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Incongruence between transcriptional and 
vascular pathophysiological cell states
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Lourdes Garcia-Ortega    1, Susana F. Rocha1, Carlos Torroja    3, 
Maria S. Sanchez-Muñoz    1, Mariya Lytvyn1, Verónica Casquero-Garcia1, 
Macarena De Andrés-Laguillo1, Lars Muhl    4, Michael M. Orlich    5, 
Konstantin Gaengel    5, Emilio Camafeita    6,7, Jesús Vázquez    6,7, 
Alberto Benguría    8, M. Luisa Iruela-Arispe    9, Ana Dopazo    7,8, 
Fátima Sánchez-Cabo    3,7, Hannah Carter10 & Rui Benedito    1 

The Notch pathway is a major regulator of endothelial transcriptional 
specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) 
dysregulates angiogenesis. Here, by analyzing single and compound genetic 
mutants for all Notch signaling members, we find significant differences 
in the way ligands and receptors regulate liver vascular homeostasis. Loss 
of Notch receptors caused endothelial hypermitogenic cell-cycle arrest 
and senescence. Conversely, Dll4 loss triggered a strong Myc-driven 
transcriptional switch inducing endothelial proliferation and the tip-cell 
state. Myc loss suppressed the induction of angiogenesis in the absence of 
Dll4, without preventing the vascular enlargement and organ pathology. 
Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK 
and mTOR, had no effect on the vascular expansion induced by  
Dll4 loss; however, anti-VEGFA treatment prevented it without fully 
suppressing the transcriptional and metabolic programs. This study 
shows incongruence between single-cell transcriptional states, vascular 
phenotypes and r el at ed p at ho ph ys io logy. Our findings also suggest that 
the vascular structure a  b n  or  m a  li  z a tion, rather than neoplasms, causes the 
reported anti-Dll4 antibody toxicity.

Notch is a cell-to-cell ligand–receptor signaling pathway that has a 
major influence on cell transcription and biology1, playing important 
roles in several diseases2. General Notch signaling or γ-secretase inhibi-
tors have been used in clinics with undesired side effects, including 
disruption of the normal intestinal stem-cell differentiation2,3. Specific 

blocking antibodies are now available that target the various ligands 
and receptors of the Notch pathway4–8. Given the specificity of Dll4 
expression in endothelial cells (ECs), targeting this ligand was initially 
thought to be an effective and safe strategy for specifically modulat-
ing Notch signaling and angiogenesis in disease, such as during tumor 
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Targeting Dll4 induces heterozonal responses in liver vessels
The previous RNA-seq and histological data revealed the adult liver 
endothelium as the most reactive vascular bed to the targeting of 
Dll4–Notch signaling. Rats and chimpanzees treated with anti-Dll4 
antibodies also developed significant liver vascular neoplasms and 
disease5,8; therefore, we focused our analysis on this organ. To gain 
deeper insight, we performed a high-resolution spatiotemporal phe-
notypic and transcriptomic analysis after targeting Dll4 for 2 days 
to 3 weeks. In contrast to targeting Dll4 during angiogenesis, target-
ing Dll4 in liver sinusoidal ECs (LSECs) for 48 h, which abolishes the 
generation of cleaved N1ICD, did not induce major transcriptomic 
changes (only 11 differentially expressed genes) or vascular phenotypic 
changes (Extended Data Fig. 2a–e). Gene set enrichment analysis (GSEA) 
revealed upregulation of only a few E2F and Myc target genes at this 
time point (Extended Data Fig. 2f–h). The increase in vascular density 
after targeting Dll4 was relatively slow and progressive, only becoming 
noticeable 1 week after genetic deletion (Fig. 2a–c). Endothelial prolif-
eration peaked at day 4 and was sustained after, leading to a progressive 
increase in vascular density and the total number of ECs (Fig. 2b–d). 
Proliferation of neighboring hepatocytes was also increased, peaking 
after the peak in endothelial proliferation (Fig. 2e), suggesting that 
Dll4KO ECs secrete angiocrine factors inducing hepatocyte prolifera-
tion, as shown previously during liver regeneration10.

The effect of Dll4 targeting was, however, notably heterogene-
ous and zonal. Only vessels around the central veins and with a known 
venous identity11 had a higher number of ECs (Fig. 2f,g), larger nuclei 
(Fig. 2h), and expression of cell-cycle (Fig. 2i,j) and apoptosis (Fig. 2k) 
markers. Therefore, the previously reported anti-Dll4-driven liver 
histopathology and increase in cell proliferation8 is now found to be 
mainly associated to the central-vein sinusoids, which become enlarged 
and full of blood cells (Extended Data Fig. 2i–m). Paradoxically, the 
portal-vein sinusoids, which have arterial identity and the highest 
Dll4 expression and Notch activity (Fig. 2l–n and Extended Data Fig. 
2n,o), showed a minor increase in EC proliferation (Fig. 2i) despite a 
significant loss in the expression of arterial genes (Fig. 2o and Extended 
Data Fig. 2p). Besides the cell-cycle marker Ki67, we also analyzed more 
specific S-phase (EdU) and cell-cycle arrest/senescence (p21) markers. 
This analysis revealed expression of p21 in 30% of Dll4iDEC ECs in the 
venous vessels around the central veins (Fig. 2p). Among Ki67+ ECs, 40% 
were positive for EdU and 25% were positive for p21 (Fig. 2q). This shows 
that there is a mix of productive cell division (EdU+) and arrest (p21+) 
after Dll4 loss in liver ECs. Pulse–chase single-cell ifgMosaic tracking 
revealed that relatively few of the Ki67+ ECs had the ability to divide and 
clonally expand after Dll4 targeting, with some cells dividing 6 to 50 
times more than their neighbors (Fig. 2r). All of these progenitor cells 
were located in the sinusoids around central veins (Fig. 2r,iii).

Loss of Notch1 or Rbpj in LSECs induces hypermitogenic arrest
Notch ligands and receptors can be targeted with a range of pharma-
cological compounds and antibodies4–7, and so far only Dll4-targeting 
antibodies have been reported to cause major vascular disease5,8. In 
contrast, genetic deletion of Notch1 or Rbpj in mice has been suggested 

growth6,7. However, anti-Dll4 treatment was later shown to induce a 
loss of endothelial quiescence and vascular neoplasms, which were 
proposed to be the main cause of pathology in several organs5,8,9. This 
toxicity diminished the clinical appeal of Dll4/Notch blockers in cancer 
or cardiovascular disease settings.

Here, we characterized the effect of single or compound targeting 
of all Notch signaling members on adult mice vascular homeostasis. 
High-resolution single-cell RNA sequencing (scRNA-seq) and three-
dimensional (3D) confocal microscopy of adult liver vessels revealed 
very significant differences in the way each Notch member regulates 
vascular signaling, structure and single-cell states. γ-Secretase inhibi-
tors or removal of Notch receptors did not cause substantial vascular or 
organ disease. Abnormal proliferating and sprouting single-cell states 
were generated only after Dll4 targeting. Surprisingly, suppression of 
these angiogenic cell states by additional genetic or pharmacologi-
cal targeting was insufficient to prevent vascular and organ disease. 
Conceptually, our data show that the major transcriptional changes 
and angiogenic cell states elicited by targeting Dll4 correlate with, 
but do not cause, the observed vascular pathophysiology. Instead, we 
propose that it is the unrelated vascular structure abnormalization and 
malfunction that leads to organ pathology and the reported toxicity 
of anti-Dll4 treatment5,8.

Results
Notch pathway expression and signaling in adult organ ECs
To elucidate the role of Notch signaling in global vascular homeostasis, 
we first assessed its activity in different organ vascular beds by immu-
nodetection of the activated form of the Notch1 intracellular domain 
(N1ICDVal1744). This epitope was detected in ∼50% of all organ ECs  
(Fig. 1a,b). Bulk RNA-seq analysis revealed that Dll4 and Notch1 are 
the most expressed ligand–receptor pair in quiescent vessels of most 
organs (Fig. 1c,d and Extended Data Fig. 1a), and that Mfng is the most str 
ongly expressed Notch glycosyltransferase. These enzymes are 
known to significantly enhance Delta ligand signaling and decrease 
Jagged ligand signaling1. Adult mice with induced deletion of Dll4 
in ECs (Dll4iDEC - Dll4flox/flox Cdh5-CreERT2) led to a significant reduc-
tion in N1ICDVal1744 and Hey1 signals in most organs’ quiescent ECs  
(Fig. 1e–i). This indicates that Dll4 is the main functional ligand 
responsible for triggering Notch activity in most quiescent vessels. 
We observed compensatory upregulation of Dll1 only in lungs (Fig. 1i). 
Dll4 deletion elicited remarkably different gene expression signatures 
among different organ vascular beds, with the adult liver endothelium 
presenting the most pronounced changes in gene expression (Fig. 1j,k 
and Extended Data Fig. 1). Despite significant transcriptional changes 
in most organs’ ECs, only the endothelium of the heart, muscle and 
liver showed an increase in the frequency of cycling or activated Ki67+ 
cells upon Dll4 deletion (Fig. 1l–n), and these were the only organs 
with clear alterations in the 3D vascular architecture after the loss 
of Dll4–Notch signaling (Fig. 1o). The brain underwent significant 
changes in gene expression (Fig. 1j,k and Extended Data Fig. 1), but 
these were not accompanied by endothelial proliferation or vascular 
morphological changes.

Fig. 1 | Dll4 deletion leads to EC activation and proliferation only in some 
vascular beds. a,b, Notch1 signaling activity (cleaved Val1744 N1ICD) in 
quiescent endothelium (DAPI+Endomucin+, abbreviated as EMCN). c, Schematic 
representation to illustrate the bulk RNA-seq experiment performed with 
adult ECs isolated by FACS. d, Heatmap with RNA-seq reads per kilobase per 
million mapped reads (RPKM). e, Experimental layout for the inducible deletion 
of Dll4 in Cdh5+ ECs (Dll4iDEC) with Cdh5(PAC)-CreERT2. f, Expression of Dll4 
protein in CD31+EMCN+ vessels. g,h, Dll4 deletion significantly reduces Notch 
signaling activity (cleaved Val1744 N1ICD) in all quiescent vascular beds. In brain 
micrographs, white arrowheads indicate ECs and yellow arrowheads indicate 
non-ECs. Note that whereas N1ICD is maintained in non-ECs, most N1ICD signal 
disappears from the ECs in Dll4iDEC brains. i, Schematic representation to illustrate 

the bulk RNA-seq experiment performed with adult ECs. Below, a heatmap 
showing the relative expression of all Notch pathway components and canonical 
target genes in control and Dll4iDEC mutant ECs. j, Unsupervised hierarchical 
clustering showing stronger gene expression changes in Dll4iDEC liver ECs 
compared with the other organs. Z-score lcpm, Z-score of the logarithmic counts 
per million. k, Unsupervised hierarchical clustering showing strong upregulation 
of Myc target genes in Dll4iDEC liver ECs compared with the other organs. l–n, Dll4 
deletion results in increased EC proliferation (Ki67+ERG+ cells) in some organs 
but not others. o, 3D reconstruction images from thick vibratome sections show 
vessel (CD31+EMCN+) enlargement in Dll4iDEC heart and liver but not in brain. Data 
are presented as mean values ± s.d. For statistics, see Source Data File 1. Scale 
bars, 100 μm.
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to cause vascular phenotypes very similar to the genetic deletion of 
Dll4, during angiogenesis and in adult vessels9,12–15. Therefore, we inves-
tigated if deleting Notch1 or Rbpj, the master regulator of all Notch 
receptor signaling, induced vascular pathology similar to that induced 
by the loss of Dll4 (Fig. 3a). Surprisingly, Notch1 and Rbpj deletion for 

2 weeks or 4 weeks did not significantly increase EC proliferation 
and related vascular pathophysiology (Fig. 3b–e and Extended Data  
Fig. 3a–g), despite these mutant cells having even higher activity 
of phosphorylated extracellular signal-related kinase (p-ERK) than 
ECs lacking Dll4 (Fig. 3f–h). Livers treated with anti-Notch1 blocking 
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Fig. 2 | Targeting Dll4 induces heterozonal responses in liver vessels.  
a, Experimental layout for the inducible deletion of Dll4 in Cdh5+ ECs (Dll4iDEC) 
with Cdh5(PAC)-CreERT2. 3D projection of confocal images from thick 
vibratome sections. b–e, Analysis of EC (ERG+ cells) and hepatocyte (ERG−DAPI+) 
proliferation (Ki67+) and cell number. f, Representative confocal micrographs 
showing that the abnormal vascular pattern observed in Dll4iDEC livers is located 
in the central vein (CV)-connecting sinusoids, but not in ECs surrounding portal 
veins (PV). Yellow dashed lines highlight the CV affected area. g, EC density in 
Dll4iDEC liver is higher in sinusoids connecting the CVs rather than those around 
PVs (CD34+). White dashed lines highlight the denser area. h, Dll4iDEC liver section 
showing the increase in nuclei size mainly in CV-connecting sinusoids. White 
dashed lines highlight the area with higher EC density and with larger EC nuclei. 
Higher magnification pictures of insets a and b together with pseudocoloring 
of nuclear sizes (lower panels) show differences in nuclei size between CV 
and PV areas, respectively. Violin plots reflecting changes in cell nuclei sizes. 

i, Increased EC proliferation (Ki67+ERG+) in Dll4iDEC liver, particularly in the 
sinusoids connecting the CVs. j, Myc protein is upregulated mainly in ECs 
(ERG+ cells) around the CVs after Dll4 deletion. k, Increased apoptosis (cleaved 
caspase-3 (C3)) in CV areas upon Dll4 deletion. l,m, Dll4 and activated N1ICD 
(V1744) protein are mostly present in arterial PV areas, while being mostly 
undetectable in venous CV areas. n, Dll4 deletion leads to loss of N1ICD (Val1744) 
activation in liver ECs. o, Msr1 immunostaining showing loss of arterial identity 
in Dll4iDEC vessels. p, p21 expression in Dll4iDEC liver ECs (ERG+) is also higher in 
the sinusoids around the CVs. q, Dll4iDEC Ki67+ liver ECs are actively dividing in S 
phase (EdU+Ki67+ERG+, yellow arrowheads in upper panel), and a small fraction of 
proliferating ECs (Ki67+ERG+) also expresses p21 protein (p21+Ki67+ERG+, yellow 
arrowheads in lower panel). r, Dual ifgMosaic single-cell clonal tracking after 
Dll4 deletion. Images showing representative dual-labeled EC clones (yellow and 
white arrowheads in i and asterisks in iii). Data are presented as mean values ± s.d. 
For statistics, see Source Data File 1. Scale bars, 100 μm.
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antibody4 also lacked the major hallmarks of pathology observed in 
anti-Dll4-treated livers (Extended Data Fig. 3h). Next, we compared 
the transcriptome of Dll4iDEC and RbpjiDEC vessels. ECs from both mutant 
lines showed a similar upregulation of genes related to cell-cycle 
activation and metabolism (Fig. 3i) and had enlarged nuclei (Fig. 3j). 

However, compared with Dll4iDEC livers, RbpjiDEC livers had significantly 
less vascular expansion and organ abnormalities (Fig. 3k and Extended 
Data Fig. 3c–g) and stronger upregulation of p21 (Fig. 3l), a cell-cycle 
inhibitor frequently upregulated in senescent or hypermitogenically 
arrested cells16. We also identified a significant increase in the number 
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of binucleated p21+ ECs, suggestive of replicative stress and G2 arrest of 
the mutant cells (Fig. 3m and Extended Data Fig. 3i). RNA-seq analysis 
revealed signatures of genetic pathways linked to G2/M checkpoints, 
chromosome segregation, and general replicative stress and senes-
cence in RbpjiDEC ECs (Fig. 3n and Extended Data Fig. 3j). To determine 
the functional effect of p21 upregulation, we analyzed compound 
RbpjiDEC p21KO mice (Fig. 3o). p21 loss did not affect the minor vascular 
sinusoid dilation seen in RbpjiDEC livers, but did increase the frequency 
of cycling (Ki67+) and apoptotic (cleaved caspase-3+) cells (Fig. 3p–r), 
in line with the role of p21 as a cell-cycle and apoptosis inhibitor17, par-
ticularly in hypermitogenically activated RbpjKO cells. This dual and 
paradoxical effect of p21 loss on both cell proliferation and apoptosis 
may explain the relatively mild increase in EC numbers in RbpjiDEC p21KO 
livers compared with the fully arrested RbpjiDEC liver vessels. These 
results suggest that loss of Dll4 induces a reduction in Notch signaling 
that results in a mixed population of proliferative and arrested ECs, 
whereas the complete loss of Notch signaling induces mostly hyper-
mitogenic arrest, without productive cell division.

Targeting Dll4 and Notch induces incongruent cell states
Next, we performed scRNA-seq to identify possible differences in 
vascular single-cell states induced by targeting Dll4, Notch1 or Rbpj. 
This analysis was performed on cells expressing the Cdh5-CreERT2 
and iSuRe-Cre alleles18 to guarantee endothelium-specific recombi-
nation, labeling and full genetic deletion of all of the floxed genes 
used in this study (Fig. 4a,b and Extended Data Fig. 4a). To reduce 
batch effects, Tomato+CD31+ ECs were isolated on the same day from 
multiple control and mutant animals, tagged with different oligonu-
cleotide-conjugated antibodies, and loaded in the same chip. The 
few mutant cells with mRNA expression of Dll4 and Notch1 were likely 
contaminants. For Rbpj, only exons 6–7 are deleted, leading to a less 
stable, but still detectable, 3′ mRNA. Altogether, the scRNA-seq data 
analysis showed the existence of ten clearly defined cell clusters (Fig. 
4c–e and Extended Data Fig. 4b). The deletion of Rbpj, Notch1 and 
Dll4 resulted in a significant decrease in Notch signaling and Hes1 

expression (Fig. 4b) and the loss of the arterial sinusoidal capillary 
transcriptional C1a cluster. In agreement with this, all of these mutants 
had a reduction in distal portal-vein (arterial) caliber and branching 
complexity (Extended Data Fig. 3c–e). However, only the loss of Dll4 
was able to induce a very pronounced loss of liver sinusoidal genes 
and capillarization19,20 and a tip-cell transcriptional program (C4). 
This program was characterized by the downregulation of Gata419, 
Maf 21 and the venous Wnt2 gene expression (Fig. 4f–h and Extended 
Data Fig. 4d) and very high expression of the tip-cell markers Kcne3, 
Esm1, Angpt2 and Apln, as well as Myc and its canonical target Odc1 
(Fig. 4i and Extended Data Fig. 4b–d). Most of the upregulated genes 
in the tip-cell cluster were associated with Myc metabolism, increased 
ribosome biosynthesis, glycolysis, mTORC1 signaling, and fatty acid 
and oxidative phosphorylation (Extended Data Fig. 4e). Paradoxi-
cally, Notch1iDEC and RbpjiDEC liver ECs, in which the decrease in Notch 
signaling was more pronounced (Hes1 expression in Fig. 4b), showed a 
more moderate metabolic activation, and most of these mutants ECs 
clustered in either the venous C1v cluster or the activated C3 cluster 
and did not reach the extreme C4 tip-cell state (Fig. 4c,d).

Histology confirmed that indeed only the Dll4iDEC mutants had a 
significant population of Esm1+ tip cells (Extended Data Fig. 4f) and 
that these were mostly present in the venous sinusoidal capillaries 
interconnecting the liver central veins (Fig. 4j,k), where EC proliferation 
and density are the highest (Fig. 2f–i). The upregulation of the global 
cell-cycle marker Stmn1 in Dll4iDEC livers (Fig. 4l) correlated with the 
sixfold higher frequency of Ki67-protein+ cells in these mutants com-
pared with the Notch1 and Rbpj mutants (Fig. 3d). Most Esm1+ tip cells 
were not Ki67+, in accordance with their higher sprouting activity and 
arrested nature, but had proliferating Ki67+ cells as close neighbors 
(Fig. 4j,m). Notch1iDEC and RbpjiDEC ECs showed significant upregulation 
of the replication-stress/senescence markers p21 (cdkn1a), p53 (trp53) 
and p16 (cdkn2a) (Fig. 4n). These cells undergo hypermitogenic S/
G2/M arrest (Fig. 3m,n) without becoming Kcne3+/Esm1+ sprouting 
tip cells (Fig. 4c,d), which is in contrast to the current understanding 
of sprouting angiogenesis16,22.

Fig. 4 | scRNA-seq analysis reveals significant differences between targeting 
Dll4 and Notch signaling. a, Experimental layout for the inducible deletion 
of the indicated genes in Cdh5-CreERT2+ ECs and collection of the iSuRe-Cre+ 
(Tomato-2A-Cre+) cells to ensure genetic deletion. b, Violin plots showing 
Dll4, Notch1 and Rbpj mRNA expression in single cells and the subsequent 
downregulation of the Notch target gene Hes1 in all mutants. c,d, UMAPs showing 
the ten identified clusters, and barplot showing the percentage of cells in each 
cluster in all samples. e, Dot plot showing the frequency (size) and intensity 
(color) of expression for the top cluster marker genes. f, Heatmap showing the 
indicated LSEC and continuous/capillary endothelial cell (CEC) gene expression 
signatures. g, Enrichment score analysis of LSEC and CEC signatures in Dll4iDEC 
ECs. h, Violin plots showing decreased Gata4 and Wnt2 expression only in Dll4iDEC 
mutants. i, Violin plots for some cluster marker genes. j,k, In Dll4iDEC mutants, 
tip cells (Esm1+ERG+) are localized in the sinusoids around CVs, but not in PV 

sinusoids. l, The global cell-cycle marker Stmn1 is highly upregulated exclusively 
in Dll4iDEC liver ECs. m, Most of the Esm1+ ECs are not Ki67+, but have Esm1−Ki67+ 
ECs as neighbors in the CV sinusoids. n, Violin plots for the indicated genes and 
conditions. o, Experimental layout for the inducible deletion of the indicated 
genes, their violin plots, UMAPs and barplots. p, Expression of the tip-cell marker 
Esm1 in ERG+ ECs located in CV sinusoids. q, Violin plots showing that deletion 
of Notch1/2/4 results in less Notch signaling (Hes1) and less arterial marker 
expression (Msr1), but no induction of the tip-cell program (Kcne3/Esm1/Myc/
Odc1) or the proliferation marker Stmn1. The cell-cycle arrest marker (Cdkn1a) is 
increased. r, Experimental layout for the inducible heterozygous deletion of Dll4 
(Dll4HetiDEC) for 2 weeks or DBZ treatment for 4 days in Cdh5+ ECs used for scRNA-
seq. s, UMAPs and barplots obtained. t, Violin plots showing expression of the 
canonical Notch signaling target Hes1. Data are presented as mean values ± s.d. 
For statistics, see Source Data File 1. Scale bars, 100 μm.

Fig. 3 | Deletion of Rbpj or Notch1 in liver quiescent blood vessels does not 
phenocopy Dll4 deletion. a, Experimental layout for the inducible deletion 
of Rbpj (RbpjiDEC), Notch1 (Notch1iDEC) and Dll4 (Dll4iDEC) in Cdh5+ ECs. All mice 
contained the Cdh5(PAC)-CreERT2 and iSuRe-Cre (expressing MbTomato-2A-Cre) 
alleles to ensure genetic deletion of the floxed alleles. b–d, Increased EC density 
(ERG+ per field) and proliferation (Ki67+ERG+/ERG+) were observed only in Dll4iDEC 
liver ECs. e, Gross liver pathology is observed exclusively in Dll4iDEC livers.  
f–h, p-ERK immunostaining and whole-liver western blot showing that the 
frequency of p-ERK-expressing ECs and intensity levels increase in the mutants, 
particularly the Notch1 and Rbpj mutants. i, Heatmap with the normalized 
enrichment score (NES) from significant hallmark analysis (FDR q value < 0.05) 
by GSEA from bulk RNA-seq data. FC, fold change. j, Mutant liver ECs have a larger 
nuclei size than control liver ECs. k, Vascular (CD31+) dilation or expansion is 
more pronounced in Dll4iDEC mutants. l, p21 expression in ECs (p21+ERG+) is more 

increased in RbpjiDEC mutants. m, Binucleated cells (white arrowheads) identified 
in Dll4iDEC and RbpjiDEC mutants. High magnification of insets a and b are shown 
at the bottom. n, GSEA analysis shows a positive and significant enrichment 
in Chromosome Segregation-related and Cellular Senescence-related genes 
in RbpjiDEC mutant liver ECs as shown by the NES. o, Experimental layout for 
the inducible deletion of Rbpj in a p21KO background. p, 3D projection of thick 
vibratome sections showing the endothelial surface marker CD31 and EMCN, 
and proliferation (Ki67) analysis in ECs (ERG+). q, Analysis of the apoptosis 
marker cleaved caspase-3. r, The absence of p21 in a RbpjiDEC background results 
in a modest increase in EC density (ERG+), but both EC proliferation (Ki67+ERG+) 
and apoptosis (cleaved caspase-3, CC3) are significantly increased. Data are 
presented as mean values ± s.d. For statistics, see Source Data File 1. Scale bars, 
100 μm, except e, 1 mm.
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Notch1iDEC livers upregulated the expression of Notch4 (Extended 
Data Fig. 5a), a receptor known to partially compensate for Notch1 
deletion23. Deletion of Notch1/2/4 in ECs, similarly to Rbpj loss, results 

in even lower Hes1 expression and higher p21 expression (arrest); how-
ever, this does not result in the induction of tip cells (Esm1+/Kcne3+) 
or proliferating Stmn1+ cells (Fig. 4o–q and Extended Data Fig. 5b–f).
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We also tested a general γ-secretase inhibitor, DBZ, which is 
known to block Notch signaling and elicit strong effects on tumor 
and retina angiogenesis6, similarly to anti-Dll4 treatment (Extended 
Data Fig. 5g). However, this compound had a very weak effect on 
quiescent vessels, similar to the changes seen in Dll4 heterozygous 
livers (Fig. 4r–t). We also observed by scRNA-seq that ECs with full loss 
of Dll4 signaling for only 4 days had already lost the arterial capillary 
program (C1a cluster) and become activated (C3 cluster), but had not 
yet had time to fully differentiate to tip cells (C4 cluster in Extended 
Data Fig. 5h–j). This suggests that in order to fully activate quiescent 
ECs and induce significant numbers of tip cells and vascular abnor-
malization, pronounced and continuous loss of Dll4 signaling must 
be sustained for about 1 week, which can be achieved with genetic 
deletion or blocking antibodies5 but not with small-molecule inhibi-
tors targeting Notch.

The difference between the liver vascular phenotypes of Dll4 and 
Notch receptor mutants could be also due to a role of the ligand, and not 
the receptors, on signaling to adjacent liver cells. scRNA-seq analysis of 
all other liver cell types revealed that hepatocytes did not express sig-
nificant amounts of Notch receptors (Extended Data Fig. 6a–e). Hepatic 
stellate cells, Kupffer cells (stellate macrophages) and some other 
blood cell types expressed Notch receptors, but their target genes were 
not significantly downregulated by endothelial Dll4 deletion, suggest-
ing that this ligand mainly signals within ECs (Extended Data Fig. 6d–f). 
Single-cell data analysis revealed a significant increase in leukocytes in 
Dll4iDEC livers, particularly monocytes, neutrophils and macrophages 
(Extended Data Fig. 6c), presumably due to the vascular pathology 
and the subsequent abnormal blood flow that leads to the accumula-
tion of these cells and an organ pathology signature (Extended Data  
Figs. 2j,m and 6c,g–j). Remarkably, EC-specific expression of N1ICD res-
cues the major hallmarks of the Dll4iDEC vascular pathology at the organ 
and single-cell levels (Extended Data Fig. 7). These data suggest that 
it is not the loss of Dll4 signaling to non-ECs that causes the difference 
between Dll4iDEC and Notch1/2/4iDEC or RbpjiDEC mutants. It also confirms 
that it is the partial downregulation of the Dll4–Notch transcriptional 
program in ECs, which is not matched by the complete loss of Notch 
receptors or Rbpj, that causes the liver vasculature abnormalization 
and subsequent pathology.

Deletion of all other Notch ligands does not elicit pathology
Besides Dll4, other Notch ligands are also expressed in liver ECs  
(Fig. 5a). The Notch signaling target Hes1 is more expressed 
in Dll4iDEC than in Notch1iDEC, RbpjiDEC or Notch1/2/4iDEC mutants  
(Fig. 4b,q), suggesting that the other weakly expressed Notch ligands 
( Jagged1, Jagged2 and Dll1) may partially compensate the loss of 
Dll4 and induce residual Notch signaling essential for the induction 
of the tip-cell state. Notably, Jagged1 mRNA was barely detectable 
in bulk or scRNA-seq data of quiescent liver ECs (Figs. 1d and 5a), 
but its protein was clearly expressed in liver vessels (Fig. 5b). Dele-
tion of all three ligands (Jag1, Jag2 and Dll1) did not alter vascular 
morphology, induce pathology, or increase the frequency of Ki67+ 
cells, confirming that Dll4 is the main Notch ligand in quiescent 
vessels (Fig. 5c–g). Liver blood profiling revealed an increase in 
the percentage of neutrophils, but this was also seen in circulat-
ing blood, suggesting a systemic rather than organ-specific role 
of these ligands (Fig. 5h,i). In agreement with this, scRNA-seq data 
analysis confirmed that most mutant ECs remained quiescent and 
did not become activated or form tip cells (Fig. 5j–l). Moreover, 
deletion of Jag1, Jag2 and Dll1 in ECs did not compromise the por-
tal sinusoid arterial identity (Fig. 5k,m), instead revealing a slight 
increase in the Notch signaling target Hes1 and the arterial gene 
CD34, together with a very pronounced decrease in the expression 
of the venous-enriched Wnt2 gene (Fig. 5n). This counterintuitive 
increase in Notch signaling was also observed previously after the 
loss of Jagged1 during angiogenesis24.

Myc loss prevents Dll4iDEC transcriptional states but not 
pathology
Next, we aimed to determine the molecular mechanisms responsible 
for the unique EC activation, tip-cell signature, and vascular pathology 
induced by targeting Dll4. As mentioned above, Myc and its target Odc1 
were among the most strongly upregulated genes in Dll4 mutant ECs, 
compared with Notch1 and Rbpj mutants. Myc is known to activate 
important ribosome biogenesis and protein translation pathways, 
favoring cell growth25. Dll4iDEC livers showed upregulation of a large 
range of canonical E2F, Myc, mTORC1 and ribosomal (Rpl) genes, par-
ticularly in the activated, proliferating and endothelial tip-cell clusters 
(Fig. 6a and Extended Data Fig. 4). This hypermetabolic transcriptional 
status was confirmed by mass spectrometry (MS) analysis of protein 
lysates obtained from freshly isolated liver ECs (Fig. 6b–f), providing a 
high-depth proteomic analysis of the endothelial tip-cell state induced 
by targeting Dll4. We also independently confirmed Myc mRNA and 
protein upregulation in Dll4KO vessels (Fig. 6g,h).

Next, we investigated the implication of Myc in the Dll4iDEC tran-
scriptional program and subsequent vascular-related pathology. 
Myc loss (in Dll4/MyciDEC animals) almost entirely blocked the EC 
activation induced by Dll4 loss, and very few ECs were in the acti-
vated (C3) and tip-cell (C4) clusters (Fig. 6i–l and Extended Data 
Fig. 8a). Consistent with the scRNA-seq data, frequencies of pro-
liferating (Ki67+) and tip (Esm1+) cells in Dll4/MyciDEC mutants were 
similar to those in wild-type animals (Fig. 6m and Extended Data 
Fig. 8b, c). Myc activity is thus essential for the strong metabolic 
and biosynthetic phenotype of Dll4KO liver ECs and the appear-
ance of the abnormal cell states. Surprisingly, despite this strong 
transcriptional and cell-state reversion to a quiescent state, Dll4/
MyciDEC mutant vessels were still highly abnormal and dilated (Fig. 
6n and Extended Data Fig. 8d). The vascular abnormalities in Dll4/
MyciDEC mutant livers were not in accordance with their more quies-
cent scRNA-seq profile (Fig. 6j–l), nor with the significantly lower 
frequencies of Ki67+ and Esm1+ cells (Fig. 6m). Interestingly, Dll4/
MyciDEC livers retained hallmarks of tissue hypoxia and inflammation 
(Fig. 6l and Extended Data Fig. 8e) and had strong activation of sur-
rounding hepatocytes already 5 days after deletion (Extended Data  
Fig. 8f), despite having a quiescent endothelium. Altogether, these 
data indicate that the vascular structure abnormalization observed in 
Dll4 mutant livers is not driven by the detectable changes in endothe-
lial transcriptional programs or the proliferative and tip EC states.

Anti-VEGFA treatment prevents the Dll4iDEC pathology with 
less effect on transcription
Among the few GSEA hallmark pathways whose upregulation in Dll4 
mutants was not altered in Dll4/MyciDEC vessels was the hypoxia path-
way and inflammatory response (Fig. 6l and Extended Data Fig. 8e). 
Hypoxia is known to induce expression of vascular endothelial growth 
factor A (VEGFA), which can induce vascular expansion without the 
need for proliferation26. The expression of VEGFA was significantly 
upregulated in the Dll4KO venous tip-cell cluster (Extended Data  
Fig. 9a). Therefore, we explored if anti-VEGFA treatment could pre-
vent the appearance of the activated vascular cell states, vascular 
enlargement and liver pathology induced by Dll4 deletion. Unlike 
Myc loss, anti-VEGFA treatment reduced both the vascular expan-
sion and the liver pathology induced by Dll4 deletion (Fig. 7a–d and 
Extended Data Fig. 9b). scRNA-seq analysis confirmed the almost-
complete loss of the tip-cell (C4) and proliferating (C5) single-cell 
states, as well as a significant reduction in the activated cell states 
(C3), with a general return to the quiescent cell states, with excep-
tion of the arterial state (Fig. 7e–i and Extended Data Fig. 9c–f ). 
scRNA-seq and histology data also revealed a depletion of VEGFR2/
Kdr+ sinusoidal capillaries by anti-VEGFA treatment (Fig. 7b–e, i and 
Extended Data Fig. 9a). Anti-VEGFA treatment rescued the expres-
sion of the blood flow and shear stress responsive genes Klf2 and 
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Klf4 (Fig. 7j and Extended Data Fig. 9g), suggesting a normalization 
of vessels and blood flow.

These results show that anti-VEGFA treatment prevents not only 
the appearance of the abnormal single-cell states induced by Dll4 

targeting, as Myc loss also does, but also the vascular expansion and 
blood flow abnormalities associated with organ pathology. However, 
blocking VEGF had a much lesser effect than Myc loss on the Dll4KO 
transcriptional signature (Fig. 7k). Anti-VEGFA treatment of Dll4iDEC 
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Fig. 5 | Deletion of Jag1, Jag2 and Dll1 in liver ECs does not cause pathology. 
a, Heatmap of bulk RNA-seq reads and violin plot of single-cell data showing 
expression of all Notch ligands in liver ECs. b, Despite its low mRNA expression, 
Jag1 protein is clearly detected in the adult liver quiescent endothelium (EMCN+) 
and absent in Jag1/Jag2/Dll1iDEC mutants. c, Experimental layout for the inducible 
deletion of Jag1, Jag2 and Dll1 in Cdh5+ ECs. d, CD31 and EMCN+ immunostaining 
shows no vascular architecture changes. e,f, Macroscopic pictures and hematoxylin 
and eosin (H&E) staining show absence of liver pathology. g, Deletion of the three 
ligands does not lead to an increase in endothelial proliferation (Ki67+/ERG+ ECs) nor 
an increase in EC number (ERG+ cells per field). h, Analysis by FACS of the percentage 
of different blood cells in livers. NS, not significant. i, Hematological analysis of 

circulating (systemic) blood cells. j, Violin plots showing expression of the four 
ligands in scRNA-seq data. k, UMAPs and barplot showing the ten identified clusters 
and the percentage of cells in each cluster in the two samples. l, Jag1/Jag2/Dll1 
mutant ECs do not upregulate the tip-cell (Esm1/Kcne3/Angpt2), nor metabolic  
(Myc/Odc1), nor proliferation (Stmn1) transcriptional program observed in Dll4 
mutants. m, Immunostaining and scRNA-seq data showing that Jag1/Jag2/Dll1 
mutant ECs do not downregulate the expression of the arterial markers Msr1 and 
Efnb2. n, Violin plot showing an increase in the Notch target gene Hes1 and the 
arterial gene CD34, together with a decrease in the expression of the venous Wnt2 
gene in Jag1/Jag2/Dll1 mutant ECs. Data are presented as mean values ± s.d. For 
statistics, see Source Data File 1. Scale bars, 100 μm, except e, 1 mm.
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livers attenuated, but did not completely downregulate, many of the 
genes associated with metabolic and biosynthetic activities (Fig. 7l 
and Extended Data Fig. 9h, i). This suggests that even though Dll4iDEC+ 

anti-VEGFA-treated ECs are transcriptionally and metabolically more 
active than Dll4/MyciDEC ECs, only the latter form abnormal and enlarged 
vessels that result in organ pathology.
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Inhibition of major signaling pathways did not prevent Dll4iDEC 
pathology
VEGFA induces many important endothelial functions that are 
often difficult to distinguish, such as proliferation, sprouting, cell 
size, survival and permeability27–29. VEGF is thought to execute 
its effects on sprouting and angiogenesis mainly through ERK 
signaling30,31. However, administration of a highly effective ERK/
MEK signaling inhibitor (SL327) had a much more modest effect 
than anti-VEGFA treatment, and only partially reduced the num-
ber of activated and tip ECs (Fig. 7m–s and Extended Data Fig. 9j). 
The VEGF-dependent vascular enlargement or expansion could 
be alternatively mediated by increased Rac1(ref. 32), Pi3K/mTOR  
(refs. 33,34) or nitric oxide (NO)35,36 signaling. However, the inhibition 
of these pathways also did not prevent the vascular pathophysiol-
ogy induced by targeting Dll4 (Fig. 8 and Extended Data Fig. 9k,l).  
Rapamycin effectively prevented the increase in the number of ECs, but 
not vascular dilation and pathology. Thus, the vascular pathophysiol-
ogy effects of anti-VEGFA treatment, and anti-Dll4, are broader and 
independent of the activity of these signaling pathways.

Overall, these results show that the genetic and pharmacological 
modulation of single-cell states related to endothelial dedifferentia-
tion, activation, proliferation and sprouting often do not correlate with 
adult vascular phenotypes, function and ultimately organ pathology.

Discussion
Notch is one of the most important pathways for vascular develop-
ment because it enables the necessary differentiation of ECs during 
angiogenesis28,37,38. Here, we expand on previous observations that 
Notch also plays an important role in the homeostasis of several organ 
vascular beds8,9,12. Dll4 is active in all organ vascular beds, and its loss 
affects the transcriptome of most quiescent ECs; however, Dll4 tar-
geting effectively activates vascular growth in only the heart, muscle 
and liver. Even though the existence of four Notch receptors and five 
ligands allows for the possibility of multiple quantitative and qualita-
tive signaling combinations and redundancy, our results confirm that 

Dll4 and Notch1 are clearly the most important Notch ligand–receptor 
pair for maintaining the global homeostasis of ECs.

Previous work suggested that Dll4 and Notch1/Rbpj have simi-
lar functions in vascular development and homeostasis6–8,15,23,24,39, 
with only Jagged ligands shown to have opposite functions in Notch 
signaling and angiogenesis24. In this study, we show that Dll4 can have 
distinct functions from its receptors in vascular biology. It was pos-
sible to identify this difference only because of the use of scRNA-seq 
and high-resolution confocal analysis of liver vessel morphology; bulk 
RNA-seq analysis did not reveal significant differences between the 
transcriptomes of Dll4 and Rbpj mutants. The loss of Dll4, unlike the 
loss of Notch receptors or Rbpj, elicits a unique cascade of changes that 
culminates in the loss of sinusoidal marker genes and upregulation of 
Myc, similar to the loss of Gata4 (ref. 19). Dll4iDEC liver vessels lose all 
quiescent arterial and venous cell states. The arterial cells become 
highly activated, and the venous cells show either tip-cell or proliferat-
ing cell signatures. Paradoxically, although Dll4 loss induces a weaker 
loss of Notch signaling than is induced by the loss of Notch receptors 
or Rbpj, it elicits a much stronger metabolic activation and expansion 
of the liver endothelium. This may be in part related to the bell-shaped 
response of ECs to mitogenic stimuli, as we previously showed during 
retina angiogenesis16. Our data indicate that full loss of Notch, or Rbpj, 
induces stronger ERK signaling and hypermitogenic arrest associated 
with hallmarks of cellular senescence, whereas Dll4iDEC vessels retain a 
residual level of Notch signaling that instead effectively induces strong 
Myc-driven ribosome biogenesis and a metabolic switch toward active 
protein synthesis and cell growth that drives both EC proliferation and 
the generation of tip cells. The pro-proliferative effect of targeting 
Dll4 in quiescent vessels is in contrast to the hypermitogenic cell-cycle 
arrest that occurs after targeting Dll4 during embryonic and retina 
angiogenesis16,40, presumably a reflection of the significantly lower 
levels of growth factors, including VEGF, in adult organs.

Previously, a noncanonical and N1ICD transcription-independent 
role for Dll4/Notch in inducing Rac1 and maintaining vascular barrier 
function was proposed41. Dll4 deletion could also affect signaling to 

Fig. 6 | Myc loss prevents the Dll4KO endothelial activation and single-cell 
states but not vascular pathology. a, GSEA hallmark analysis for each single-cell 
cluster. b, GSEA hallmark analysis performed with the Dll4iDEC bulk proteome 
and transcriptome. c, Heatmaps showing log(fold change) of genes and proteins 
belonging to different sets. d, Barplot showing the NES in each single-cell cluster 
for the indicated gene sets. e, Barplot with the top differentially expressed (DE) 
proteins in Dll4iDEC livers. f, Enrichment analysis showing a significant positive 
enrichment in translational initiation-related genes and proteins encoded by 
genes that are regulated by the Myc-Max transcription factors. g, Micrographs 
showing immunostainings for the Myc protein, which is upregulated in liver ECs 
(ERG+ cells) after Dll4 deletion. h, Myc mRNA expression (normalized counts 
from bulk RNA-seq). i, Experimental layout for the inducible deletion of Dll4 and 

Myc in Cdh5+ and iSuRe-Cre+ ECs and scRNA-seq analysis. j, UMAPs and barplot 
showing the ten identified clusters and the percentage of cells for each cluster 
in the different samples. k, Dot plot of the top upregulated genes in Dll4iDEC liver 
ECs belonging to the indicated gene marker groups. l, GSEA hallmark analysis 
showing the decreased expression of most gene sets in Dll4/MyciDEC. m, Double 
deletion of Dll4 and Myc in ECs results in a significant reversion of proliferation 
(Ki67+ERG+ cells) and Esm1+ expression (Esm1+ERG+) to control levels. n, 3D 
confocal micrographs from thick vibratome sections (top) or thin sections 
(bottom), and liver macroscopic pictures showing vessel enlargement and 
liver pathology in Dll4/MyciDEC mutants similarly to Dll4iDEC mutants. Data are 
presented as mean values ± s.d. For statistics, see Source Data File 1. Scale bar, 
100 μm, except n lower panel, 1 mm.

Fig. 7 | Vascular abnormalities and liver pathology are prevented by VEGFA 
antibody administration in Dll4iDEC mutants by ERK-independent mechanisms. 
a, Experimental layout for the inducible deletion of Dll4 in Cdh5+ ECs and VEGFA 
antibody administration. b, Confocal micrographs showing reduced CD31 or EMCN 
vascular immunostaining after anti-VEGFA treatment. c, Stereomicroscope liver 
pictures. d, Vessel density is reduced in Dll4iDEC mutants after anti-VEGFA treatment. 
e, UMAPs and barplot showing the identified clusters and the percentage of cells 
for each cluster in indicated samples. f, Unsupervised hierarchical clustering 
showing gene expression changes. g, Dot plot of the top upregulated genes for 
each indicated gene set. h, Violin plots of scRNA-seq data showing that anti-VEGFA 
treatment prevents the strong upregulation of Myc and its target Odc1. i, The total 
number of ERG+ ECs, proliferation (Ki67+ERG+) and Esm1 expression (Esm1+ERG+) 
return to control conditions after VEGFA antibody administration. j, Dot plot 
showing expression of flow/shear stress genes. k, Number of upregulated genes 

for each contrast and Venn diagrams showing that when compared with Myc loss, 
anti-VEGFA treatment has less effect on the Dll4iDEC upregulated genetic program. 
DEGs, differentially expressed genes. l, GSEA hallmark analysis confirms the 
more moderate effect of anti-VEGFA treatment on the Dll4iDEC genetic program 
when compared with Myc loss. m, Experimental layout for the inducible deletion 
of Dll4 and SL327 administration. n, UMAPs and barplot showing the identified 
clusters and the percentage of cells for each cluster in indicated samples. o,p, The 
administration of an ERK/MEK signaling inhibitor (SL327) results in reduced ERK 
phosphorylation. q, Violin plot showing that SL327 treatment partially inhibits 
the generation of tip cells (Kcne3+). r, The administration of SL327 does not change 
the frequency of proliferating Ki67+ ECs (Ki67+ERG+). s, Abnormal vasculature 
(CD31+EMCN+) associated with liver pathology still occurs after SL327. Data are 
presented as mean values ± s.d. For statistics, see Source Data File 1. Scale bars, 
100 μm, except in c and s upper panel, 1 mm.
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other cell types, unlike deletion of the Notch receptors in ECs. However, 
our data show that the liver vascular abnormalization after targeting 
Dll4 can be rescued by the expression of N1ICD in ECs. This suggests 
that the vascular pathology is caused by the absence of Dll4 canonical 
signaling and transcription within the endothelium, and not due to 
noncanonical effects on vascular barrier function, or the loss of Notch 

signaling in other adjacent cell types. The observed lack of pathology 
in anti-Notch1-treated livers also corroborates this.

High-resolution confocal microscopy revealed the heterozonal 
effect of Dll4 targeting. The induction of EC proliferation and tip cells 
was restricted to the most hypoxic liver venous sinusoids, precisely 
the ones with lower expression of Dll4 and Notch. Previous research 
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showed that liver venous sinusoids have higher baseline activity of 
several tyrosine kinase signaling pathways42, which may explain the 
observed zonal effect of Dll4 targeting.

The temporal analysis of the effects of Dll4 targeting on the adult 
liver vasculature also revealed that it takes at least 1 week for the full 
transcriptional reprogramming of quiescent ECs and the vascular 

b

d

e

a
Control

Li
ve

r

Control

Dll4iDEC

Dll4iDEC

Dll4iDEC + Rac1 inhibitor

Control Anti-Dll4 (2 weeks) Rac1iDEC + anti-Dll4 (2 weeks)

Dll4iDEC

+
Rac1 inhibitor
(NSC23766)

Dll4iDEC

+
mTOR inhibitor

(rapamycin)

Dll4iDEC

+
NO inhibitor

(L-NIO)

Dll4iDEC + mTOR inhibitor Dll4iDEC + NO inhibitor 

Control Anti-Dll4

2 weeks 

2 weeks ERG Ki67
CD31+EMCN

ERG Esm1 ERG Esm1CD31 + EMCN

P5
P6

P1

2 days

P7

Anti-Dll4 + Rac1
inhibitor (NSC23766)

Anti-Dll4 + NO
inhibitor (L-NIO)

Anti-Dll4 + mTOR
inhibitor (rapamycin)

Anti-Dll4 + Pi3K
inhibitor (alpelisib)

CV
CV

PV

PV

PV

PV

CV

PV

PVPV

PV

CV

CV

CV

CV

CV

CV

CV

CV

CV

CVCV
CV

CV

CV
PV

PV
PV

PV

PV

PV

PV

PV PV

CV

CV

CV

CV

CV

CV

PV

CV

CV

CV

CV PV PV

PV
PV

PV

PV

PV
PV

CV
CV

CV

CV

PV

CV

CV

PV

CV

CV

PV

PV

CV

CV

CV

CV

CV

CV

PV

CVCV

CV

CV

PV

PV

PV

CV

CV

CV

CV

CVCV

CV

CV

CV

CV
CVPV

PV

PV

PVPV

PV
PV

PV

c

Dll4iDEC + Rac1 inh.
Dll4iDEC + mTOR inh.Dll4iDEC

Control Dll4iDEC + NO inh.

0

10

20

30

40

50

ER
G

+  E
C

s 
pe

r f
ie

ld

%
Ki

67
+  E

C
s 

(E
RG

+) <0.0001

<0.0001
0.0037

<0.0001

0

100

200

300

400

500 <0.0001

<0.0001
0.8840

<0.0001

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research | Volume 2 | June 2023 | 530–549 543

Article https://doi.org/10.1038/s44161-023-00272-4

expansion and organ pathology to become noticeable. During angio-
genesis, this transcriptional and vascular morphology switch is already 
evident after 24 h of anti-Dll4 treatment16. This slow transcriptional 
reprogramming of quiescent ECs by Dll4 targeting may be related to 
the much lower levels of growth factors and nutrient availability in 
adult organs. The slow nature of this reprogramming may also explain 
the lack of effect of the small-molecule inhibitor DBZ on quiescent 
ECs. Unlike anti-Dll4 treatment or genetic deletion, which result in 
continuous loss of signaling, the less stable small-molecule inhibitor 
DBZ elicited no significant change in the quiescent vascular cell tran-
scriptional states and phenotypes, whereas it is very effective during 
retina angiogenesis15,16. Anti-Notch14 also did not cause liver vascular 
pathology, despite its strong effect on angiogenesis. These findings 
have implications for selecting the most effective and safest way to 
target Notch in clinics, including blocking antibodies that target Dll4 
versus antibodies that target Notch receptors, or the use of small-
molecule inhibitors. Our data indicate that Notch receptor-targeting 
antibodies or small-molecule γ-secretase inhibitors do not induce 
significant liver vascular pathology and should be as effective as anti-
Dll4 treatment at dysregulating tumor-related or ischemia-related 
angiogenesis, which can be beneficial in some therapeutic settings. 
It has also been shown that is possible to modulate the stability and 
pharmacokinetics of anti-Dll4 treatment to decrease its toxicity while 
maintaining its therapeutic and angiogenesis efficacy5.

Our analysis also confirms the importance of Myc for the biology 
of ECs in the absence of Dll4. We previously reported that Myc loss 
rescues the ability of RbpjKO or Dll4KO ECs to form arteries40. Here, we 
show that Myc loss abrogates the generation of activated, proliferative 
and sprouting tip cells after Dll4 targeting, but surprisingly, this return 
to genetic and phenotypic quiescence is insufficient to prevent Dll4-
targeting-induced vascular expansion, dysfunction and consequent 
organ pathology. In contrast, anti-VEGFA treatment did not completely 
abrogate the Dll4-targeting genetic program, but was able to prevent 
the associated vascular and organ pathology. However, this effect of 
anti-VEGFA treatment was not reproduced by inhibition of MAPK/ERK, 
Rac1, Pi3K/mTOR or NO signaling. This suggests a broader role for anti-
VEGFA treatment in preventing pathological vascular enlargement and 
remodeling when combined with the anti-Dll4 antibody, that could be 
also related to its effect on liver EC survival. Our data suggest that the 
action of VEGF on vascular expansion and survival is independent of 
its direct effect on these signaling pathways30,32–36, and independent 
of cell proliferation and sprouting, as also previously proposed26,43. 
The sum of these findings also suggests that the recently developed 
bispecific antibody targeting both Dll4 and VEGF simultaneously 
(navicixizumab, OncXerna) may be less toxic than the use of anti-Dll4 
treatment alone44.

Altogether, the data obtained with several compound mutant and 
pharmacological approaches show that most of the transcriptional 
changes and angiogenic cell states elicited by targeting Dll4 correlate 
with, but do not cause, vascular pathophysiology (Extended Data  
Fig. 10). Therefore, vascular neoplasms are not the cause of the pre-
viously reported anti-Dll4 antibody toxicity8. Instead, we propose 
that the unrelated venous sinusoid enlargement and architecture 

abnormalization lead to vascular malfunction, blood accumulation, 
inflammation and hypoxia, altogether resulting in organ pathology.

These data also raise questions about the general use of single-cell 
transcriptional or genetic states to describe and predict functional or 
dysfunctional vascular phenotypes and ultimately organ pathophysi-
ology. A single-cell transcriptional state is only a small part of a cell’s 
phenotype and function.

Methods
Mice
The following mouse (Mus musculus) lines and alleles were used and 
interbred: Tg(Cdh5-CreERT2) (ref. 45), Tg(iSuRe-Cre) (ref. 18), Dll1flox/flox  
(ref. 46), Jag1flox/flox (ref. 47), Jag2flox/flox (ref. 48), Dll4flox/flox (ref. 49), 
Notch1flox/flox (ref. 50), Notch2flox/flox (ref. 51), Notch4KO (generated as 
described below), Rbpjflox/flox (ref. 52), Mycflox/flox (ref. 53), Cdkn1a(p21)KO 
(ref. 54), Rac1flox/flox (ref. 55), Rosa26-EYFP (ref. 56), iChr-Mosaic  
(ref. 57) and iMb-Mosaic (ref. 57). To induce CreERT2 activity in adult 
mice, 20 mg or 10 mg of tamoxifen (Sigma-Aldrich, T5648) were first 
dissolved in 140 μl of absolute ethanol and then in 860 μl of corn oil 
(20 mg ml−1 or 10 mg ml−1 tamoxifen, respectively). From these stock 
solutions, dilutions were done and given to adult mice aged 2–5 months 
by intraperitoneal injection (total dose of 1 mg, 1.5 mg or 2 mg of tamox-
ifen per animal) every day for a maximum of 5 days. All mouse lines 
and primer sequences required to genotype these mice are provided 
in Supplementary Table 1.

Dll4/Notch signaling blockade in ECs was achieved using blocking 
antibodies to murine Dll4, developed by Regeneron (REGN1035) (ref. 
58), or against Notch1 (anti-NRR1), developed by Genentech4. Mouse 
IgG (Sigma) was used in littermates as a control treatment. For the 
48-h experiment, mice received a single intraperitoneal injection of 
200 μl of IgG or anti-Dll4 antibody (20 mg kg−1 in PBS). For the 2-week 
blocking experiments, mice received anti-Dll4 antibody or anti-NRR1 
antibody four times (day 1, day 4, day 8 and day 12) over 14 days at a 
concentration of 7.5 mg kg−1 or 10 mg kg−1, respectively. For anti-VEGFA 
treatment experiments, mouse anti-VEGFA G6-31 antibody, developed 
by Genentech, was administered four times over 14 days at a concentra-
tion of 5 mg kg−1. In mouse pups, anti-Dll4 antibody (REGN1035) was 
injected at 7.5 mg/kg or 20 mg/kg as indicated.

The following inhibitors were injected intraperitoneally for 2 con-
secutive days in postnatal animals for retina analysis, or for 4–14 consecu-
tive days in adult animals for liver analysis as indicated in the figures. 
γ-Secretase inhibitor DBZ (YO-01027; Selleck Chemicals, S2711) was 
injected at 30 μmol kg−1 in adult animals every day in the morning for 
4 days, and 16 h before collection of the tissues. To inhibit MAPK/ERK 
phosphorylation, we injected 120 mg kg−1 SL327 (MEK inhibitor; Selleck 
Chemicals, S1066) every day, and 16 h before collecting the tissues for 
scRNA-seq. To inhibit Rac1, we injected NSC23766 at 3 mg kg−1 (Sigma, 
SML0952). To inhibit mTOR signaling, we injected rapamycin at 4 mg kg−1 
(Enzo Life Sciences, BML-A275-0005). To inhibit NO synthase, we injected 
L-NIO at 30 mg kg−1 (R&D Systems, 0546). To inhibit Pi3K signaling, we 
injected alpelisib at 30 mg kg−1 (MedChemExpress, HY-15244).

All mouse husbandry and experimentation was conducted using 
protocols approved by local animal ethics committees and authorities 

Fig. 8 | Inhibition of Rac1, mTOR and NO signaling does not prevent the 
vascular pathophysiology induced by Dll4 targeting. a, Stereomicroscope 
images showing adult liver vascular defects and blood accumulation after 
Dll4 deletion and treatment with different inhibitors for 2 weeks. b, Confocal 
micrographs showing that the expansion and abnormalization of the liver 
sinusoids (CD31+EMCN+), particularly around CVs, observed after Dll4 deletion, 
are not prevented by the administration of the indicated compounds. On the 
right, images show EC (ERG+ nuclei) proliferation (Ki67+). c, Charts showing 
quantification of EC density/numbers and proliferation. Note that mTOR 
inhibitor-treated liver ECs do not proliferate significantly (same ERG+ content), 

despite a fraction being Ki67+. d, Deletion of Rac1 with Cdh5-CreERT2 in adult 
liver endothelium (Cdh5+) does not prevent the vascular pathology induced by 
blocking Dll4 with REGN1035. e, The use of the indicated inhibitors in postnatal 
mouse retina angiogenesis assays for 48 h confirms that they do not prevent 
the increase in vascular expansion/density (isolectin B4 labeling) induced by 
anti-Dll4 antibody treatment (7.5 mg/kg). Note that 2 days of angiogenesis 
growth correspond to the vasculature formed above the red dashed line. Data are 
presented as mean values ± s.d. For statistics, see Source Data File 1. Scale bars, 
200 μm, except in a and d, 1 mm.
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(Comunidad Autónoma de Madrid and Universidad Autónoma de 
Madrid CAM-PROEX 177/14, CAM-PROEX 167/17, CAM-PROEX 164.8/20 
and PROEX 293.1/22 or Uppsala Committee permit number 5.8.18-
03029/2020 or the Institutional Animal Care and Use Committee Pro-
tocol IS00013945). The mouse colonies were maintained in racks with 
individual ventilation cages according to current national legislation. 
Mice had dust-free and pathogen-free bedding, and sufficient nest-
ing and environmental enrichment material for the development of 
species-specific behavior. All mice had ad libitum access to food and 
water in environmental conditions of 45–65% relative humidity, tem-
peratures of 21–24 °C, and a 12 h/12 h light/dark cycle. In addition, to 
preserve animal welfare, mouse health was monitored with an animal 
health surveillance program, which follows the Federation of European 
Laboratory Animal Science Associations (FELASA) recommendations 
for specific pathogen-free facilities.

We used mice with C57BL/6 or C57BL/6×129SV genetic back-
grounds. To generate mice for analysis, we intercrossed mice with an 
age range of 7–30 weeks. Mice used for experiments were 2–5 months 
old. We do not expect our data to be influenced by mouse sex.

To generate Notch4KO mice, we used guide RNAs Notch4_1 (agg-
gaccctcagagcccttg) and Notch4_2 (agggaatgatgccacgcata) to target 
mouse Notch4 in mouse eggs from the C57BL/6 genetic background. 
Injection mixture was composed by the described CRISPR RNA (crRNA; 
Integrated DNA Technologies) and trans-activating CRISPR RNA 
(tracrRNA; Integrated DNA Technologies, 1072533) at 0.305 μM and 
Cas9 nuclease (Alt-R S.p. HiFi Cas9 Nuclease V3, 100 μg, 1081060) at 
20 ng μl−1. Founders were screened by PCR with the primers below to 
confirm the genetic deletion.

Immunofluorescence on cryosections
Tissues were fixed for 2 h in 4% PFA in PBS at 4 °C. After three washes 
in PBS for 10 min each, organs were stored overnight in 30% sucrose 
(Sigma) in PBS. Organs were then embedded in OCT (Sakura) and frozen 
at −80 °C. Cryosections (35 μm) were cut on a cryostat (Leica), washed 
three times for 10 min each in PBS, and blocked and permeabilized in 
PBS containing 10% donkey serum (Millipore), 10% fetal bovine serum 
(FBS) and 1% Triton X-100. Primary antibodies were diluted in blocking/
permeabilization buffer and incubated overnight at 4 °C. This step was 
followed by three 10-min washes in PBS and incubation for 2 h with 
conjugated secondary antibodies (1:200, Jackson Laboratory) and 
4,6-diamidino-2-phenylindole (DAPI) in PBS at room temperature. 
After three washes in PBS, sections were mounted with Fluoromount-
G (SouthernBiotech). All antibodies used are listed in Supplementary 
Table 2. To detect Ki67 or c-Myc in the same section as ERG, we used 
rabbit anti-Ki67 or anti-c-Myc together with a Fab fragment Cy3 second-
ary antibody, which is compatible with the later use of rabbit anti-ERG 
conjugated to Alexa Fluor 647.

Vibratome section immunofluorescence
Tissues were fixed for 2 h in 4% PFA in PBS and washed as above. Organs 
were then embedded in 6% agarose low-melting gel (Invitrogen), and 
organ sections (100 μm) were cut on a vibratome. Sections were per-
meabilized for 1 h in PBS containing 1% Triton X-100 and 0.5% Tween 20. 
Sections were then blocked for 1 h in a PBS solution containing 1% Triton 
X-100, 10% donkey serum and 10% FBS. Primary antibodies were diluted 
in blocking buffer and incubated with sections overnight at 4 °C. This 
step was followed by six washes with 1% Triton X-100 in PBS for 15 min and 
incubation for 2 h with conjugated secondary antibodies (1:200, Jackson 
Laboratory) and DAPI in PBS at room temperature. After three 15-min 
washes in PBS, sections were mounted with Fluoromount-G (South-
ernBiotech). All antibodies used are listed in Supplementary Table 2.

Whole-mount immunofluorescence of retinas
For postnatal mouse retina immunostaining, eyes were collected 
and fixed in 4% PFA in PBS for 20 min at room temperature. After 

microdissection, retinas were fixed in 4% PFA for an additional 45 min, 
followed by two PBS washes of 10 min each. Retinas were blocked and 
permeabilized with PBTS buffer (0.3% Triton X-100, 3% FBS and 3% 
donkey serum) for 1 h. Samples were then incubated overnight at 4 °C 
in biotinylated isolectin B4 (diluted 1:50; Vector Laboratories, B-1205) 
and primary antibodies (Supplementary Table 2) diluted in PBTS buffer. 
After five washes of 20 min each in PBTS buffer diluted 1:2, samples were 
incubated for 2 h at room temperature with Alexa-conjugated second-
ary antibodies (Thermo Fisher). After three washes of 30 min each in 
PBTS buffer (diluted 1:2), and two washes of 10 min each in PBS, retinas 
were mounted with Fluoromount-G (SouthernBiotech).

Immunofluorescence on paraffin sections
The N1ICD epitope and the Jag1 ligand were detected with the tyra-
mide signal amplification (TSA) kit (NEL774) procedure in paraffin 
sections after antigen retrieval. In brief, sections were dewaxed and 
rehydrated, followed by antigen retrieval in sub-boiling sodium citrate 
buffer (10 mM, pH 6.0) for 30 min. The slides were cooled down to room 
temperature for 30 min, followed by incubation for 30 min in 3% H2O2 
in methanol to quench endogenous peroxidase activity. Next, slides 
were rinsed in double-distilled H2O and washed three times for 5 min 
each in PBS, followed by blocking for 1 h in PBS containing 3% BSA, 
200 mM MgCl2, 0.3% Tween 20 and 5% donkey serum. Sections were 
then incubated with primary antibody in the same solution overnight 
at 4 °C. After washes, slides were incubated for 2 h with anti-rabbit-
HRP secondary antibody at room temperature, and, after washing, the 
signal was amplified using the TSA fluorescein kit (NEL774). Sections 
were mounted with Fluoromount-G (SouthernBiotech). All antibodies 
used are listed in Supplementary Table 2.

In vivo EdU labeling and EC proliferation detection
To detect EC proliferation in adult livers, 20 μg per g body weight EdU 
(Invitrogen, A10044) was injected intraperitoneally into adult mice 
5 h before dissection. Livers were isolated for cryosection analysis. 
EdU signals were detected with the Click-iT EdU Alexa Fluor 647 or 
488 Imaging Kit (Invitrogen, C10340 or C10337). In brief, after all other 
primary and secondary antibody incubations, samples were washed 
according to the immunofluorescence staining procedure and then 
incubated with Click-iT EdU reaction cocktail for 40 min, followed by 
DAPI counterstaining.

Image acquisition and analysis
Immunostained organ sections were imaged at high resolution with a 
Leica SP5, SP8 or SP8 Navigator confocal microscope fitted with a ×10, 
×20 or ×40 objective for confocal scanning. Individual fields or tiles of 
large areas were acquired from cryosections, vibratome or paraffin 
sections. Large Z-volumes of the vibratome samples were imaged for 
3D representation. All images shown are representative of the results 
obtained for each group and experiment. Animals were dissected and 
processed under exactly the same conditions. Comparisons of pheno-
types or signal intensity were made with pictures obtained using the 
same laser excitation and confocal scanner detection settings. Fiji/
ImageJ was used to threshold, select and quantify objects in confocal 
micrographs. Both manual and automatic ImageJ public plug-ins and 
custom Fiji macros were used for quantification.

Latex perfusion and CUBIC clearing
Mice were euthanized in a CO2 chamber. The abdominal cavity was 
opened, and the liver portal vein was exposed. With the help of a dis-
section microscope, latex (Injection Medium, Latex, Red, Laboratory 
Grade, Carolina, 868703) was injected in the portal vein with a 40G 
needle as previously described59. Perfusion was stopped as soon as 
latex was visually detectable in the liver surface vessels. Liver dissec-
tion was performed only 15 min after the perfusion to ensure latex 
solidification. The liver was then washed in PBS and put in PFA 4% in 
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PBS at 4 °C overnight. After, three PBS washes for 15 min each were 
done at room temperature. To clear the organ, livers were incubated 
at 37 °C in CUBIC1 (ref. 60) solution (25 wt% urea, 25 wt% N′-Tetrakis(2-
hydroxypropyl)ethylenediamine, 15 wt% Triton X-100) for a total 
4 days, with the solution being exchanged every day. After clearing, 
liver images were captured with an Olympus camera connected to 
a Leica dissection scope with retroillumination. A magnification of 
×0.8 was used.

Western blot analysis
For the analysis of protein expression, livers were transferred to a 
reagent tube and frozen in liquid nitrogen. On the day of immunob-
lotting, the tissue was lysed with lysis buffer (Tris-HCl pH 8, 20 mM, 
EDTA 1 mM, DTT 1 mM, Triton X-100 1% and NaCl 150 mM, containing 
protease inhibitors (Sigma, P-8340), phosphatase inhibitors (Cal-
biochem, 524629) and orthovanadate-Na 1 mM) and homogenized 
with a cylindrical glass pestle. Tissue and cell debris were removed 
by centrifugation, and the supernatant was diluted in loading buffer 
and analyzed by SDS–PAGE and immunoblotting. Membranes were 
blocked with BSA and incubated with the primary antibodies listed in 
Supplementary Table 2.

EC isolation for transcriptomic and proteomic analysis
The following methods were used to isolate ECs for bulk RNA-seq, 
and proteomics analysis. At day 14 after the first tamoxifen injection, 
heart, lungs, liver and brain were dissected, minced and digested with 
2.5 mg ml−1 collagenase type I (Thermo Fisher), 2.5 mg ml−1 dispase II 
(Thermo Fisher) and 50 ng ml−1 DNase I (Roche) at 37 °C for 30 min. 
Cells were passed through a 70-μm filter. Erythroid cells were removed 
by incubation with blood lysis buffer (0.15 M NH4Cl, 0.01 M KHCO3 and 
0.01 M EDTA in distilled water) for 10 min on ice. Cell suspensions were 
blocked in blocking buffer (DPBS containing no Ca2+ or Mg2+ and sup-
plemented with 3% dialyzed FBS; Thermo Fisher). For EC analysis, cells 
were incubated at 4 °C for 30 min with APC-conjugated rat anti-mouse 
CD31 (1:200; BD Biosciences, 551262). DAPI (5 mg ml−1) was added to the 
cells immediately before fluorescence-activated cell sorting (FACS), 
which was performed with FACSAria (BD Biosciences) or Synergy 4L cell 
sorters. For bulk RNA-seq experiments, approximately 10,000–20,000 
cells for each group of DAPI−APC-CD31+ ECs (for Dll4 loss of function 
and control) and DAPI−APC-CD31+/MbTomato+ ECs (for Rbpj loss of 
function and control) were sorted directly to RLT buffer (RNeasy Micro 
Kit, Qiagen). RNA was extracted with the RNeasy Micro Kit and stored at 
−80 °C. For proteomic analysis, approximately 3 × 106 DAPI−APC-CD31+ 
ECs per group were sorted directly to blocking buffer. Cells were spun 
down for 10 min at 350 × g, and the pellet was stored at −80 °C.

To isolate ECs for scRNA-seq experiments, 1.5 mg of tamoxifen 
was injected on 4 consecutive days. At day 14 after the first tamox-
ifen injection, livers were dissected, minced and digested for 30 min 
with prewarmed (37 °C) dissociation buffer (2.5 mg ml−1 collagenase 
I (Thermo Fisher, 17100017), 2.5 mg ml−1 dispase II (Thermo Fisher, 
17105041), 1 μl ml−1 DNase in PBS containing Ca2+ and Mg2+ (Gibco)). 
The digestion tube was agitated every 3–5 min in a water bath. At the 
end of the 30-min incubation, sample tubes were filled up to 15 ml with 
sorting buffer (PBS containing no Ca2+ or Mg2+ and supplemented with 
10% FBS (Sigma, F7524)) and centrifuged (450 × g, 5 min, 4 °C). The 
supernatant was aspirated, and cell pellets were resuspended in 2 ml 
of 1x Red Blood Cell (RBC) Lysis Buffer (BioLegend, 420301) and incu-
bated for 5 min on ice. We added 6 ml of sorting buffer to each sample, 
and samples were then passed through a 70-μm filter. Live cells were 
counted in a Neubauer chamber using trypan blue exclusion. Cells from 
each condition (4 × 106 per condition) were collected in separate tubes, 
and cells were incubated for 30 min with horizontal rotation in 300 μl 
of antibody incubation buffer (PBS + 1% BSA) containing 1 μl of CD31-
APC, 1 μl of CD45-APC-Cy7, and 1 μl of hashtag oligo (HTO) conjugated 
antibodies (BioLegend). HTOs were used to label and distinguish the 

different samples when loaded on the same 10x Genomics port, thus 
also guaranteeing the absence of batch effects. After antibody incuba-
tion, samples were transferred to 15-ml Falcon tubes, 10 ml of sorting 
buffer were added, and samples were centrifuged (450 × g, 5 min, 4 °C). 
The supernatant was aspirated, pellets were resuspended in 1.5 ml of 
sorting buffer and transferred to Eppendorf tubes, and the resulting 
suspensions were centrifuged (450 × g, 5 min, 4 °C). The resulting 
pellets were resuspended in 300 μl of sorting buffer containing DAPI. 
Cells were sorted with a FACSAria Cell Sorter (BD Biosciences), and 
CD31+CD45−MbTomato+ cells were sorted. BD FACSDiva v8.0.1 and 
FlowJo v10 were used for FACS data collection and analysis.

Next-generation sequencing sample and library preparation
Next-generation sequencing experiments were performed in the 
Genomics Unit at Centro Nacional de Investigaciones Cardiovascu-
lares (CNIC).

For bulk RNA-seq, control and Dll4iDEC EC samples, 1 ng of total 
RNA was used to amplify the cDNA using the SMART-Seq v4 Ultra Low 
Input RNA Kit (Clontech-Takara) following manufacturer’s instruc-
tions. Then, 1 ng of amplified cDNA was used to generate barcoded 
libraries using the Nextera XT DNA Library Preparation Kit (Illumina). 
For control and RbpjiDEC EC samples, between 400 pg and 3,000 pg of 
total RNA were used to generate barcoded RNA-seq libraries using the 
NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina (New 
England Biolabs) according to manufacturer’s instructions. For control 
and anti-Dll4 antibody-treated ECs, libraries were generated using the 
Ovation Single Cell RNA-Seq System (NuGEN) following manufacturer’s 
instructions. All libraries were sequenced on a HiSeq 2500 (Illumina).

For scRNA-seq experiments, single cells were encapsulated into 
emulsion droplets using the Chromium Controller (10x Genomics). 
scRNA-seq libraries were prepared according to manufacturer’s 
instructions. The aim for target cell recovery for each port was in gen-
eral 10,000 cells, with a target cell recovery of 2,000–2,500 cells per 
experimental condition labeled with a given hashtag antibody. Gen-
erated libraries were sequenced on a HiSeq 4000 or NextSeq 2000 
(Illumina).

Transcriptomic data analysis
Transcriptomic data were analyzed by the Bioinformatics Unit at CNIC.

For bulk RNA-seq, the number of reads per sample was between 
12 million and 42 million. Reads were processed with a pipeline that 
assessed read quality using FastQC (Babraham Institute, http://
www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed 
sequencing reads using cutadapt61, eliminating Illumina and SMARTer 
adaptor remains and discarding reads with <30 base pairs (bp). More 
than 93% of reads were kept for all samples. The resulting reads 
were mapped against the mouse transcriptomes GRCm38.76 and 
GRCm38.91, and gene expression levels were estimated with RSEM62. 
The percentage of aligned reads was above 83% for most samples. 
Expression count matrices were then processed with an analysis pipe-
line that used Bioconductor package limma63 for normalization (using 
the trimmed mean of M values (TMM) method) and differential expres-
sion testing, taking into account only those genes expressed with at 
least 1 count per million (CPM) in at least two samples (the number 
of samples for the condition with the least replicates), and using a 
random variable to define blocks of samples obtained from the same 
animal. Changes in gene expression were considered significant if 
associated with a Benjamini and Hochberg–adjusted P value < 0.05. 
A complementary GSEA64 was performed for each contrast, using 
the whole collection of genes detected as expressed (12,872 genes) to 
identify gene sets that had a tendency to be more expressed in either 
of the conditions being compared. We retrieved gene sets representing 
pathways or functional categories from the Hallmark, Kyoto Ency-
clopedia of Genes and Genomes (KEGG), Reactome, and BioCarta 
databases, and Gene Ontology (GO) collections from the Biological 
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Process, Molecular Function and Cellular Component ontologies from 
MSigDB65. Enriched gene sets with a false discovery rate (FDR) < 0.05% 
were considered of interest. Data were analyzed with Python v2.7, using 
the Seaborn (https://seaborn.pydata.org) and Pandas (https://pandas.
pydata.org) libraries.

The following pipeline was followed for scRNA-seq data process-
ing and in silico EC selection. For alignment and quantification of 
gene expression, the reference transcriptome was built using mouse 
genome GRCm38 and Ensembl gene build v98 (https://sep2019.archive.
ensembl.org). The phiYFP-sv40pA, MbTomato-2A-Cre-WPRE-sv40pa or 
CreERT2 transgene sequences expressed in the samples were added to 
the reference. Gene metadata were obtained from the corresponding 
Ensembl BioMart archive. Reads from hashtags and transcripts were 
processed, aligned and quantified using the Cell Ranger v4.0.0 pipe-
line. Single-cell analysis was based on Scater66 and Seurat67 packages. 
Low-quality cells were filtered out using the following criteria: total 
counts, >1,500 and <40,000; genes detected, >600; mitochondrial 
transcripts content, <25%; total counts/median, >0.1; hashtag counts, 
>100; hemoglobin transcripts, <0.1%; and percentage of counts in the 
top 50 genes, <65%. Cells were demultiplexed using the sample hashtag 
antibody signals (BioLegend). Counts were log-normalized and scaled, 
followed by principal component analysis (PCA) and clustering using 
the shared nearest-neighbors algorithm and Louvain clustering (set-
tings as defaults except for the 1,000 most variable genes, 10 principal 
components, and a resolution of 0.5). Clusters and cells were classified 
based on the SingleR method68 using Blueprint ENCODE and the Human 
Primary Cell Atlas cell-type profile collection. This identification was 
used to select ECs for the analysis and remove minor contaminants (T 
cells, B cells and monocytes). Hashtag-based doublets were removed, 
and only ECs were reclustered using the same procedure (with 2,000 
variable genes, 7 PCs, a resolution of 0.3, and a random seed for uni-
form manifold approximation and projection (UMAP) = 123456) to 
get a final clustering that was later manually refined based on marker 
expression. Following cluster identification with the starting dataset, 
the remaining liver EC datasets were mapped using the FindTransfer-
Anchors function from the Seurat R package using 30 PCA dimensions 
with the default settings.

The following pipeline was followed for liver non-EC scRNA-seq. 
Cells were demultiplexed by applying the cellranger multi pipeline. 
The following quality-control steps were performed to minimize low-
quality cells and improve posterior normalization and analysis: (1) 
a minimum of normalized counts per cell of 2,000 and a maximum 
of 30,000; (2) a minimum gene detection filter of 500 genes and a 
maximum of 6,000; (3) a maximum mitochondria content of 5%; (4) 
a maximum ribosomal content of 35%; (5) a maximum hemoglobin 
content of 1%; and (6) only single cells were selected, and doublets were 
filtered out in the cellranger multi demultiplexing step. Counts were 
log-normalized and scaled, followed by PCA and clustering using the 
shared nearest-neighbors algorithm and Louvain clustering (settings 
as defaults except for the 2,000 most variable genes, 30 principal 
components and a resolution of 0.8). Clusters and cells were classi-
fied based on the SingleR method using Blueprint ENCODE, Human 
Primary Cell Atlas, and mouse RNA-seq datasets available in the celldex 
package, as well as a recent liver single-cell dataset69, in order to classify 
each cluster to a different cell type. Final clustering was later manually 
refined based on marker expression.

Liver EC proteomics
Protein extraction from cell samples was carried out in the presence 
of SDS as described70. Protein concentration was determined by the 
RC DC Protein Assay (Bio-Rad Laboratories). Samples (100 μg) were 
subjected to overnight tryptic digestion using filter-aided sample 
preparation (FASP) technology (Expedeon)71. The resulting peptides 
were desalted on Oasis HLB C18 extraction cartridges (Waters Corpora-
tion) and dried down. The cleaned-up peptide samples were subjected 

to stable isotope labeling using isobaric tags for relative and absolute 
quantitation (iTRAQ 8-plex, AB Sciex) following the manufacturer’s 
instructions. The differentially tagged samples were then pooled and 
desalted on Oasis HLB C18 cartridges. A 100-μg aliquot of dried, labeled 
peptides was taken up in 0.1% trifluoroacetic acid and separated into 
five fractions by high pH reversed-phase peptide fractionation72. The 
bound peptides were eluted gradually with 12.5%, 15%, 17.5%, 20% and 
50% acetonitrile, and the fractions obtained were vacuum-dried and 
stored at −20 °C for later use. The labeled peptide samples were taken 
up in 0.1% formic acid and analyzed on an EASY-nLC 1000 liquid chro-
matograph (Thermo Fisher Scientific) coupled to a Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific). The peptide samples were 
loaded onto a C18 reversed-phase nano-precolumn (Acclaim PepMap 
100; 75-μm internal diameter, 3-μm particle size and 2-cm length; 
Thermo Fisher Scientific) and separated on an analytical C18 nano-col-
umn (EASY-Spray column PepMap RSLC C18; 75-μm internal diameter, 
3-μm particle size and 50-cm length; Thermo Fisher Scientific) using a 
linear gradient: 8–27% B for 240 min, 31–100% B for 2 min, 100% B for 
7 min, 100–2% B for 2 min, and 2% B for 30 min (where A is 0.1% formic 
acid in high-performance liquid chromatography (HPLC)-grade water, 
and B is 90% acetonitrile, 0.1% formic acid in HPLC-grade water). Full 
MS spectra were acquired over the 400–1,500 mass-to-charge (m/z) 
range with 120,000 resolution, 2 × 105 automatic gain control, and 
50-ms maximum injection time. Data-dependent tandem MS (MS/
MS) acquisition was performed at 5 × 104 automatic gain control and 
120-ms injection time, with a 2-Da isolation window and 30-s dynamic 
exclusion. Higher-energy collisional dissociation of peptides was 
induced with 31% normalized collision energy and analyzed at 35,000 
resolution in the Orbitrap. Protein identification was carried out using 
the SEQUEST HT algorithm integrated in Proteome Discoverer v2.1 
(Thermo Fisher Scientific). MS/MS scans were matched against a mouse 
protein database (UniProtKB release 2017-07) supplemented with pig 
trypsin and human keratin sequences. Parameters for database search-
ing were as follows: trypsin digestion with a maximum of two missed 
cleavage sites allowed, precursor mass tolerance of 800 ppm, and a 
fragment mass tolerance of 0.02 Da. Amino-terminal and Lys iTRAQ 
8-plex modifications were set as fixed modifications, whereas Met 
oxidation, Cys carbamidomethylation, and Cys methylthiolation were 
set as variable modifications. The identification results were analyzed 
with the probability ratio method73. An FDR for peptide identification 
was calculated based on searching against the corresponding inverted 
database using the refined method74,75 after precursor mass tolerance 
postfiltering at 20 ppm. Quantitative information was extracted from 
the intensity of iTRAQ reporter ions in the low-mass region of the MS/
MS spectra76. The comparative analysis of protein abundance changes 
relied on the weighted scan peptide–protein (WSPP) statistical model77 
by means of the SanXoT software package as described78. As input, 
WSPP uses a list of quantifications in the form of log2 ratios (each cell 
sample versus the mean of the three wild-type cell samples) with their 
statistical weights. From these, WSPP generates the standardized 
forms of the original variables by computing the quantitative values 
expressed in units of standard deviation around the means (Zq). For the 
study of coordinated protein alterations, we used the Systems Biology 
Triangle (SBT) algorithm, which estimates functional category aver-
ages (Zc) from protein values by performing the protein-to-category 
integration, as described76. The protein category database was built 
up using annotations from the GO database.

Statistical analysis and reproducibility
All bar graphs show mean ± s.d. Experiments were repeated with inde-
pendent animals. Comparisons between two groups of samples with 
a Gaussian distribution were by unpaired two-tailed Student’s t-test. 
Comparisons among more than two groups were made by one-way or 
two-way analysis of variance (ANOVA) followed by multiple compari-
son tests as indicated in the Source Data. All calculations were done in 
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Microsoft Excel, and final data points were analyzed and represented 
with GraphPad Prism. No randomization or blinding was used, and 
animals or tissues were selected for analysis based on their genotype, 
the detected Cre-dependent recombination frequency, and the quality 
of multiplex immunostaining. Sample sizes were chosen according to 
the observed statistical variation and published protocols.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
RNA-seq data can be viewed in the Gene Expression Omnibus (GEO) 
database under accession number GSE231613 (SuperSeries of 
GSE229793 and GSE231612). Instructions and code to reproduce all 
scRNA-seq results can be found at https://github.com/RuiBenedito/
Benedito_Lab. Proteomics data can be found in the Proteomics Identifi-
cations (PRIDE) database under accession number PXD041349. Unpro-
cessed original photographs of the data are available upon request. 
All other data supporting the findings in this study are included in the 
main article and associated files.
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Extended Data Fig. 1 | Dll4 deletion elicits different gene expression 
signatures among different organ vascular beds. a, Schematic representation 
to illustrate the method used to obtain ECs for bulk RNA-seq analysis. FACS plots 
show the ECs gating strategy. The detectors, dyes and fluorophores are indicated 
in the X and Y-axes. b, List of the most up- and downregulated genes from the list 
of differentially expressed genes (DEG, absolute number boxed in green) based 
on the Benjamini and Hochberg adjusted p-value < 0.05. c, Heatmap with the 
normalized enrichment score (NES) from significant gene set enrichment (GSEA) 

hallmark analysis (FDR qval< 0.05). d, List of upregulated genes in Dll4 mutant 
ECs within the top 3 enriched gene sets from GSEA hallmark analysis in heart.  
e, List of upregulated genes within the only enriched gene sets from GSEA 
Hallmark analysis in lung Dll4iDEC ECs compared to control ECs. f, List of 
upregulated genes within the top 3 enriched gene sets from GSEA hallmark 
analysis in Liver Dll4iDEC ECs compared to control ECs. g, List of upregulated genes 
within the top 3 enriched gene sets from GSEA Hallmark analysis in Brain Dll4iDEC 
ECs compared to control ECs. LogFC: Logarithmic Fold Change.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | No major genetic and vascular changes after blocking 
Dll4 signaling in quiescent vessels for 2 days. a, Anti-Dll4 treatment for 48 h 
starting at postnatal day 5, results in a strong increase in retina vascular density 
and angiogenesis. b, Experimental layout for the antibody-based blockade of 
Dll4 ligand function in adult mice. c-d, Confocal micrographs showing that 
anti-Dll4 blockade for 2 days in adult mice significantly reduces Notch1 activity 
(cleaved Notch1Val1744), but not EC density (DAPI+ Endomucin+) and EC 
proliferation (Ki67+DAPI+ Endomucin+ cells) as depicted in chart D from Fig. 2. 
e, List of the few differential expressed genes (DEG) 2 days after Dll4 blockade in 
liver endothelium. f, Heatmap with the normalized enrichment score (NES) from 
significantly deregulated GSEA hallmark pathways (FDR qval< 0.05).  
g, Heatmap representing logFC of every expressed gene in the indicated 
conditions versus control livers. h, Comparison of gene expression fold changes 
between anti-Dll4 for 2 days (short-term) and Dll4 deletion for 2 weeks (long-
term). The top20 DEG belonging to the indicated GSEA pathways are shown. i, 3D 
projection images from confocal scanning of thick vibratome sections show that 

the vascular malformations observed in Dll4iDEC livers are located in sinusoids 
connecting central veins (CV), but not in sinusoids located close to portal veins 
(PVs). j, Low magnification stereomicroscope images of livers from control and 
Dll4iDEC mice showing liver pathology and blood accumulation in the mutants.  
k, Hematoxylin and Eosin staining images of liver sections from control and 
Dll4iDEC mice show sinusoidal dilation in areas surrounding and connecting 
central veins (CVs). l, Confocal micrographs showing higher EC density (CD31 or 
EMCN+) and abnormal or enlarged sinusoids around central veins (delimited by 
yellow dashed lines). m, Immunostaining for CD45 shows strong accumulation 
of blood cells in the enlarged sinusoids connecting central veins. n, Violin plots 
showing expression of all canonical Notch pathway genes and downstream 
targets (Hes1, Hey1, Hey2) in the indicated EC clusters. o, Dot plot showing the 
frequency and average expression of all canonical Notch pathway genes and its 
downstream targets. p, Heatmap of arterial markers expression in the indicated 
datasets. Data are presented as mean values +/− SD. For statistics see Source Data 
File 1. Scale bars, 100 μm, except in j and k, 500 μm.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The non-pathologic and arrested endothelial status 
of Rbpj mutant ECs is linked to general replicative or cellular stress genetic 
pathways. a, Rbpj and Notch1 genes were efficiently deleted in liver quiescent 
ECs as shown by their relative RNA-seq counts per million. Note for Rbpj gene 
only deleted exons reads were quantified. b, Representative Hematoxylin and 
Eosin staining images of liver sections showing strong liver sinusoidal dilation 
around central veins (CV) and pathology in Dll4iDEC but not in Notch1iDEC or RbpjiDEC 
mutants. c,d, Confocal micrographs and associated quantifications showing a 
reduction in the caliber of CD34+ distal portal veins in cryosections.  
e, Latex perfusion casts of portal veins (PV, arterial) showing reduced caliber and 
branching complexity of the distal branches in the mutants. f, Stereomicroscope 

pictures of livers from animals with the indicated genotypes revealing that 
only Dll4 deletion induces significant pathology. g, Confocal micrographs of 
cryosections showing the abnormal vasculature after Dll4, but not Rbpj, deletion 
in ECs. Vessels labelled with CD31 and EMCN (membrane signal, higher in CVs 
sinusoids) and ERG (EC nuclei). h, Stereomicroscope images of Anti-Notch1 
treated livers show no vascular pathology. i, Confocal micrographs of liver 
sections showing that binucleated Dll4iDEC and RbpjiDEC ECs are p21+. Yellow 
arrowheads indicate p21+ binucleated EC events. j, List of the top 20 upregulated 
genes in Rbpj mutant ECs within the indicated gene sets from the GSEA Hallmark 
analysis. Data are presented as mean values +/− SD. For statistics see Source Data 
File 1. Scale bar, 250μm in all except e, f and h, 1 mm.
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Extended Data Fig. 4 | Single Cell RNA-seq analysis of Dll4 and Notch 
mutants. a, FACS plots to show the EC gating strategy. The detectors, dyes 
and fluorophores are indicated in the X and Y-axes. b, Feature plots of cluster 
specific or cluster enriched genes. Some clusters are also characterized by the 
lack of expression of a given gene. c, Violin plots of different cluster markers 
expression in indicated mutants. d, Maf transcription factor gene signature 

is downregulated in Dll4iDEC mutants. e, Hallmark GSEA analysis of C4 cluster 
showing that Myc targets and Oxidative Phosphorylation related genes are the 
most upregulated pathways. NES. Normalized Enrichment Score. f, Confocal 
micrographs of liver sections showing presence of Esm1+ ECs exclusively in 
Dll4iDEC mutants. Data are presented as mean values +/− SD. For statistics see 
Source Data File 1. Scale bar 100μm.
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Extended Data Fig. 5 | Deletion of the receptors Notch1/2/4 in liver ECs does 
not phenocopy Dll4 deletion. a, Violin plot showing how Notch4 expression 
increases after deletion of Notch1 in liver ECs, which could compensate for 
its function. b, Confocal micrographs of liver sections showing abnormal 
vasculature (CD31+) around central veins (CV) in Dll4iDEC livers, but not in 
Notch1/2/4iDEC. Yellow dashed rectangle within left panel is to highlight the 
location of high-magnification images shown in right panel. c, Stereomicroscope 
images of control and mutant livers 4 weeks after tamoxifen induction of genetic 
deletion. d, e, Confocal micrographs and charts showing increased Ki67 but 
not productive proliferation or increased ERG+ ECs in Notch1/2/4iDEC mutants. 
f, Confocal micrograph and chart showing p21 in ERG+ ECs in Notch1/2/4iDEC 

mutants. g, When administered in postnatal day 5 pups, until day 7, DBZ has 
similar effects to anti-Dll4 on retina angiogenesis. h, Experimental layout for the 
Dll4 deletion induction and scRNA-seq analysis of Dll4iDEC livers. i, UMAPs and 
barplots plot show that full loss of Dll4 signaling for 4 days leads to the loss of the 
arterial program (C1a) and activation and proliferation of the cells (C3 and C5), 
but not fully differentiated tip cells (C4). j, Violin plots showing that targeting 
Dll4 in quiescent vessels induces a fast entry in cell cycle but a relatively  
slow and progressive change in tip-cell related genes. Data are presented as  
mean values +/− SD. For statistics see Source Data File 1. Scale Bars 100 μm in all, 
except c, 1 mm.
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Extended Data Fig. 6 | scRNA-seq analysis of other liver cell types reveals 
increased immune cells in Dll4iDEC livers. a, Experimental layout for the 
inducible deletion of Dll4 in Cdh5-CreERT2+ ECs (for 2 weeks) and collection of 
CD31 negative cells (most hepatocytes were lost during centrifugation).  
b, Heatmap showing cluster specific gene expression and cell type 
identification. c, UMAPs showing the different cell types identified by scRNA-
seq from Control and Dll4iDEC livers. Barplot showing the absolute number of 
each cell type in the different samples. d, e, Violin and dot plot showing the 
expression of Notch ligands, receptors and their canonical target genes in the 
different cell types from control and Dll4iDEC livers. f, Heatmap for the identified 

genes in the analyzed single cells revealing few differentially expressed genes 
in the limited number of cells analyzed. g, Confocal images of liver sections 
showing increased number of CD68+ cells in Dll4iDEC livers, particularly in 
the enlarged and proliferative central veins sinusoids. h, Quantification of 
different liver blood cell types by FACS. i, Blood (DAPI+ EMCN-) accumulation 
throughout the enlarged and abnormal central veins sinusoids (EMCN+).  
j, GSEA Hallmark analysis performed for every single cell type show positive or 
negative enrichment in different hallmarks after endothelial Dll4 deletion for 2 
weeks and subsequent organ pathology. Data are presented as mean values +/− 
SD. For statistics see Source Data File 1. Scale bar, 200 μm.
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Extended Data Fig. 7 | Expression of N1ICD in Dll4iDEC mutant ECs prevents 
their proliferation and organ pathology. a, Stereomicroscope pictures 
showing the different degrees of liver pathology when Dll4 is deleted, or after 
reconstituting transcriptional Notch activity driven by expression of the Notch 
intracellular domain in 12% or 36% of the liver ECs. This transgenic allele is much 
more difficult to recombine than the Dll4 allele and is mosaicly expressed.  
b, Confocal micrographs showing decreased endothelial proliferation (ERG+/

Ki67+ in Dll4 mutant cells after expressing the Notch1 intracellular domain 
(N1ICD, nuclei EGFP+ ERG+ c-e, Charts showing the quantitative analysis of 
images like shown in b. Note that Ki67 labelling frequency decreases in animals 
expressing the N1ICDi allele (EGFP+ cells), particularly in the cells with highest 
expression of EGFP (highest expression of N1ICD). Data are presented as mean 
values +/− SD. For statistics see Source Data File 1. Scale bars, 1 mm in a and 
200 μm in b.
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Extended Data Fig. 8 | Deletion of Myc in Dll4iDEC mutants blocks EC 
proliferation but not vessel enlargement and malfunction. a, scRNA-seq 
violin plots show deletion of Dll4 and Myc genes in the indicated samples. 
b, Confocal micrographs of liver sections showing Dll4 absence and Myc 
upregulation in Dll4iDEC livers and absence of Dll4 and Myc in the double Dll4/
MyciDEC mutants. c, Confocal micrographs of liver sections showing absence of 
EC proliferation (Ki67+ERG+) and endothelial Myc expression in the double Dll4/
MyciDEC mutants. d, Micrographs showing increased vascular (CD31+ EMCN) 
density and abnormalization in Dll4/MyciDEC mutants despite similar number of 

ECs (ERG+) to control livers. e, scRNA-seq Gene Ontology (GO) analysis of Dll4iDEC 
and Dll4/MyciDEC liver ECs showing that the loss of Myc strongly downregulates 
some of the biological processes upregulated in Dll4iDEC cells, but not processes 
related with inflammation. f, Confocal micrographs from livers showing a loss of 
EC proliferation (Ki67+/ERG+) but not neighbouring hepatocytes proliferation 
(Ki67+/ERG-/DAPI+) after combined loss of Myc and Dll4 for only 5 days. Data are 
presented as mean values +/− SD. For statistics see Source Data File 1. Scale bars, 
100 μm.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Anti-VEGFA in Dll4iDEC mutants reverses EC 
proliferation, liver pathology and vessel enlargment but not most of  
the Dll4KO genetic programme. a, scRNA-seq violin plot showing Vegfa 
upregulation in the Dll4iDEC specific endothelial tip cell cluster (C4) and Kdr/Vegfr2  
expression. b, Confocal micrographs of liver sections showing the  
absence of phosphorylation of the VEGFA target ERK after VEGFA blockade.  
c, scRNA-seq violin plot showing Dll4 deletion in the indicated samples.  
d, Confocal micrographs of liver sections showing the loss of the capillary marker 
Msr1 in Dll4iDEC+ anti-VEGFA samples as observed in Dll4iDEC liver ECs. e, Violin 
plots for the arterial markers Msr1, Ltbp4 and Efnb2 showing that anti-VEGFA does 
not rescue the arterial identity of cells after Dll4 deletion. f, Dot plot of cell-cycle 
genes showing that ECs are mostly quiescent in Dll4iDEC+ anti-VEGFA samples.  
g, Violin plots showing single cell expression of Klf2 and Klf4 genes.  

h, scRNA-seq Gene Ontology (GO) analysis showing that the loss of Myc more 
strongly downregulates the genes and biological processes uppregulated 
in Dll4iDEC mutants than the blockade of VEGFA. i, Dot plot of Cellular 
Macromolecule Biosynthetic process and RNA processing GO gene sets showing 
that they are still active in Dll4iDEC+ anti-VEGFA samples. j, SL327 treatment for 
48 h in pups from postnatal day 5 to 7 does not prevent the increase in vascular 
density and angiogenesis observed after anti-Dll4. k, Stereomicroscope images 
of livers showing vascular and organ pathology in all conditions. l, Semi-
quantitative DNA PCR showing Rac1 deletion efficiency in the sorted ECs (CD31+ 
YFP+ or CD31+YFP-) of Rac1iDEC mutants. One of the three PCR gel pictures (see 
Source Data File 3) is shown on the right. Data are presented as mean values +/− 
SD. For statistics see Source Data File 1. Scale bars, 100 μm in all except k, 1 mm.
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Extended Data Fig. 10 | Incongruence between cell states, vascular 
morphology and pathophysiology. Illustration showing the main endothelial 
cell states and vascular phenotypes of the indicated livers. Targeting of the 
ligand Dll4 triggers incomplete loss of Notch signaling which results in the 
loss of arterial markers, reduced PV caliber and a strong Myc-driven metabolic 
activation associated with a well-defined cluster of proliferating and tip cells 
located in the sinusoids around the central veins. Dll4 mutant ECs have very high 
ribosome biogenesis, protein synthesis and oxidative phosphorylation favouring 
cell growth and metabolism. This genetic activation correlates with a significant 
increase in the number of proliferating and sprouting venous ECs, vascular 
enlargement and subsequent organ pathology associated to the abnormal blood 
flow in CV sinusoids. The loss of Notch receptors or Rbpj leads to complete 
loss of Notch signaling and also the loss of the arterial transcriptional program 
and reduced PV caliber, but in this case most liver sinusoidal ECs undergo an 

hypermitogenic cell-cycle arrest and display senescence features. In contrast 
to Dll4 mutant ECs, Notch or Rbpj mutant ECs do not effectively proliferate or 
sprout and there is no significant vascular and organ pathology in mutant livers. 
Loss of all other Notch ligands leads to a mild increase in Notch signaling, without 
any associated vascular pathophysiology. Loss of Myc prevents most of the 
Dll4 mutant transcriptional program activation and cellular states. However, 
even in the absence of proliferating, sprouting and activated cells, Dll4/MyciDEC 
mutant livers still have abnormal and expanded CV sinusoids and significant 
organ pathology. Targeting VEGF only partially reduces the Dll4 mutant genetic 
programs, but it is enough to prevent most of the activated and tip cell states, 
being ECs in a quiescent state. Anti-VEGFA also induces the very significant loss 
of ECs, which overall prevents the vascular enlargement and associated organ 
pathology. The effect of anti-VEGFA is broader and is not matched by the use of 
inhibitors targeting the ERK, Rac1 and Pi3k/mTor signaling.
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Anti-GFP/YFP/Cerulean  1:200 (IF) Acris Antibodies Cat# R1091P 
Anti-DsRed 1:400 (IF) Clontech Cat# 632496 
Anti-HA -647 1:200 (IF) Cell Signaling Technology Cat# 3444S 
Anti-ERG 1:400 (IF) Abcam Cat# ab110639 
Anti-ERG-AF-647 1:200 (IF) Abcam Cat# ab196149 
Anti-Ki67  1:200 (IF) Thermo Fisher Cat# RM-9106-S0 
Anti-Ki67-e660  1:200 (IF) Thermo Fisher Cat# 50-5698-82 
Anti-Endomucin  1:200 (IF) Santa Cruz Biotechnology Cat# SC-53941 
Anti-CD31 1:200 (IF) BD Biosciences Cat# 553370 
Anti-CD31 1:200 (FC) BD Biosciences Cat# 740680 
Anti-p21 1:10  (IF) CNIO (now at Abcam)  Cat# HUGO291 
Anti-p21 1:100 (IF) Santa Cruz Biotechnology Cat# SC-397-G 
Anti-p42/44 (Total ERK) 1:1000 (WB) Cell Signaling Technology Cat# 9102 
Anti-p42/44-Phospho-ERK 1:100 (IF) Cell Signaling Technology Cat# 4370S 
 1 to 1000 (WB)   
Anti-Myc  1:200 (IF) Millipore  Cat# 06-340 
Anti-cleaved N1ICD  1:200 (IF) Cell Signaling Technology Cat# 4147 
Anti-Dll4 1:200 (IF) R&D system Cat# AF1389 
Anti-Jagged1 1: 100 (IF) Cell Signaling Technology Cat# 2620 
Anti-CD34-FITC 1:200 (IF) BD Biosciences Cat# 560238 
Anti-CD68 1:200 (IF) Bio-Rad MCA1957  
Anti-CD45 1:200 (IF) BD Biosciences Cat# 550539 
Anti-CD45 1:200 (FC) TonboBio Cat# 35-0454-U100 
Anti-Caspase 3 1:50 (IF) Cell Signaling Technology Cat# 9661S 
Anti-Esm1 1:200 (IF) R&D system Cat# AF1999 
Anti-Msr1 1:200 (IF) R&D system Cat# AF1797-SP 
Anti-CD11b 1:200 (FC) BD Biosciences Cat# 561690 
Anti-Ly6C 1:200 (FC) BD Biosciences Cat# 561085 
Anti-Ly6G 1:200 (FC) Biolegend Cat# 123113 
Donkey Anti-Goat 488 1:400 (IF) Thermo Fisher Cat # A-11055 
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Donkey Anti-Goat 633 1:400 (IF) Thermo Fisher Cat # A-21082 
Donkey Anti-Rabbit  594 1:400 (IF) Jackson Immunoresearch Cat # 711-587-003 
Donkey Anti-Rabbit  488 1:400 (IF) Jackson Immunoresearch Cat # 711-547-003 
Donkey Anti-Rabbit  647 1:400 (IF) Jackson Immunoresearch Cat # 711-607-003 
Donkey Anti-Rat  488 1:400 (IF) Thermo Fisher Cat #  A-21208 
Donkey Anti-Rat  647 1:400 (IF) Abcam Cat # ab150155 
 

Validation All antibodies used are commercially available and have been pre-validated by the companies and us. They all gave 
immunostaining or immunoblotting results according to what was expected from their previously published tissue expression 
pattern, subcellular localization or the predicted immunoblot target protein size.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals We used Mus musculus with C57BL6 or C57BL6×129SV genetic backgrounds. To generate male and female mice for analysis, we 
intercrossed mice with an age range between 7 and 30 weeks. Mice used for experiments had between 2 and 5 months. We do not 
expect our data to be influenced by mouse sex or age. 
All mouse husbandry and experimentation was conducted using protocols approved by local animal ethics committees and 
authorities (Comunidad Autónoma de Madrid and Universidad Autónoma de Madrid CAM-PROEX 177/14, CAM-PROEX 167/17, CAM-
PROEX 164.8/20 and PROEX 293.1/22 or Uppsala Committee permit number 5.8.18-03029/2020 or the Institutional Animal Care and 
Use Committee Protocol IS00013945). The mouse colonies (Mus musculus) were maintained in racks with individual ventilation cages 
according to current national legislation. Mice have dust/pathogen-free bedding, and sufficient nesting and environmental 
enrichment material for the development of species-specific behavior. All mice have ‘ad libitum’ access to food and water in 
environmental conditions of 45–65% relative humidity, temperatures of 21–24 °C, and a 12 h/12 h light/dark cycle. In addition, and to 
preserve animal welfare, mouse health is monitored with an animal health surveillance program, which follows FELASA 
recommendations for specific pathogen-free facilities.Details about the transgenic or gene-targeted allleles used are provided in the 
Methods section, under Mice.

Wild animals No wild animals were used in the study.

Reporting on sex We do not expect our data to be influenced by animal age or sex.  

Field-collected samples No field collected samples were used in the study.

Ethics oversight All mouse husbandry and experimentation was conducted using protocols approved by local animal ethics committees and 
authorities (Comunidad Autónoma de Madrid and Universidad Autónoma de Madrid CAM-PROEX 177/14, CAM-PROEX 167/17, CAM-
PROEX 164.8/20 and PROEX 293.1/22 or Uppsala Committee permit number 5.8.18-03029/2020 or the Institutional Animal Care and 
Use Committee Protocol IS00013945).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation We used FACS plots to obtain numeric data or to isolate endothelial cells from mouse tissues. We included these FACS plots 
and the gating strategy used in Extended Data Figures. 
 The following methods were used to isolate ECs for bulk RNA-seq, and proteomics analysis. At day 14 after the first 
tamoxifen injection, heart, lungs, liver, and brain were dissected, minced and digested with 2.5 mg/ml collagenase type I 
(Thermofisher), 2.5 mg/ml dispase II (Thermofisher), and 50 ng/ml DNAseI (Roche) at 37°C for 30 min. Cells were passed 
through a 70 μm filter. Erythroid cells were removed by incubation with blood lysis buffer (0.15 M NH4Cl, 0.01M KHCO3, and 
0.01 M EDTA in distilled water) for 10 min on ice. Cell suspensions were blocked in blocking buffer (DPBS containing no Ca2+ 
or Mg2+ and supplemented with 3% dialyzed FBS; Thermo Fisher). For EC analysis, cells were incubated at 4°C for 30 min 
with APC-conjugated rat anti-mouse CD31 (1:200, BD Bioscience, 551262). DAPI (5 mg/ml) was added to the cells 
immediately before FACS, which was performed with FACS Aria (BD Biosciences) or Synergy4L cell sorters. For bulk RNA-seq 
experiments, approximately 10000-20000 cells for each group of DAPI-negative APC-CD31+ ECs (for Dll4 loss of function and 
control), DAPI negative APC-CD31+/MbTomato+ ECs (for Rbpj loss of function and control) were sorted directly to RLT buffer 
(RNAeasy Micro kit - Qiagen). RNA was extracted with the RNAeasy Micro kit and stored at -80°C. For proteomic analysis, 
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approximately 3x106 DAPI-negative APC-CD31+ ECs per group were sorted directly to blocking buffer. Cells were spun down 
for 10 min at 350g and pellet stored at -80°C. 
To isolate ECs for scRNA-seq experiments, 1.5 mg tamoxifen was injected on 4 consecutive days. At day 14 after the first 
tamoxifen injection, livers were dissected, minced, and digested for 30 min with pre-warmed (37C) dissociation buffer 
(2.5mg/ml collagenase I - Thermo Fisher 17100017), 2.5mg/ml dispase II (Thermo Fisher 17105041), 1ul/ml DNAse in PBS 
containing Ca2+  and Mg2+ (Gibco)). The digestion tube was agitated every 3-5 minutes in a water bath. At the end of the 30 
minutes incubation, sample tubes were filled up to 15 ml with sorting buffer (PBS containing no Ca2+ or Mg2+ and 
supplemented with 10% FBS (Sigma, F7524)) and centrifuged (450g, 5 min, 4°C). The supernatant was aspirated, and cell 
pellets were resuspended in 2ml 1x RBC lysis buffer (BioLegend, 420301) and incubated for 5 min on ice. To each sample 
were added 6 ml of sorting buffer, and samples were then passed through a 70um filter. Live cells were counted in a 
Neubauer Chamber using trypan blue exclusion. Cells from each condition (4x106/condition) were collected in separate 
tubes, and cells were incubated for 30 min with horizontal rotation in 300μl antibody incubation buffer (PBS + 1% BSA) 
containing 1 μl CD31-APC, 1 μl CD45-APC-Cy7, and 1μl of hash tag oligo (HTO) conjugated antibodies (Biolegend). HTOs were 
used to label and distinguish the different samples when loaded on the same 10x genomics port, and in this way also 
guarantee the absence of batch effects. After the antibodies incubation, samples were transferred to 15 ml Falcon tubes, 10 
ml sorting buffer was added, and samples were centrifuged (450g, 5min, 4°C). The supernatant was aspirated, pellets were 
resuspended in 1.5 ml sorting buffer and transferred to Eppendorf tubes, and the resulting suspensions were centrifuged 
(450g, 5min, 4°C). The resulting pellets were resuspended in 300 μl sorting buffer containing DAPI. Cells were sorted by FACS 
with an Aria Cell Sorter (BD Biosciences) and CD31+, CD45- MbTomato+ cells were sorted. BD FACS Diva V8.0.1 and Flow JO 
v10 was utilized for FACS data collection and analysis. 
 

Instrument BD FACS ARIA

Software BD FACS Diva V8.0.1

Cell population abundance For each group, approximately 10000-20000 DAPI negative APC-CD31+ cells without or with fluorescence (MbTomato) were 
sorted to individual tubes. For proteomic analysis, 3000000 endothelial cells were sorted in each sample. The purity of the 
samples was very high given the endothelial profile of the Transcriptomic and Protemic analysis.

Gating strategy The gating strategy is indicated in Extended Data Fig. 1 and 4.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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