expression values 

were computed with DESeq2 (Variance Stabilising Transformation). The lower 
and upper bounds of the boxes mark the first and third quartiles. Line within 
boxes represent median values. Whiskers extend to the smallest and largest 
values no further than 1.5 * inter-quartile range from the bounds of the box. 
Outlying points beyond the whiskers are plotted individually.
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Extended Data Fig. 7 | Pairwise differential expression analyses between the 
PLINhi/TREM1hi macrophages and all the other macrophage populations. The 
volcano plot shows genes differentially expressed between the PLIN2hi/TREM1hi 
and S100A8/IL1B+(a), S100A8/IL1B−(b), C1Q(c), HMOX1+(d), IL10+/TNFAIP3+(e) 
and IFNresp (f) macrophage populations. Significantly differentially expressed 

genes colored red (DESeq2 patient-level pseudobulk analysis, BH adjusted 
p < 0.1, list of DEG genes provided in Source Data Fig. 3). PLIN2, TREM1 and CCL2 
(in bold) are consistently significantly more expressed in PLIN2hi/TREM1hi cells 
compared to all other clusters.
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Extended Data Fig. 8 | See next page for caption.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research

Article https://doi.org/10.1038/s44161-023-00295-x

Extended Data Fig. 8 | Re-analysis of published human carotid 
atherosclerosis scRNA seq data (GSE159677)32. Unsupervised Leiden 
clustering of the dataset identified n = 13 distinct clusters (a) distributed in both 
atherosclerotic core (AC) and proximal adjacent (PA) portions of carotid artery 
tissue (b) and in all 3 studied patients (c). Identification of the main immune and 

non-immune clusters was performed using markers used in Alsaigh et al. Figure 
1d (d). Cells identified as myeloid were extracted and analysed separately. The 
UMAP shows the 10 identified myeloid sub-populations (e). The expression of 
selected cluster marker genes is shown on the UMAP (f ) and summarised in the 
dot plot (g). Distribution of myeloid clusters in the 3 patient samples (h).
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Extended Data Fig. 9 | LAM genset scores and macrophage trajectory 
analysis. Boxplots for the distributions of the lipid, inflammation and apoptosis 
scores for each of the MNP clusters (n = 3628 cells in total) (a). The connectivity 
between MNP clusters was assessed by partition-based graph abstraction  
(PAGA) analysis (nodes size and edge width proportional to cluster cell number 
and degree of connectivity respectively)39 (b) and PAGA on velocity (c).  
The dendrogram shows the distance between the expression profiles of the 

clusters (d). CytoTRACE random walk analysis where PLIN2hi/TREM1hi was 
assigned as start cluster (e). For the boxplots, lower and upper bounds of 
boxes mark first and third quartiles. Lines within boxes represent median 
values. Whiskers extend to the smallest and largest values no further than 1.5 * 
inter-quartile range from the box. Outlying points beyond whiskers are plotted 
individually.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | TREM1 protein expression in all treatment groups 
was measured using flow cytometry (representative of n = 3 biologically 
independent represented (a)). Quantification of mean MFI from n = 3 
biologically independent samples (values reported as mean ± SEM, One 
way ANOVA, Dunnett’s multiple comparison) (b). Box plots for TLR2 and 
TLR4 differential expression in TREM2hi and PLINhi/TREM1hi cluster. TLR2 
gene expression is higher in PLINhi/TREM1hi (DESeq2’s Wald test BH adjusted 
p-value = 0.08) while no significant difference was found for TLR4 (BH adjusted 
p-value = 0.56) (DESeq2 analysis; two-sided, paired Wald tests) (c). The Carotid 
Plaque Imaging Project (CPIP) biobank samples were stained for CD68, PLIN2 and 
TREM1 and their respective controls as well as oil red o (ORO) stain. Scale bars 

1 mm (far left and far right) and 100um (in the amplified images) (staining for a 
total of n = 37 plaques was performed)(d). The heatmap shows the correlation 
between TREM1 and PLIN2 expression from CPIP bulk transcriptomic data with 
markers of different cell types present in plaque. Both TREM1 and PLIN2 only 
showed high correlations with the macrophage markers. Spearman correlation 
coefficient was used, n = 60 patients (e). For the boxplots, lower and upper 
bounds of boxes mark first and third quartiles. Lines within boxes represent 
median values. Whiskers extend to the smallest and largest values no further 
than 1.5 * inter-quartile range from the box. Outlying points beyond whiskers are 
plotted individually.
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