Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex-chromosome mechanisms in cardiac development and disease

Abstract

Many human diseases, including cardiovascular disease, show differences between men and women in pathology and treatment outcomes. In the case of cardiac disease, sex differences are exemplified by differences in the frequency of specific types of congenital and adult-onset heart disease. Clinical studies have suggested that gonadal hormones are a factor in sex bias. However, recent research has shown that gene and protein networks under non-hormonal control also account for cardiac sex differences. In this Review, we describe the sex-chromosome pathways that lead to sex differences in the development and function of the heart and highlight how these findings affect future care and treatment of cardiac disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The FCG mouse model.
Fig. 2: XY* mouse models.
Fig. 3: In mice, cardiac tissue is specified and determined, and forms a beating heart, before the differentiation of bipotential gonads into a testis or ovary.
Fig. 4: Genes or genes coding for proteins on the X chromosome that display male–female differences in cardiac expression.
Fig. 5: Potential mechanisms of post-transcriptional regulation associated with cardiac male–female sex differences.

Similar content being viewed by others

References

  1. Deegan, D. F., Nigam, P. & Engel, N. Sexual dimorphism of the heart: genetics, epigenetics, and development. Front. Cardiovasc. Med. 8, 668252 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prabhavathi, K., Selvi, K. T., Poornima, K. N. & Sarvanan, A. Role of biological sex in normal cardiac function and in its disease outcome — a review. J. Clin. Diagn. Res. 8, BE01–BE04 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerkhof, P. L. M. et al. Heart function analysis in cardiac patients with focus on sex-specific aspects. Adv. Exp. Med. Biol. 1065, 361–377 (2018).

    Article  PubMed  Google Scholar 

  4. Siokatas, G. et al. Sex-related effects on cardiac development and disease. J. Cardiovasc. Dev. Dis. 9, 90 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruiz-Meana, M. et al. Ageing, sex, and cardioprotection. Br. J. Pharmacol. 177, 5270–5286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luczak, E. D. & Leinwand, L. A. Sex-based cardiac physiology. Annu. Rev. Physiol. 71, 1–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Reue, K. & Wiese, C. B. Illuminating the mechanisms underlying sex differences in cardiovascular disease. Circ. Res. 130, 1747–1762 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Senyo, S. E., Lee, R. T. & Kuhn, B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. 13, 532–541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biondi-Zoccai, G. G. et al. Incidence, predictors, and outcomes of coronary dissections left untreated after drug-eluting stent implantation. Eur. Heart J. 27, 540–546 (2006).

    Article  PubMed  Google Scholar 

  10. Parks, R. J. & Howlett, S. E. Sex differences in mechanisms of cardiac excitation–contraction coupling. Pflugers Arch. 465, 747–763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trexler, C. L., Odell, A. T., Jeong, M. Y., Dowell, R. D. & Leinwand, L. A. Transcriptome and functional profile of cardiac myocytes is influenced by biological sex. Circ. Cardiovasc. Genet. 10, e001770 (2017). This study defined fundamental biological and physiological differences in myocytes derived from male and female rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaborit, N. et al. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J. Mol. Cell. Cardiol. 49, 639–646 (2010). This paper demonstrates significant differences in the expression of components of the cardiac ion channel in non-diseased human hearts.

    Article  CAS  PubMed  Google Scholar 

  13. Shi, W. et al. Cardiac proteomics reveals sex chromosome-dependent differences between males and females that arise prior to gonad formation. Dev. Cell 56, 3019–3034 (2021). This work demonstrates that cardiac sex differences are established in an X-linked gene dosage and are propagated by post-transcriptional mechanisms prior to the expression of Sry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Macfarlane, P. W. The influence of age and sex on the electrocardiogram. Adv. Exp. Med. Biol. 1065, 93–106 (2018).

    Article  PubMed  Google Scholar 

  15. James, A. F., Choisy, S. C. & Hancox, J. C. Recent advances in understanding sex differences in cardiac repolarization. Prog. Biophys. Mol. Biol. 94, 265–319 (2007).

    Article  PubMed  Google Scholar 

  16. Ravens, U. Sex differences in cardiac electrophysiology. Can. J. Physiol. Pharmacol. 96, 985–990 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Yoo, B. W. Epidemiology of congenital heart disease with emphasis on sex-related aspects. Adv. Exp. Med. Biol. 1065, 49–59 (2018).

    Article  PubMed  Google Scholar 

  18. Yusifov, A., Woulfe, K. C. & Bruns, D. R. Mechanisms and implications of sex differences in cardiac aging. J. Cardiovasc. Aging 2, 20 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Claessens, T. E. et al. Noninvasive assessment of left ventricular and myocardial contractility in middle-aged men and women: disparate evolution above the age of 50? Am. J. Physiol. Heart Circ. Physiol. 292, H856–H865 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Yusifov, A. et al. Transcriptomic analysis of cardiac gene expression across the life course in male and female mice. Physiol. Rep. 9, e14940 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheitlin, M. D. Cardiovascular physiology—changes with aging. Am. J. Geriatr. Cardiol. 12, 9–13 (2003).

    Article  PubMed  Google Scholar 

  22. Grilo, G. A. et al. Age- and sex-dependent differences in extracellular matrix metabolism associate with cardiac functional and structural changes. J. Mol. Cell. Cardiol. 139, 62–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Achkar, A., Saliba, Y. & Fares, N. Differential gender-dependent patterns of cardiac fibrosis and fibroblast phenotypes in aging mice. Oxid. Med. Cell Longev. 2020, 8282157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kessler, E. L., Rivaud, M. R., Vos, M. A. & van Veen, T. A. B. Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biol. Sex Differ. 10, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Egbe, A. et al. Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr. Cardiol. 35, 975–982 (2014). A statistical study demonstrating sex-biased congenital heart disease in a large representative population of patients in the United States.

    Article  PubMed  Google Scholar 

  26. Rothman, K. J. & Fyler, D. C. Sex, birth order, and maternal age characteristics of infants with congenital heart defects. Am. J. Epidemiol. 104, 527–534 (1976). Analyses of children in the New England Regional Infant Cardiac Program reveal sex-differential risk trends in congenital heart disease between males versus females.

    Article  CAS  PubMed  Google Scholar 

  27. Tennant, P. W., Samarasekera, S. D., Pless-Mulloli, T. & Rankin, J. Sex differences in the prevalence of congenital anomalies: a population-based study. Birth Defects Res. A Clin. Mol. Teratol. 91, 894–901 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Shaw, G. M., Carmichael, S. L., Kaidarova, Z. & Harris, J. A. Differential risks to males and females for congenital malformations among 2.5 million California births, 1989–1997. Birth Defects Res. A Clin. Mol. Teratol. 67, 953–958 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Michalski, A. M. et al. Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997–2009. Am. J. Med. Genet. A 167A, 1071–1081 (2015).

    Article  PubMed  Google Scholar 

  30. Maric-Bilkan, C. et al. Report of the National Heart, Lung, and Blood Institute Working Group on Sex Differences Research in Cardiovascular Disease: scientific questions and challenges. Hypertension 67, 802–807 (2016). Recommendations from the Report of the National Heart, Lung, and Blood Institute Working Group on how to address sex differences in research of cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  31. Giannakoulas, G. et al. Adult congenital heart disease in Greece: preliminary data from the CHALLENGE registry. Int. J. Cardiol. 245, 109–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Arnold, A. L., Milner, K. A. & Vaccarino, V. Sex and race differences in electrocardiogram use (the National Hospital Ambulatory Medical Care Survey). Am. J. Cardiol. 88, 1037–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Khan, S. S., Beach, L. B. & Yancy, C. W. Sex-based differences in heart failure: JACC Focus Seminar 7/7. J. Am. Coll. Cardiol. 79, 1530–1541 (2022).

    Article  PubMed  Google Scholar 

  34. Lala, A. et al. Sex differences in heart failure. J. Card. Fail. 28, 477–498 (2022).

    Article  PubMed  Google Scholar 

  35. Regitz-Zagrosek, V. & Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 97, 1–37 (2017).

    Article  PubMed  Google Scholar 

  36. Gerdts, E. & Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat. Med. 25, 1657–1666 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Waheed, N. et al. Sex differences in non-obstructive coronary artery disease. Cardiovasc Res 116, 829–840 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Shufelt, C. L., Pacheco, C., Tweet, M. S. & Miller, V. M. Sex-specific physiology and cardiovascular disease. Adv. Exp. Med. Biol. 1065, 433–454 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kong, W. K. F., Bax, J. J., Michelena, H. I. & Delgado, V. Sex differences in bicuspid aortic valve disease. Prog. Cardiovasc. Dis. 63, 452–456 (2020).

    Article  PubMed  Google Scholar 

  40. Pelliccia, F. et al. Sex-related differences in cardiomyopathies. Int. J. Cardiol. 286, 239–243 (2019).

    Article  PubMed  Google Scholar 

  41. Humphries, K. H. et al. Sex differences in cardiovascular disease — impact on care and outcomes. Front. Neuroendocrinol. 46, 46–70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Summerhill, V. I., Moschetta, D., Orekhov, A. N., Poggio, P. & Myasoedova, V. A. Sex-specific features of calcific aortic valve disease. Int. J. Mol. Sci. 21, 5620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoppe, B. L. & Hermann, D. D. Sex differences in the causes and natural history of heart failure. Curr. Cardiol. Rep. 5, 193–199 (2003).

    Article  PubMed  Google Scholar 

  44. Stock, E. O. & Redberg, R. Cardiovascular disease in women. Curr. Probl. Cardiol. 37, 450–526 (2012).

    Article  PubMed  Google Scholar 

  45. Woodward, M. Rationale and tutorial for analysing and reporting sex differences in cardiovascular associations. Heart 105, 1701–1708 (2019).

    Article  PubMed  Google Scholar 

  46. Elhmidi, Y. et al. Sex-related differences in 2197 patients undergoing isolated surgical aortic valve replacement. J. Card. Surg. 29, 772–778 (2014).

    Article  PubMed  Google Scholar 

  47. Regitz-Zagrosek, V. & Seeland, U. Sex and gender differences in myocardial hypertrophy and heart failure. Wien Med. Wochenschr. 161, 109–116 (2011).

    Article  PubMed  Google Scholar 

  48. Blenck, C. L., Harvey, P. A., Reckelhoff, J. F. & Leinwand, L. A. The importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ. Res. 118, 1294–1312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ventura-Clapier, R. et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc. Res. 113, 711–724 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Kararigas, G. et al. Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur. J. Heart Fail. 16, 1160–1167 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, J., Dai, F., Li, C. & Zou, Y. Gender differences in cardiac hypertrophy. J. Cardiovasc. Transl. Res. 13, 73–84 (2019).

    Article  PubMed  Google Scholar 

  52. Patrizio, M. & Marano, G. Gender differences in cardiac hypertrophic remodeling. Ann. Ist. Super. Sanita 52, 223–229 (2016).

    CAS  PubMed  Google Scholar 

  53. Chester, R. C., Kling, J. M. & Manson, J. E. What the Women’s Health Initiative has taught us about menopausal hormone therapy. Clin. Cardiol. 41, 247–252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chlebowski, R. T. et al. Estrogen alone and health outcomes in black women by African ancestry: a secondary analyses of a randomized controlled trial. Menopause 24, 133–141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Whayne, T. F.Jr & Mukherjee, D. Women, the menopause, hormone replacement therapy and coronary heart disease. Curr. Opin. Cardiol. 30, 432–438 (2015).

    Article  PubMed  Google Scholar 

  56. Mosca, L. et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. J. Am. Coll. Cardiol. 49, 1230–1250 (2007).

    Article  PubMed  Google Scholar 

  57. Naqvi, S. et al. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365, eaaw7317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arnold, A. P. Rethinking sex determination of non-gonadal tissues. Curr. Top. Dev. Biol. 134, 289–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Snell, D. M. & Turner, J. M. A. Sex chromosome effects on male–female differences in mammals. Curr. Biol. 28, R1313–R1324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DeLeon-Pennell, K. Y. & Lindsey, M. L. Somewhere over the sex differences rainbow of myocardial infarction remodeling: hormones, chromosomes, inflammasome, oh my. Expert Rev. Proteomics 16, 933–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tingen, C. M., Kim, A. M., Wu, P. H. & Woodruff, T. K. Sex and sensitivity: the continued need for sex-based biomedical research and implementation. Womens Health 6, 511–516 (2010).

    Google Scholar 

  62. Kim, A. M., Tingen, C. M. & Woodruff, T. K. Sex bias in trials and treatment must end. Nature 465, 688–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Baylis, F. & Kaposky, C. Wanted: inclusive guidelines for research involving pregnant women. J. Obstet. Gynaecol. Can. 32, 473–476 (2010).

    Article  PubMed  Google Scholar 

  64. Harris, D. J. & Douglas, P. S. Enrollment of women in cardiovascular clinical trials funded by the National Heart, Lung, and Blood Institute. N. Engl. J. Med. 343, 475–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Parker, K., Erzurumluoglu, A. M. & Rodriguez, S. The Y chromosome: a complex locus for genetic analyses of complex human traits. Genes 11, 1273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hickey, P. F. & Bahlo, M. X chromosome association testing in genome wide association studies. Genet. Epidemiol. 35, 664–670 (2011).

    Article  PubMed  Google Scholar 

  67. Dimas, A. S. et al. Sex-biased genetic effects on gene regulation in humans. Genome Res. 2, 2368–2375 (2012).

    Article  Google Scholar 

  68. Westerman, S. & Wenger, N. K. Women and heart disease, the underrecognized burden: sex differences, biases, and unmet clinical and research challenges. Clin. Sci. 130, 551–563 (2016).

    Article  Google Scholar 

  69. Noubiap, J. J. et al. Sex disparities in enrollment and reporting of outcomes by sex in contemporary clinical trials of atrial fibrillation. J. Cardiovasc. Electrophysiol. 33, 845–854 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Woodward, M. Cardiovascular disease and the female disadvantage. Int. J. Environ. Res. Public Health 16, 1165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mayne, B. T. et al. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front. Genet. 7, 183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Isensee, J. et al. Sexually dimorphic gene expression in the heart of mice and men. J. Mol. Med. 86, 61–74 (2008). A refined study comparing gene expression profiling of mouse and human cardiac samples of male versus female in young and aged individuals.

    Article  PubMed  Google Scholar 

  73. Li, B. et al. A comprehensive mouse transcriptomic BodyMap across 17 tissues by RNA-seq. Sci. Rep. 7, 4200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lopes-Ramos, C. M. et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 31, 107795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsuji, M. et al. Sexual dimorphisms of mRNA and miRNA in human/murine heart disease. PLoS ONE 12, e0177988 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. InanlooRahatloo, K. et al. Sex-based differences in myocardial gene expression in recently deceased organ donors with no prior cardiovascular disease. PLoS ONE 12, e0183874 (2017). This study identified male versus female gene expression differences in non-diseased human heart samples.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dorr, K. M. & Conlon, F. L. Proteomic-based approaches to cardiac development and disease. Curr. Opin. Chem. Biol. 48, 150–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arnold, A. P. The end of gonad-centric sex determination in mammals. Trends Genet. 28, 55–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 18, 675–689 (2017). This is an excellent review of gene pathways that cause differentiation of testes or ovaries, emphasizing the surprising variability of regulatory mechanisms across vertebrate species.

    Article  CAS  PubMed  Google Scholar 

  80. Arnold, A. P. X chromosome agents of sexual differentiation. Nat. Rev. Endocrinol. 18, 574–583 (2022). This paper discusses specific genes and a class of genes on the X chromosome that are the root cause of sex differences in tissue phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Herber, C. B. et al. Estrogen signaling in arcuate Kiss1 neurons suppresses a sex-dependent female circuit promoting dense strong bones. Nat. Commun. 10, 163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Arnold, A. P. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm. Behav. 55, 570–578 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Burgoyne, P. S. & Arnold, A. P. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol. Sex Differ. 7, 68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Arnold, A. P. Four Core Genotypes and XY* mouse models: update on impact on SABV research. Neurosci. Biobehav. Rev. 119, 1–8 (2020). This paper gives a background on two major mouse models that are used to discover sex-chromosome effects causing sex differences in mouse models of any disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cox, K. H., Bonthuis, P. J. & Rissman, E. F. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front. Neuroendocrinol. 35, 405–419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Corre, C. et al. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct. Funct. 221, 997–1016 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Cisternas, C. D., Garcia-Segura, L. M. & Cambiasso, M. J. Hormonal and genetic factors interact to control aromatase expression in the developing brain. J. Neuroendocrinol. 30, e12535 (2018).

  88. Arnold, A. P., Cassis, L. A., Eghbali, M., Reue, K. & Sandberg, K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 37, 746–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, J. et al. The number of X chromosomes influences protection from cardiac ischaemia/reperfusion injury in mice: one X is better than two. Cardiovasc. Res. 102, 375–394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cunningham, C. M. et al. Y-chromosome gene, Uty, protects against pulmonary hypertension by reducing proinflammatory chemokines. Am. J. Respir. Crit. Care Med. 206, 186–196 (2022). This report is remarkable because it implicates a Y-chromosome gene in the control of sex differences in non-reproductive tissue phenotypes and disease, through mechanisms that do not involve gonadal hormones.

    Article  CAS  PubMed  Google Scholar 

  91. AlSiraj, Y. et al. XX sex chromosome complement promotes atherosclerosis in mice. Nat. Commun. 10, 2631 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Alsiraj, Y. et al. Female mice with an XY sex chromosome complement develop severe angiotensin II-induced abdominal aortic aneurysms. Circulation 135, 379–391 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Caeiro, X. E., Mir, F. R., Vivas, L. M., Carrer, H. F. & Cambiasso, M. J. Sex chromosome complement contributes to sex differences in bradycardic baroreflex response. Hypertension 58, 505–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Ji, H. et al. Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension 55, 1275–1282 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Qi, S. et al. X, but not Y, chromosomal complement contributes to stroke sensitivity in aged animals. Transl. Stroke Res. https://doi.org/10.1007/s12975-022-01070-z (2022).

  96. McCullough, L. D. et al. Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones. Aging 8, 1432–1441 (2016). This paper reviews studies suggesting that sex differences in stroke sensitivity are caused by gonadal hormonal mechanisms in young animals, but by sex-chromosomal mechanisms in older animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Deegan, D. F. & Engel, N. Sexual dimorphism in the age of genomics: how, when, where. Front. Cell Dev. Biol. 7, 186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Viuff, M., Skakkebaek, A., Nielsen, M. M., Chang, S. & Gravholt, C. H. Epigenetics and genomics in Turner syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 181, 68–75 (2019).

    Article  PubMed  Google Scholar 

  99. Gravholt, C. H., Viuff, M. H., Brun, S., Stochholm, K. & Andersen, N. H. Turner syndrome: mechanisms and management. Nat. Rev. Endocrinol. 15, 601–614 (2019).

    Article  PubMed  Google Scholar 

  100. Huang, A. C., Olson, S. B. & Maslen, C. L. A review of recent developments in Turner syndrome research. J. Cardiovasc. Dev. Dis. 8, 138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Milbrandt, T. & Thomas, E. Turner syndrome. Pediatr. Rev. 34, 420–421 (2013).

    Article  PubMed  Google Scholar 

  102. Ranke, M. B. & Saenger, P. Turner’s syndrome. Lancet 358, 309–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Mortensen, K. H., Andersen, N. H. & Gravholt, C. H. Cardiovascular phenotype in Turner syndrome—integrating cardiology, genetics, and endocrinology. Endocr. Rev. 33, 677–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Schoemaker, M. J. et al. Mortality in women with turner syndrome in Great Britain: a national cohort study. J. Clin. Endocrinol. Metab. 93, 4735–4742 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Groth, K. A., Skakkebaek, A., Host, C., Gravholt, C. H. & Bojesen, A. Clinical review: Klinefelter syndrome—a clinical update. J. Clin. Endocrinol. Metab. 98, 20–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Bojesen, A., Juul, S., Birkebaek, N. H. & Gravholt, C. H. Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J. Clin. Endocrinol. Metab. 91, 1254–1260 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Salzano, A. et al. Klinefelter syndrome, cardiovascular system, and thromboembolic disease: review of literature and clinical perspectives. Eur. J. Endocrinol. 175, R27–R40 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Spaziani, M. & Radicioni, A. F. Metabolic and cardiovascular risk factors in Klinefelter syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 184, 334–343 (2020).

    Article  PubMed  Google Scholar 

  109. Calogero, A. E. et al. Klinefelter syndrome: cardiovascular abnormalities and metabolic disorders. J. Endocrinol. Invest. 40, 705–712 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Pasquali, D. et al. Cardiovascular abnormalities in Klinefelter syndrome. Int. J. Cardiol. 168, 754–759 (2013).

    Article  PubMed  Google Scholar 

  111. Accardo, G. et al. Management of cardiovascular complications in Klinefelter syndrome patients. Expert Rev. Endocrinol. Metab. 14, 145–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Dolk, H., Loane, M. A., Abramsky, L., de Walle, H. & Garne, E. Birth prevalence of congenital heart disease. Epidemiology 21, 275–277 (2010).

    Article  PubMed  Google Scholar 

  113. Heron, M. et al. Deaths: final data for 2006. Natl. Vital Stat. Rep. 57, 1–134 (2009).

    PubMed  Google Scholar 

  114. Haberer, K. & Silversides, C. K. Congenital heart disease and women’s health across the life span: focus on reproductive issues. Can. J. Cardiol. 35, 1652–1663 (2019).

    Article  PubMed  Google Scholar 

  115. Nef, S., Stevant, I. & Greenfield, A. Characterizing the bipotential mammalian gonad. Curr. Top. Dev. Biol. 134, 167–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Garcia-Moreno, S. A., Plebanek, M. P. & Capel, B. Epigenetic regulation of male fate commitment from an initially bipotential system. Mol. Cell. Endocrinol. 468, 19–30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bruneau, B. G. The developing heart and congenital heart defects: a make or break situation. Clin. Genet. 63, 252–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Deegan, D. F., Karbalaei, R., Madzo, J., Kulathinal, R. J. & Engel, N. The developmental origins of sex-biased expression in cardiac development. Biol. Sex Differ. 10, 46 (2019). An elegant study demonstrating sex-biased histone modifications in male versus female embryonic stem cells.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fairweather, D. et al. Sex and gender differences in myocarditis and dilated cardiomyopathy: an update. Front. Cardiovasc. Med. 10, 1129348 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Han, Y. et al. Proteogenomics reveals sex biased aging genes and coordinated splicing in cardiac aging. Am. J. Physiol. Heart Circ. Physiol. 323, H538–H558 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Virani, S. S. et al. Heart Disease and Stroke Statistics—2020 Update: a report from the american heart association. Circulation 141, e139–e596 (2020).

    Article  PubMed  Google Scholar 

  122. Canto, J. G. et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. J. Am. Med. Assoc. 307, 813–822 (2012).

    Article  CAS  Google Scholar 

  123. Pullen, A. B., Kain, V., Serhan, C. N. & Halade, G. V. Molecular and cellular differences in cardiac repair of male and female mice. J. Am. Heart Assoc. 9, e015672 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chick, J. M. et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534, 500–505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Aguado, B. A. et al. Genes that escape X chromosome inactivation modulate sex differences in valve myofibroblasts. Circulation 145, 513–530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, H. et al. Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81, 103–119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Disteche, C. M. & Berletch, J. B. X-chromosome inactivation and escape. J. Genet. 94, 591–599 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Peeters, S. B. et al. How do genes that escape from X-chromosome inactivation contribute to Turner syndrome? Am. J. Med. Genet. C Semin. Med. Genet. 181, 28–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Sierra, I. & Anguera, M. C. Enjoy the silence: X-chromosome inactivation diversity in somatic cells. Curr. Opin. Genet. Dev. 55, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Harris, J. C. et al. The Cstf2t polyadenylation gene plays a sex-specific role in learning behaviors in mice. PLoS ONE 11, e0165976 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C. & Huang, T. H. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 24, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. De Gobbi, M. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215–1217 (2006).

    Article  PubMed  Google Scholar 

  134. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Creemers, E. E. et al. Genome-wide polyadenylation maps reveal dynamic mRNA 3′-end formation in the failing human heart. Circ. Res. 118, 433–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Adiconis, X. et al. Comprehensive comparative analysis of 5′-end RNA-sequencing methods. Nat. Methods 15, 505–511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Murata, M. et al. Detecting expressed genes using CAGE. Methods Mol. Biol. 1164, 67–85 (2014).

    Article  PubMed  Google Scholar 

  139. Routh, A., Head, S. R., Ordoukhanian, P. & Johnson, J. E. ClickSeq: fragmentation-free next-generation sequencing via click ligation of adaptors to stochastically terminated 3′-azido cDNAs. J. Mol. Biol. 427, 2610–2616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Elrod, N. D., Jaworski, E. A., Ji, P., Wagner, E. J. & Routh, A. Development of Poly(A)-ClickSeq as a tool enabling simultaneous genome-wide poly(A)-site identification and differential expression analysis. Methods 155, 20–29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Newman, M. S., Nguyen, T., Watson, M. J., Hull, R. W. & Yu, H. G. Transcriptome profiling reveals novel BMI- and sex-specific gene expression signatures for human cardiac hypertrophy. Physiol. Genomics 49, 355–367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fermin, D. R. et al. Sex and age dimorphism of myocardial gene expression in nonischemic human heart failure. Circ. Cardiovasc. Genet. 1, 117–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Collins, F. S. & Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Arnegard, M. E., Whitten, L. A., Hunter, C. & Clayton, J. A. Sex as a biological variable: a 5-year progress report and call to action. J. Womens Health 29, 858–864 (2020).

    Article  Google Scholar 

  145. Geller, S. E. et al. A global view of severe maternal morbidity: moving beyond maternal mortality. Reprod. Health 15, 98 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Li, J. et al. The number of X chromosomes influences protection from cardiac ischaemia/reperfusion injury in mice: one X is better than two. Cardiovasc. Res. 102, 375–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, X. et al. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 8, e1002709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Umar, S. et al. The Y chromosome plays a protective role in experimental hypoxic pulmonary hypertension. Am. J. Respir. Crit. Care Med. 197, 952–955 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Link, J. C. et al. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J. Clin. Invest. 130, 5688–5702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Conlon Lab for editing and proofing and A. Scialdone for her help with editing. We thank the three reviewers for contributing to the external peer review. We regret that we could not recognize all pertinent research in the field and contributions from investigators owing to space constraints. This work was supported by the grants R01HL156424 NIH/NHLBI to F.L.C. A.P.A. was supported by OD030496, HD1002989, HL131182 and DK083561.

Author information

Authors and Affiliations

Authors

Contributions

F.L.C. and A.P.A. wrote and edited the manuscript.

Corresponding author

Correspondence to Frank L. Conlon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Christine M. Disteche, C. Noel Bairey Merz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conlon, F.L., Arnold, A.P. Sex-chromosome mechanisms in cardiac development and disease. Nat Cardiovasc Res 2, 340–350 (2023). https://doi.org/10.1038/s44161-023-00256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00256-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing