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CMDs represent one of the largest health burdens in modern 
society and exhibit strong sex differences in disease inci-
dence, severity and treatment efficiency1. Although the prev-

alence of CMD is generally lower in women than in men, CMDs 
remain the major cause of death for both sexes. In addition, diag-
nosis and treatment strategies in women are suboptimal, and sex-
tailored prevention and treatment strategies are lacking2. To develop 
these strategies, it is important to understand the mechanisms that 
underlie the sex differences in CMD. On the one hand, some risk 
factors are known to exert sex-dependent effects3–6. Heavy smoking, 
for example, doubles the risk of myocardial infarction in women 
compared with its impact in men3. On the other hand, many cross-
sectional comparisons between men and women have also high-
lighted differences on molecular levels such as gene expression and 
metabolomics, which suggests sex-dependent effects in disease eti-
ology and molecular pathways7. In addition, CMD is an age-related 
disorder, and its prevalence increases rapidly with age8. The pro-
cess of aging also shows remarkable differences between men and 
women9. An important but sometimes overlooked property of sex 
differences is that sex differences are not static—they change with 
age6,10. For instance, myocardial infarction incidence increases with 
age, but women get myocardial infarction around 10 yr later than 
men11. It is therefore important to take sex, age and their interac-
tions into account to better understand the interplay of risk factors 
and improve disease prevention and treatment.

Given the important roles of both age and sex in CMD incidence, 
we think that the sex-dependent etiology of CMD should be studied 
in the context of aging, which may be reflected by the sex-dependent, 
nonlinear progression of CMD risk factors, and molecular traits 
with age. Previous studies have highlighted such age-dependent  

sex differences for several groups of CMD-related phenotypes, 
including CMD incidence and mortality10,12, major risk factors6 and 
lipid levels13–16. However, to our knowledge, no large-scale, system-
atic analysis of age-dependent sex differences has been performed 
to date for all CMD risk factors and biomarkers, including lifestyle 
factors and metabolic and proteomic profile.

CMD involves interactions between multiple organs and organ 
systems17. As a consequence, a large number of phenotypes are asso-
ciated with CMD risk, ranging from well-established risk factors 
such as blood pressure to those less directly linked to CMD such as 
blood cell proportions18, serum albumin19 or uric acid20 levels. For 
disease prevention and diagnosis purposes, it is important to know 
which of these risk factors are causal. However, inferring causality 
is difficult, so the list of causal risk factors is constantly changing. 
The major risk factors that are currently considered causal include 
total cholesterol, low-density lipoprotein (LDL) cholesterol and 
triglyceride levels21–23; blood pressure24; BMI25; smoking26; alcohol 
consumption27; and type 2 diabetes28. Some evidence of causality 
has also been observed for lifestyle factors such as diet quality29, 
physical activity30 or stress31. Several phenotypes such as fasting 
glucose or high-density lipoprotein (HDL) cholesterol levels were 
previously considered causal but have not been confirmed by later 
studies32,33. While most studies on age and sex differences in CMD 
concentrate on established risk factors, it would be useful to profile 
patterns of age-related sex differences for a large range of potential 
risk factors to provide a broad view of the effect of age and sex on 
CMD-related mechanisms.

Here we made use of detailed phenotype data available for the 
Lifelines cohort—a large population cohort from the northern part 
of the Netherlands comprising more than 167,000 individuals from 

Age-dependent sex differences in cardiometabolic 
risk factors
Daria V. Zhernakova   1,2 ✉, Trishla Sinha   1, Sergio Andreu-Sánchez   1,3, Jelmer R. Prins   4, 
Alexander Kurilshikov1, Jan-Willem Balder5, Serena Sanna1,6, Lifelines Cohort Study*, Lude Franke1, 
Jan A. Kuivenhoven3, Alexandra Zhernakova1,7 and Jingyuan Fu   1,3,7

Cardiometabolic diseases (CMDs) are a major cause of mortality worldwide, yet men and women present remarkable differ-
ences in disease prognosis, onset and manifestation. Here we characterize how sex differences in cardiometabolic risk fac-
tors vary with age by examining 45 phenotypes and 6 lifestyle factors in 146,021 participants of the Dutch population cohort 
Lifelines. We show that sex differences are present in 71% of the studied phenotypes. For 31% of these phenotypes, the phe-
notypic difference between sexes is dependent on age. CMD risk factors show various patterns of age-related sex differences, 
ranging from no difference for phenotypes such as body mass index (BMI) to strong age-modified sex differences for lipid 
levels. We also identify lifestyle factors that influence phenotypes in a sex- and age-dependent manner. These results highlight 
the importance of taking age into account when studying sex differences in CMDs.

NATuRe CARDioVASCuLAR ReSeARCh | VOL 1 | SePTeMBeR 2022 | 844–854 | www.nature.com/natcardiovascres844

mailto:dashazhernakova@gmail.com
http://orcid.org/0000-0001-6531-3890
http://orcid.org/0000-0002-0992-7983
http://orcid.org/0000-0002-3503-9971
http://orcid.org/0000-0002-3984-2163
http://orcid.org/0000-0001-5578-1236
http://crossmark.crossref.org/dialog/?doi=10.1038/s44161-022-00131-8&domain=pdf
http://www.nature.com/natcardiovascres


ArticlesNaTurE CarDIovaSCuLar rESEarCH

the general population34. In this cohort, we characterized sex differ-
ences across age span, starting with a wide range of 51 phenotypes 
and thereafter focusing on CMD risk factors. We further zoomed in 
on age-dependent sex differences in the plasma levels of 231 metab-
olites and 92 CMD-related proteins in a subset of 1,440 individuals. 
We investigated the general profile of sex differences across age and 
whether these changes are gradual or occur at specific ages.

Results
Our study involved 146,021 individuals (58% female) across an 
age span from 20 to 80 yr from the Dutch population-based cohort 
Lifelines. First, we assessed whether age effects on sex differences are 
widespread across a broad range of phenotypes that are commonly 
used as disease risk factors or biomarkers. We selected 51 pheno-
types, including blood test parameters, anthropometric measure-
ments, blood pressure and lifestyle factors (Supplementary Table 1 
and Extended Data Figs. 1–3). Of these, 36 phenotypes (71%) exhib-
ited linear sex differences over the whole age range (Supplementary 
Tables 2 and 3). However, we were specifically interested in pheno-
types for which sex differences were not static with age but show an 
age by sex interaction (Fig. 1). Using a generalized additive model 
(GAM) approach, we found that all 51 phenotypes showed nonlin-
ear age-dependent sex differences (Supplementary Table 4), and 16 
of the 51 phenotypes (31%) showed a significant age by sex interac-
tion with a considerable effect size (Bonferroni-adjusted interaction 
P < 0.05 and Cohen’s f2 ≥ 0.01; Methods) (Supplementary Tables 2 
and 3 and Extended Data Figs. 1–3). Our results are consistent with 
age-related sex difference patterns previously reported for some of 
the studied phenotypes in participants of the UK Biobank cohort 
aged above 50 (ref. 35). The strongest effect was observed for plasma 
calcium levels (age by sex interaction Pinter_adj < 2.23 × 10−308, Cohen’s 
f2 = 0.06), which were lower in women than in men up to 45 yr of age 
and higher in women than in men after 55 yr (Extended Data Fig. 2),  

in line with previous reports36. This trend was still present after 
excluding calcium supplementation users (Supplementary Fig. 1).

Interestingly, the levels of six phenotypes with a significant age 
by sex interaction showed a similar pattern: they were higher in men 
before 50–60 yr of age, when they became higher in women. This 
pattern was observed for total and LDL cholesterol, apolipoprotein 
B100, sodium, calcium and alkaline phosphatase (Extended Data 
Figs. 1 and 2), whereas the reverse pattern was seen for leukocyte 
and neutrophil counts (Extended Data Fig. 1). For such phenotypes, 
sex difference estimations that average over the whole age span may 
give conflicting or insignificant results. For example, neutrophil 
count and total cholesterol levels do not show a significant sex dif-
ference across the whole age span but do show age-dependent sex 
differences (Supplementary Table 2), which further highlights the 
importance of studying differences between men and women and of 
taking age into account in these studies (Extended Data Figs. 1–3).

Menopause is associated with age differences in clinical blood 
markers. Next, we zoomed in on the traits with age-dependent sex 
differences and searched for the turning point of aging when a strong 
difference in phenotype levels before and after was observed. Ten 
blood test parameters out of the 16 phenotypes with an age by sex 
interaction (62%) exhibited a sex-specific age pattern: the levels of 
these phenotypes were different in women before and after the age 
of menopause (with age-related differences starting to be noticeable 
at around 45 yr old and disappearing around 55 yr old), while men 
showed a more linear phenotype association with age (Supplementary 
Table 2 and Extended Data Figs. 1–3). This pattern remained similar 
after correction for BMI, smoking and hormone therapy. Adjustment 
for other major cardiovascular disease (CVD) risk factors affected 
the significance of five phenotypes with a Cohen’s f2 close to 0.01: 
the interaction effects for hematocrit, uric acid and systolic blood 
pressure (SBP) became nonsignificant, while interaction effects for 
leukocyte count and C-reactive protein became significant; how-
ever, the pattern of age-dependent sex differences remained similar 
(Supplementary Table 2 and Supplementary Fig. 2). A sliding window 
t-test approach confirmed that the strongest phenotype difference 
occurs around 50 yr old in women, while age-related differences for 
men are less significant at any age (Fig. 2a and Supplementary Table 5).  
Moreover, only 7 of 16 phenotypes showed a significant age by sex 
interaction when excluding the menopause-related period (45–55 yr 
old) (Supplementary Table 6). These seven phenotypes comprised 
five lipid traits, albumin levels and diastolic blood pressure (DBP) 
and were different between men and women only before menopause. 
Sex differences were slightly larger in effect size before menopause as 
compared with after (two-sided Wilcoxon P = 0.02).

The phenotypes showing the strongest menopause effect are 
related to electrolytes, including plasma levels of calcium, sodium 
and phosphate (Cohen’s f2 > 0.02) (but not potassium), supporting 
previous reports37,38 (Fig. 2b and Extended Data Fig. 2). Elevated 
electrolyte levels have been associated with CVD incidence39–41. 
It has previously been shown that sex hormones and parathyroid 
hormone affect plasma levels of these electrolytes42,43, which likely 
explains the differences observed around the age of menopause. In 
line with the known increased prevalence of nonalcoholic fatty liver 
diseases in postmenopausal women44, liver function parameters 
(alkaline phosphatase, alanine aminotransferase (ALT) and aspar-
tate aminotransferase (AST), but not gamma-glutamyl transferase) 
also showed a menopause-related age effect (Fig. 3c and Extended 
Data Fig. 2). These findings are consistent with the menopause-
associated difference in AST levels previously reported by Petroff 
et al.45, and we see a similar pattern for ALT levels in our data. 
Although we observed no age effect on sex differences in serum 
creatinine levels, other renal function markers such as serum uric 
acid and urea concentrations tended to become positively associ-
ated with age starting from the age of menopause, in line with  
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Fig. 1 | Study overview. This study involved a Dutch population-based 
cohort, Lifelines, consisting of 146,021 individuals for whom a large range of 
phenotype data have been profiled. For a subset of 1,440 individuals, there 
are additional data on serum proteomics and metabolomics. Using these 
data, we profiled age-related sex differences in a nonlinear way using GAMs.
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previous reports46 (Extended Data Fig. 2). Blood cell counts showed 
divergent patterns. Neutrophils were strongly negatively and eryth-
rocytes positively associated with age in women around the age of 
menopause, an association that has previously been explained by a 
decrease in estradiol levels and an increase in neutrophil apoptosis 
rates47 (Extended Data Fig. 1). Monocytes, eosinophils, basophils 
and thrombocytes did not show substantial age by sex interaction.

Menopause-associated phenotype changes are generally thought 
to be caused by hormonal changes. Using available information 
about drug intake, we found that for six of ten menopause-associated  

phenotypes, hormonal medications could delay the onset of the 
strong phenotype difference by approximately 5 yr (Supplementary 
Fig. 3). However, these results may be confounded by the low 
number of postmenopausal women taking hormonal medication  
(320 women older than 55 received hormonal medication).

Age- and sex-dependent effects of lifestyle factors. We checked if 
any of the observed patterns of significant age by sex interactions 
were driven by lifestyle factors (current smoking, chronic stress 
score, physical activity score, diet quality score, alcohol consumption,  
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average sleep duration and medication usage). While we saw that 
age by sex interactions remained significant for each of the pheno-
types, the effect of age for AST was significant only in women after 
correcting for lifestyle factors. A similar pattern (although with less 
confidence) was observed for sodium, uric acid and apolipoprotein 
B100 (Extended Data Fig. 4a).

Next, we studied the differences across age groups in the sex-
differential effects of lifestyle on phenotypes. All of our lifestyle fac-
tors showed significant interactions with age, sex or both for at least 
one phenotype (Extended Data Fig. 4b). We observed that alcohol 
affects all of the tested phenotypes, and diet affects most of them, 
with the exceptions of AST, sodium and calcium (Extended Data 
Fig. 4b). The effect of diet quality on total cholesterol was stronger 
in men than in women, in line with previous reports (Fig. 3)48. We 
saw that lower physical activity is associated with higher triglyceride 
levels in both sexes, in line with previous studies49, and this effect 
increases with age, which has not been reported before.

Age-dependent sex differences in cardiometabolic risk factors. 
Because CMDs exhibit strong age and sex differences, we used our 
results to characterize age-related sex differences in phenotypic 
traits relevant for CMD. Among all Lifelines individuals, there were 
3,687 patients with CVD (67% males and 33% females), including 
patients with stroke, heart attack or those who underwent balloon 
angioplasty or bypass surgery. CVDs occurred more frequently in 
men than in women of the same age, in line with previous studies 
(Supplementary Fig. 4)12.

Next, we zoomed in on established CMD risk factors. We inves-
tigated the factors that are considered to have a causal effect on 
CMD, such as blood pressure24 or LDL cholesterol levels23, as well 
as risk factors for which there is less evidence for their causality 
in CMD such as HDL cholesterol or diet quality. Most of these 

risk factors did not show significant age-related sex differences 
(Cohen’s f2 < 0.01), for instance, BMI levels were similar in both 
sexes (Fig. 4a), in line with previous reports50. Several risk factors 
exhibit strong sex differences that do not differ with age: fasting 
glucose levels are higher in men than in women, in line with previ-
ous reports51, whereas HDL cholesterol is higher in women than 
in men13 (Fig. 4b). SBP shows a significant age by sex interaction: 
while men have higher SBP than women at younger ages, the effect 
of age on SBP is stronger in women than in men (Cohen’s f2 = 0.01). 
DBP is similar in both sexes before age 25 yr and then shows a 
stronger association with age in men compared with women until 
age 50, in line with previous reports52; however, this age effect is 
weak (Cohen’s f2 = 0.008).

In contrast, we see especially strong age-related sex differences 
in lipid profiles (Fig. 4c). While middle-aged men have higher lev-
els of total cholesterol and LDL cholesterol compared with women, 
this changes after the age of 50, when women have higher lipid 
levels than men. This pattern has been reported before13–16 and is 
in line with an increase in CVD risk in postmenopausal women53. 
However, interestingly, the age-related differences in women’s lipid 
levels are much weaker in effect size and can be observed earlier 
than many of the other clinical blood phenotypes: the strongest age 
effect in women occurs between 35 and 55 yr of age. Triglyceride 
levels in men follow a similar trajectory to total and LDL choles-
terol, whereas the age-related patterns between these lipids are dif-
ferent in women. We specifically checked whether these patterns 
are confounded by use of anti-hypertensive (Supplementary Fig. 5) 
or lipid-lowering medication (Supplementary Fig. 6), or sex hor-
mone therapy (Supplementary Fig. 3). While use of these medica-
tions changes the absolute levels of CMD-related parameters, the 
age-dependent pattern of sex differences is similar in medication 
users and nonusers (Supplementary Figs. 3, 5 and 6).
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As CMDs are known to be strongly affected by lifestyle54, we 
studied age-related sex differences in smoking, alcohol consump-
tion, physical activity, diet and average sleep duration. In our data, 
women generally tended to have a better lifestyle at all ages. Diet, for 
instance, was considered to generally be of better quality in women at 
all ages, in line with previous studies55. In line with national statistics, 
women smoke less and drink less alcohol than men56,57. The physical 
activity score58 was similar in both sexes (Fig. 3a). It is known that 
women report more stress than men59, and our data suggest that this 
difference is smaller at older age, although the age by sex interaction 
effect is low (Cohen’s f2 = 0.002) (Extended Data Fig. 3).

Lifelines participants were followed up for 10 yr, and we used the 
longitudinal data to estimate the effect of the phenotypes measured 
at baseline on new-onset CVD events. Overall, 1,436 new CVD cases 
occurred in both sexes (55% males and 45% females) in the 77,348 
participants who were healthy at baseline (Supplementary Fig. 7). 

We found that 27 of the 51 studied phenotypes are significantly asso-
ciated with the new CVD events (Supplementary Table 7). For nine 
of them (33%), the association with CVD was also dependent on age 
or sex. For example, the effect of DBP on CVD occurrence depended 
on age and the association of physical activity score with CVD risk 
was different in men and women (Supplementary Table 7).

Pronounced age-dependent sex differences in blood lipid levels. To 
further characterize the strong effect of age-related sex differ-
ences in cholesterol and triglyceride levels, we investigated these 
patterns using 231 metabolic traits (mainly lipid and lipoprotein 
parameters) measured with a nuclear magnetic resonance spec-
troscopy (NMR) platform (Nightingale) in a subset of 1,440 par-
ticipants (Supplementary Fig. 8 and Supplementary Table 8)60. More 
than half of the traits (155 traits, 67%) exhibit an overall nonlin-
ear sex difference, while strong age by sex interaction effects were 
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age span (Cohen’s f2 ≥ 0.01) and no age-dependent sex differences (Cohen’s f2 < 0.01). c, CMD risk factors that showed age-dependent sex differences 
(Cohen’s f2 < 0.01). Lines correspond to the fitted GAMs: blue line represents men, red line represents women. Confidence intervals (±1.96 s.e.m.) are 
plotted around the lines in a more transparent hue. Cohen’s f2 reflects the effect size of the age by sex interaction. GAM interaction P represents the 
significance of the age by sex interaction term.
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observed for 73 traits (32%). For each metabolic trait, we calculated 
the impact of age, sex and their interaction on overall trait variance 
(Supplementary Table 9 and Fig. 5). The metabolites showing the 
strongest effect of sex were creatinine, leucine and isoleucine (34%, 
30% and 26% of total variance explained, respectively). The effect 
of age was weaker than that of sex, with the top metabolic param-
eters affected by age being omega-3 fatty acids, total cholesterol and 
sphingomyelins (15%, 14% and 14% of variance explained, respec-
tively). Even though age by sex interaction explains less variation 
than age and sex, it contributes to >3% of variance for some metab-
olites such as glutamine, tyrosine and remnant cholesterol (Fig. 5).

As many lipid-related traits measured by NMR are correlated, 
we clustered the observed patterns of age-related sex differences 
and visualized some examples of distinct groups. Group 1 mainly 
includes LDL-related parameters, in which the phospholipid/total 
lipids ratio appears to play the most important role. This group 
is predominantly affected by age (explaining 10% of its variance, 
as estimated by permutational multivariate analysis of variance 
(PERMANOVA); Supplementary Table 10) and exhibits significant 
age by sex interaction (five of seven metabolic parameters have a sig-
nificant interaction effect; 2% of variance explained by the interac-
tion term). Group 2 includes large and extra-large HDL parameters, 
with a strong effect of sex, which explains 21% of variance. This sex 
difference decreases with age, but the age by sex interaction is not 
significant. Group 3 primarily includes LDL composition param-
eters, which are affected by age, which explains 12% of the variance. 
This group shows a distinct aging pattern that is different in men 
and women: the highest level in men occurs at 45 yr old, whereas 
in women these lipoproteins become positively associated with age 
after 40 yr of age, reach a maximum that surpasses levels in men by 
age 60 and then become negatively associated with age again, with 
levels in men and women becoming similar by age 80. Group 4 (8% 
of variance explained by sex) mostly consists of very-low-density 
lipoprotein-related parameters that show a nonlinear positive asso-
ciation with age in men until around 50 yr of age, when they become 
negatively associated with age, while women show a mostly linear 
association with age (Fig. 5 and Supplementary Tables 9 and 10).

We compared our results with those from a recent study with 
measurements of metabolites at four timepoints, two of which (25 
and 50 yr old) fall into our studied age interval. The concordance 
in the direction of the sex effect is limited (63% of metabolites 
show the same effect direction at 25 and 52% at 50), which can be 
explained by differences in methodology, sample sizes and cohort 
effect. The higher discordance in our results at 50 yr old confirms 
our observation that this age is when phenotype levels in men and 
women become more similar.

Notably, 33 of the 231 NMR lipoproteins were previously found 
to be able to predict CVD incidence in 10–15 yr, independent of 
other established risk factors61. In our data, 11 of them showed a sig-
nificant age by sex interaction (Supplementary Table 8). For exam-
ple, the very-low-density lipoprotein particle concentration, which 
increases the risk of CVD, shows a positive association with age in 
men until age 45 and a negative association with age thereafter, but 
a positive linear association with age in women. Phenylalanine, one 
of the few NMR-profiled amino acids, is higher in men than women 
at all ages. Overall, all 33 traits exhibited some level of sex differ-
ences that reached nominal significance (P < 0.05) in either GAM 
or linear modeling analyses.

In general, the metabolomics data show that sex differences in 
most lipoproteins are age-dependent, with remarkable differences 
in established CVD-associated traits. These CVD-associated par-
ticles show divergent patterns of age-related sex differences. In most 
of the patterns, age starts to affect lipoprotein levels earlier in men 
than in women; however, the age effect is stronger in women and 
thus after 50–60 yr old lipoprotein levels in women become more 
extreme than in men.

Age-dependent sex differences in CVD-related proteins. It is often 
suggested that serum proteomics should be used in addition to 
major CMD biomarkers and risk factors in disease diagnostics. 
We therefore aimed to explore how sex differences in proteomics 
differ with age. For the LifeLines-DEEP (LLD) cohort, a subset of 
1,447 samples, we profiled serum proteins that represent established 
or potential CMD biomarkers using the Olink CVDIII assay. We 
observed that the effect of age on protein levels is stronger than 
that of sex. GDF-15 is the protein most affected by age, with 32% 
of its variance explained, and MMP-3 is the one most affected by 
sex, which explains 19% of its variance (Extended Data Fig. 5 and 
Supplementary Table 11). Age-related sex differences in these pro-
teins are less pronounced than in the clinical phenotypes discussed 
above, with only 7 of 92 proteins showing a significant age by sex 
interaction after Bonferroni adjustment (Supplementary Table 12 
and Extended Data Fig. 6). The seven proteins showing signatures 
of age by sex interaction include TFPI, PAI, TR-AP and COL1A1, 
which are considered potential biomarkers of CVD62–64. To our 
knowledge, this is the first observation of an age–sex interaction 
effect for PAI and TR-AP.

Discussion
In this work we present a systematic investigation of the age effect 
on sex differences for 51 clinical phenotypes, with a focus on cardio-
metabolic risk factors. We performed this analysis in a large popula-
tion cohort of 146,021 participants aged 20 to 80 yr, which allowed 
us to estimate the age effect on sex differences with high resolution. 
In general, blood clinical parameters showed a strong age effect in 
women around the age of menopause. CMD risk factors showed all 
varieties of age-related sex differences, ranging from no sex differ-
ences (for example, for BMI or physical activity score) to complex 
patterns of age and sex difference (for example, for blood pressure 
or lipid levels).

It is well known that sex differences in clinical phenotypes are 
widespread. While many studies on this topic have been published, 
many do not take age into account and use it as a covariate or group 
individuals into age bins6,65. This does not, however, allow for iden-
tification of the age associated with phenotype changes. Here we 
show that studying sex differences without taking age into account 
can lead to misleading conclusions. We find that phenotype differ-
ences between men and women are not static, and we observed age 
by sex interaction for 31% of the clinical traits we investigated. Some 
parameters, such as total cholesterol levels or neutrophil counts, 
do not show a sex difference when estimated over the whole age 
range but are significantly different between men and women when 
estimated separately before and after age 50. These results are yet 
another reminder that the reference intervals used in laboratory 
tests should take both age and sex into account.

We found that for 62% of all parameters with an age by sex inter-
action effect that are measured in a standard blood test, the effect 
of age on the phenotype levels strongly increases in women around 
the age of menopause. These include electrolyte levels and liver and 
kidney function parameters. In contrast, these phenotypes show 
a moderate almost linear effect of age in men. When we excluded 
the menopause period, only seven phenotypes showed age by sex 
interaction, all before menopause. These seven phenotypes were 
five lipid traits, albumin levels and DBP, suggesting that the mecha-
nisms underlying these phenotypes are potentially less dependent 
on menopause. After menopause, no age effect on sex differences 
in phenotype levels was observed. Menopause and the associated 
hormonal changes have a profound effect on the total body homeo-
stasis. While the exact mechanism behind this change is not com-
pletely understood, it is thought that the decline in estrogen plays a 
major role in these alterations66. One of the strongest changes that 
we detect at the age of menopause is for blood electrolyte levels, 
most likely as a consequence of estrogen’s effect on parathyroid 
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hormone levels, kidney function and body fluid regulation42,67. We 
examined the role of estrogen in driving menopause-associated 
changes by profiling age-related phenotype changes in women  

taking estrogen medications. Indeed, in these women the effect of 
age is weaker at time of menopause. Multiple phenotypes neverthe-
less change slowly in these women and have similar levels with those 
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Fig. 5 | Major patterns of age-dependent sex differences in lipoproteins. For each lipoprotein trait, the fraction of total variance explained by sex (green), 
age (orange) and age by sex interaction (blue) in addition to covariates (gray) is visualized in the circular bar plot. Bar height reflects the proportion 
of variance explained. The inner part of the plot is a dendrogram reflecting clustering of age-dependent patterns of sex differences. To illustrate these 
patterns, four cluster groups were selected. For each group (highlighted in color), plots of the trajectories of its lipoprotein members are shown in the 
corners for men (blue) and women (red), based on the fitted GAMs. Scaled levels of lipoproteins are depicted on the y axis. Solid lines denote lipoproteins 
with a significant age by sex interaction (Padj < 0.05 and Cohen’s f2 ≥ 0.01). Dotted lines denote lipoproteins for which the age by sex interaction is not 
significant. Abbreviations of lipoprotein names are expanded in Supplementary Table 8.
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in women not taking estrogen by the age of 70. A strong menopause-
associated age effect in blood parameters is often associated with an 
increase in disease risk. In our study, liver function markers (AST, 
ALT and gamma-glutamyl transferase) are strongly positively asso-
ciated with age around the age of menopause, most likely for several 
reasons, including an increase in liver disease risk after menopause44 
and medication usage. These findings highlight the importance of 
careful health monitoring of women during menopause.

Next, we aimed to characterize the patterns of age-related sex 
differences of cardiometabolic risk factors that were profiled among 
the 51 phenotypes studied. Our results support the known age and 
sex difference for a large fraction of CMD risk factors. In addition, 
we observe that some of these differences between men and women 
are also dependent on age, with the largest age effect observed in 
lipid levels and SBP. We see particularly strong age-related sex dif-
ferences for lipid levels, which is in line with previous studies13,16. 
Total cholesterol, LDL cholesterol and triglyceride levels are higher 
in younger men than in women, but women reach similar, or even 
higher, levels compared with men by the age of 55–60 yr. This 
increase in the age effect on lipid levels in women starts before 
menopause, at approximately age 40, and only becomes stronger at 
the age of menopause, suggesting alternative mechanisms in addi-
tion to hormone changes, in line with recent findings that age at 
natural menopause is not associated with CVD incidence68. These 
lipids are considered to have a causal effect on CVD21–23; thus, these 
findings suggest that disease prevention strategies may need to start 
at different ages in men and in women.

Further NMR profiling of 231 lipoproteins in a subset of 1,440 
individuals allowed us to classify lipoproteins into groups based on 
the age and sex contribution to variance in their levels and on pat-
terns of age-dependent sex differences. A previous study on age-
related lipid trajectories reported three groups as it focused on LDL 
cholesterol, HDL cholesterol and triglycerides but did not take sex 
into account16. In addition to replicating these published clusters, 
we see more divergent patterns of age-dependent sex differences, 
including lipids known to be associated with CVD61, highlighting 
how differently CVD biomarkers can behave with respect to age-
dependent sex differences.

Lifestyle factors are known to have a strong effect on human phe-
notypes, which is particularly important as they can be modified 
to improve health. We therefore aimed to identify lifestyle factors 
such as diet quality that explain the observed age-dependent sex dif-
ferences. However, we found that most of these age-dependent sex 
differences are not driven by lifestyle factors. In addition, we found 
profound sex and age differences modifying the effect of lifestyle fac-
tors on phenotypes, suggesting the importance of a sex- and age-tai-
lored approach in disease prevention based on lifestyle modification.

We acknowledge several limitations of our study. The main limi-
tations of our study are the self-reported CMD status, the limited 
age range (20–80 yr) and the cross-sectional design. The fact that 
most of our phenotype data are cross-sectional does not allow us to 
distinguish a genuine age effect from a generation-associated effect. 
For example, our data show that older people are shorter in height, 
which reflects a well-studied increase in height in the Netherlands 
in the 20th century, which is related to environmental causes and 
natural selection69 rather than the effect of age. We also observed 
generation effects for other phenotypes not explicitly discussed in 
this work. Our results suggest that in the 20th century duration 
of breastfeeding decreased and was the lowest in the 1970s, prob-
ably due to the increasing availability of commercially prepared 
formulas70 (Extended Data Fig. 7). In addition, it seems that before 
the 1980s boys were breastfed longer than girls. We also see a gen-
erational effect in the age by sex interaction pattern of the pheno-
type reflecting if a person has ever smoked. Women born before 
1950 smoked less often than men, while women born in the 1950s 
to 1960s are of the generation where women began to smoke often, 

sometimes even more than men (Extended Data Fig. 7). Large longi-
tudinal datasets will be needed to exclude such generational effects.

Over the last decades, an impressive effort has been made to 
improve CVD prevention, diagnosis and treatment in women. 
However, much can be done to create sex-tailored prevention and 
treatment strategies, the efficacy of which largely depends on infor-
mation about risk factors. The risk factors that have the strongest 
prognostic power for CVD are age, sex and ethnicity, which are all 
nonmodifiable factors71 that act by affecting a wide range of other 
phenotypes and as a consequence of the disease itself. Thus, it is 
extremely important to study the effect of age and sex on other 
CVD risk factors to be able to improve the way we monitor risk 
factor levels and prevent disease. We believe that our results will 
help to improve understanding of the relationship between age, sex 
and CVD risk factors. Future large longitudinal studies (including 
follow-up of this cohort) are crucial to link the age dynamics of sex 
differences in these risk factors to the long-term effect on diseases 
and to provide options for early disease prevention.

Methods
Data description. Lifelines is a multidisciplinary prospective population-based 
cohort study using a unique three-generation design to examine the health and 
health-related behaviors of 167,729 individuals living in the northeastern region 
of the Netherlands. It employs a broad range of investigative procedures to assess 
the biomedical, socio-demographic, behavioral, physical and psychological factors 
that contribute to the health and disease of the general population, with a special 
focus on multi-morbidity and complex genetics34,72. The Lifelines study was 
approved by the ethics committee of the University Medical Center Groningen, 
document number METc2007/152. All participants signed an informed consent 
form before enrollment.

In this study, we used the phenotype data collected from all available 
individuals at the first visit. We kept only samples for which there was sex and 
age information and fasting blood test measurements and focused on the age 
range from 20 to 80 yr due to low sample size outside this range. This resulted in 
data for 146,021 individuals (58% female). For these samples, we examined 51 
phenotypes representing 35 blood test parameters, 4 blood pressure measurements, 
6 anthropometric measurements, 6 lifestyle factors (current smoking, diet score73, 
Short QUestionnaire to ASsess Health enhancing physical activity (SQUASH) total 
physical activity score58, alcohol consumption, chronic stress score and average sleep 
duration) and self-reported type 2 diabetes status (Supplementary Table 1). CVD 
was defined as self-reported stroke, heart attack or angioplasty/bypass surgery.

In addition, we examined a subset of the Lifelines dataset, the LLD cohort, which 
consists of around 1,500 samples for which several omics layers were profiled74. For 
these samples, we looked at two relevant data types. First, we used plasma levels of 
92 proteins measured using the Olink CVDIII panel for 1,447 samples (57% female). 
These proteins were selected because they are known or potential CVD risk factors 
and biomarkers. Generation of these data was described previously75. Second, we 
used the NMR lipidomics data for 231 lipid particles that were available for 1,440 
samples (57% female), which was also previously described60.

Statistical analyses. Before all analyses, some right-skewed clinical phenotypes 
were log-transformed (see Supplementary Table 1 for the list of log-transformed 
phenotypes). Second, extreme outliers were removed by excluding observations 
that were more than three interquartile ranges below the first quartile or more 
than three interquartile ranges above the third quartile from the whole dataset, not 
taking age and sex into account.

We used two approaches to study sex differences. General sex differences 
present over the whole age span were determined using ordinary least squares 
linear modeling in R, adjusting for relevant covariates (see Covariate adjustment 
for description of the phenotypes used). Age-dependent nonlinear sex differences 
were studied by fitting a GAM with integrated smoothness estimation using the 
mgcv v.1.8-31 package in R76. For all phenotypes, we used spline smoothing, and 
smoothness selection was done using restricted maximum likelihood. Gaussian 
family was used for all phenotypes except binary ones such as smoking status, 
where Binomial family with the logit link function was used. We fitted a model of 
the following form:

Phenotype ∼ GAM (sex + s (age)+s (age, by = sex)+covariates) ,where 
s(age) denotes a spline smooth of age and s(age, by = sex) is an interaction term 
with smoothing for age by (ordered) sex interaction. The covariates used for 
different phenotypes are discussed below. Multiple testing correction was done 
separately for clinical phenotypes, lipoprotein levels and protein levels using 
Bonferroni correction. The age of phenotype change was first estimated visually 
based on the fitted model trajectories, then confirmed using a sliding window t-test 
in which a t-test was performed for each year of age, comparing mean phenotype 
levels in a window of 5 yr before versus 5 yr after that age.
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Due to the large sample size, even minor age by sex interaction effects were 
significant. To select the phenotypes with a considerable age by sex interaction, we 
estimated the phenotype’s effect size using Cohen’s f2 (refs. 77,78) and a threshold of 
f2 ≥ 0.01. Cohen’s f2 was calculated using the following formula:

f2 =
R2
full − R2

sub
1 − R2

full

where R2
full is the proportion of variance explained by the model with an age × sex 

interaction term and R2
sub is the proportion of variance explained by the model 

without an age × sex interaction term. In a similar fashion, we estimated the effect 
size of the overall sex differences when not taking age into account. Overall, we 
considered phenotypes to show an age by sex interaction if the P value of the 
age × sex interaction term in the GAM was significant after Bonferroni correction 
for multiple testing and the effect size of this interaction had a Cohen’s f2 ≥ 0.01.

Finally, we compared the linear model with and without the age by sex 
interaction term and a GAM model with and without the age by sex interaction 
term by calculating mean squared error based on tenfold cross-validation using the 
gamclass v.0.62.3 R package.

Covariate adjustment. All selected phenotypes were analyzed using GAMs, first 
without any covariate adjustment and then adding current smoking, hormone 
therapy (estrogens and progestogens) and nonlinear BMI effect to the GAM. 
Hormone therapy was queried only for women by extracting Anatomical 
Therapeutic Chemical (ATC) code G03, excluding only androgens (G03B) and 
plain anti-androgens (G03HA). In addition, we checked if the observed patterns 
are confounded by other CMD risk factors by adding additional covariates to the 
base model. Here, we used the following nonlinear covariates: BMI, glucose levels, 
total cholesterol, HDL cholesterol and SBP; and the following linear covariates: 
current smoking and type 2 diabetes. We excluded a covariate from the model if 
it is relevant to the phenotype of interest (used as an independent variable). Thus, 
we did not correct lipid phenotypes for total and HDL cholesterol, blood pressure 
phenotypes for SBP, weight parameters for BMI and glycated hemoglobin for 
glucose levels.

The effects of several medication groups on age-related sex differences were 
investigated by fitting the GAM model separately for men and women and for 
medication users versus nonusers. First, we did this for hormone therapy (ATC 
code G03 excluding only androgens (G03B) and plain anti-androgens (G03HA)). 
Next, we checked the effect on CVD risk factors of other CVD-related medication 
categories: statins (ATC code C10AA0) and anti-hypertensive drugs (general anti-
hypertensives (ATC code C02), diuretics excluding vasopressin antagonists (C03 
excluding C03X), beta-blockers (C07), calcium channel blockers (C08) and agents 
acting on the renin-angiotensin system (C09)). In addition, we checked the effect 
of calcium supplementation (ATC code A12A) on serum calcium levels.

Leave-out analysis to estimate age by sex interactions independent of menopause. 
To check the effect of age on sex differences excluding the menopause period, 
we split our cohort into two groups: before menopause (age 20–45) and after 
menopause (age 55–80) and ran the primary analysis (GAM with age, sex and age 
by sex interaction terms) in these two groups separately, calculating the number of 
phenotypes with a significant age by sex interaction (Bonferroni-adjusted P < 0.05 
and Cohen’s f2 ≥ 0.01). To compare the sex effect in these two groups, we performed 
a two-sided Wilcoxon test on the Cohen’s f2 of the sex term in the GAM run 
without age by sex interaction.

Estimating the effect of lifestyle factors on phenotypes. We estimated the effect of 
lifestyle factors on phenotypes showing a significant age by sex interaction. For 
each phenotype, we fitted a GAM with penalization (select = T) to select the 
significant predictors using the following seven lifestyle factors as predictors: 
current smoking, chronic stress score (measuring long-term difficulties 
experienced during the last year), physical activity score, diet quality score, 
amount of alcohol consumption, average sleep duration per 24 h and medication 
usage. For each phenotype, we selected a set of relevant medication categories 
(erythrocyte count: ATC codes B03XA and G03B; neutrophil counts: N05A, J01 
and A11; hematocrit: A10; calcium: A12; sodium: N03, C03, C09 and A02BC; 
phosphate: A02A, C03 and A10A; alkaline phosphatase: G03 and N03; ALT: 
N03, J01 and M01A; AST: N03, J01, M01A and N02BE01; lipids: C10 and uric 
acid: C03A, C03C, M04AA01 and M04AB03). No medication was used for blood 
albumin levels.

For each phenotype, we built a GAM using age, sex and the seven lifestyle 
factors together with their two-way interactions with age, their two-way 
interactions with sex and their three-way interactions with both age and sex as 
predictors and phenotype levels as outcome. Sex, medication and smoking status 
were added to the model as (nonordered) factors.

When interaction of a continuous variable with a factor is present in the 
mgcv GAMs, a separate smooth is estimated for a continuous variable for all 
observations, together with deviations from this smooth for each factor level. 
Therefore, for each continuous lifestyle factor, there are six terms in the model: 
(1) a smooth effect of the lifestyle factor for both sexes combined together, (2) its 

smooth interaction with age for both sexes, (3) the additional smooth effect of the 
lifestyle factor in men, (4) the additional smooth effect of the lifestyle factor in 
women, (5) the additional smooth interaction of lifestyle factor with age for men 
and (6) the additional smooth interaction of lifestyle factor with age for women.

We considered a predictor to be selected during the penalization approach if 
it had a P < 0.05. To test model stability, we ran 50 bootstraps for this model, and, 
for each predictor, we plotted how many times it was selected as significant by the 
GAM penalization approach.

New-onset CVD prediction model. We further tested if any of the baseline 
phenotypes could predict CVD events in the following 10 yr. This test was based 
on information about new CVD cases in Lifelines participants that was collected 
approximately 10 yr later (by timepoint 3a). Baseline sample inclusion criteria 
were: no patients with CVD (no stroke, no heart attack and no angioplasty/
bypass surgery) and no statins or anti-hypertensive drug users. New CVD 
cases were defined as those participants who indicated that any of the CVD 
phenotypes (heart attack, stroke and CVD in general) had occurred since 
their baseline visit. We thus included the 77,348 participants who had received 
the questionnaires and fulfilled the inclusion criteria at baseline. Of these 
participants, 1,436 developed CVD phenotypes within the subsequent 10 yr. We 
then built a logistic GAM with penalization (select = T) per phenotype in which 
we tested the effects of age, sex, current phenotype and four interaction terms: 
age by sex, phenotype by age, phenotype by sex and a three-way interaction 
of phenotype, age and sex. We controlled false discovery rate by applying 
Bonferroni correction.

Sex–age interaction analysis of lipidomics data. NMR lipidomics data for 231 lipid 
and lipoprotein traits were available for 1,440 samples. We z-transformed the 
data before analyses to ensure that the different lipoproteins scaled similarly. We 
corrected these data for covariates by adding current smoking, statin usage and a 
nonlinear term for BMI to the GAM model. We performed hierarchical clustering 
(hclust) of the resulting fitted values (predicted at 300 age points for each sex) 
using Euclidean distance and the unweighted pair group method with arithmetic 
mean (UPGMA) agglomeration method.

Sex–age interaction analysis of CVD-related proteins. For 1,447 samples, plasma 
levels of 92 proteins were measured using the Olink CVDIII panel. These data 
were z-transformed before analyses. We corrected data for covariates by adding 
linear terms for blood cell counts, current smoking and hormone therapy (G03 
excluding G03B and G03HA), as these covariates were previously found to affect 
protein levels75. We performed hierarchical clustering (hclust) of the resulting fitted 
values (predicted at 300 age points for each sex) using Euclidean distance and the 
UPGMA agglomeration method.

Calculation of explained variance. We calculated the fraction of total variance of 
each metabolic and proteomic trait explained by the covariates sex, age and age 
by sex interaction. To do so, we fitted four separate GAMs and calculated the 
additional fraction of variance explained by sex, age and age by sex interaction 
expressed as the squared Pearson correlation between observed and predicted 
values. To ensure the stability of results, we used the average explained variance 
obtained from fivefold cross-validation of the procedure described above repeated 
ten times. The results are presented in a circular bar plot which was plotted using 
the R package ‘circlize’ v.0.4.14.

In addition, we estimated the variance explained by age, sex and their 
interaction for all NMR lipoproteins together and for each lipoprotein cluster 
using PERMANOVA. PERMANOVA was performed using the adonis2 function 
from the vegan 2.5-6 R package, using Euclidean distance to estimate sample 
dissimilarity and 1,000 permutations to calculate term significance.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Participant phenotype data are not publicly available to protect participants’ 
privacy. These data can be requested by sending a scientific proposal to the 
Lifelines Biobank (https://www.lifelines.nl/researcher/how-to-apply). All data 
access to the Lifelines population cohort must follow the informed consent 
regulations of the Medical Ethics Review Board of the University Medical Center 
Groningen described at http://lifelines.nl/. The proteomics data used in this 
study are available at the European Genome-Phenome Archive under accession 
EGAD00001009268. Source data are provided with this paper.

Code availability
Analysis codes are available via: https://github.com/DashaZhernakova/
umcg_scripts/tree/master/age_sex_interactions_paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Age-dependent sex differences for hematological and metabolic phenotypes. The 16 For each phenotype, the plots show 
the density of observations for men (blue contours) and women (red contours) and fitted lines obtained using GAM: men (blue) and women (red). 
Confidence intervals (+/− 1.96 Se) around the lines are depicted in a more transparent hue. For binary phenotypes, colored bars represent the frequency 
of the phenotype in men (blue) and women (red). Cohen’s f 2 reflects the effect size of the age by sex interaction. GAM interaction P indicates the 
significance of the age by sex interaction term.
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Electrolytes and renal function paramters

138

140

142

144

20 40 60 80
age

So
di

um
 (m

m
ol

/L
)

Sodium
Cohen's f^2 = 0.0370

GAM interaction P < 2.23e−308

3.2

3.6

4.0

4.4

20 40 60 80
age

Po
ta

ss
iu

m
 (m

m
ol

/L
)

Potassium
Cohen's f^2 = 0.0007

GAM interaction P = 1.4e−18

2.1

2.2

2.3

2.4

20 40 60 80
age

C
al

ci
um

 (m
m

ol
/L

)

Calcium
Cohen's f^2 = 0.0568

GAM interaction P < 2.23e−308

0.6

0.8

1.0

1.2

20 40 60 80
age

Ph
os

ph
at

e 
(m

m
ol

/L
)

Phosphate
Cohen's f^2 = 0.0247

GAM interaction P = 1.33e−278

50

60

70

80

90

100

20 40 60 80
age

C
re

at
in

in
e 

(u
m

ol
/L

)

Creatinine
Cohen's f^2 = 0.0017

GAM interaction P = 2.73e−49

3

4

5

6

7

8

20 40 60 80
age

U
re

a 
(m

m
ol

/L
)

Urea
Cohen's f^2 = 0.0094

GAM interaction P = 1.39e−103

Liver function parameters and inflammatory markers

20

30

20 40 60 80
age

As
pa

rta
te

 a
m

in
ot

ra
ns

fe
ra

se
 (U

/L
)

Aspartate aminotransferase
Cohen's f^2 = 0.0177

GAM interaction P = 4.72e−201

10

20

30

40

50

20 40 60 80
age

Al
an

in
e 

am
in

ot
ra

ns
fe

ra
se

 (U
/L

)

Alanine aminotransferase
Cohen's f^2 = 0.0297

GAM interaction P < 2.23e−308

40

60

80

100

20 40 60 80
age

Al
ka

lin
e 

ph
os

ph
at

as
e 

(U
/L

)

Alkaline phosphatase
Cohen's f^2 = 0.0333

GAM interaction P < 2.23e−308

20

40

60

20 40 60 80
age

G
am

m
a 

gl
ut

am
yl

 tr
an

sf
er

as
e 

(U
/L

)

Gamma glutamyl transferase
Cohen's f^2 = 0.0081

GAM interaction P = 3.05e−90

42

45

48

20 40 60 80
age

Al
bu

m
in

 (g
/L

)

Albumin
Cohen's f^2 = 0.0482

GAM interaction P < 2.23e−308

1

2

3

4

20 40 60 80
age

H
ig

h 
se

ns
iti

vi
ty

 C
−r

ea
ct

iv
e 

pr
ot

ei
n

(m
g/

L)

High sensitivity C−reactive protein
(mg/L)

Cohen's f^2 = 0.0084
GAM interaction P = 1.37e−78

Thyroid function paramters

1

2

3

4

20 40 60 80
age

Th
yr

oi
d 

st
im

ul
at

in
g 

ho
rm

on
e 

(m
U

/L
)

Thyroid stimulating hormone
Cohen's f^2 = 0.0005

GAM interaction P = 0.00251

12.5

15.0

17.5

20.0

20 40 60 80
age

Fr
ee

 T
4 

(p
m

ol
/L

)

Free T4
Cohen's f^2 = 0.0088

GAM interaction P = 1.66e−68

4.0

4.5

5.0

5.5

6.0

6.5

20 40 60 80
age

Fr
ee

 T
3 

(p
m

ol
/L

)

Free T3
Cohen's f^2 = 0.0060

GAM interaction P = 2.89e−45

0.2

0.3

0.4

0.5

20 40 60 80
age

U
ric

 a
ci

d 
(m

m
ol

/L
)

Uric acid
Cohen's f^2 = 0.0113

GAM interaction P = 1.06e−125

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Age-dependent sex differences for electrolytes, kidney, liver and thyroid function paramters. For each phenotype, the plots 
show the density of observations for men (blue contours) and women (red contours) and fitted lines obtained using GAM: men (blue) and women (red). 
Confidence intervals (+/− 1.96 Se) around the lines are depicted in a more transparent hue. For binary phenotypes, colored bars represent the frequency 
of the phenotype in men (blue) and women (red). Cohen’s f 2 reflects the effect size of the age by sex interaction. GAM interaction P indicates the 
significance of the age by sex interaction term.

NATuRe CARDioVASCuLAR ReSeARCh | www.nature.com/natcardiovascres

http://www.nature.com/natcardiovascres


ArticlesNaTurE CarDIovaSCuLar rESEarCH ArticlesNaTurE CarDIovaSCuLar rESEarCH

Anthropometric traits

20

25

30

35

20 40 60 80
age

B
od

y 
m

as
s 

in
de

x 
(k

g/
M

^2
)

Body mass index
Cohen's f^2 = 0.0015

GAM interaction P = 1.5e 43

60

80

100

120

20 40 60 80
age

W
ei

gh
t (

kg
)

Weight
Cohen's f^2 = 0.0024

GAM interaction P = 5.59e 68

80

90

100

110

120

20 40 60 80
age

H
ip

 c
irc

um
fe

re
nc

e 
(c

m
)

Hip circumference
Cohen's f^2 = 0.0020

GAM interaction P = 1.35e 58

160

170

180

190

200

20 40 60 80
age

Le
ng

th
 (

cm
)

Length
Cohen's f^2 = 0.0003

GAM interaction P = 3.99e 07

70

80

90

100

110

120

20 40 60 80
age

W
ai

st
 c

irc
um

fe
re

nc
e 

(c
m

)

Waist circumference
Cohen's f^2 = 0.0022

GAM interaction P = 9.14e 63

0.7

0.8

0.9

1.0

1.1

20 40 60 80
age

W
ai

st
to

hi
p 

ra
tio

 (
N

A
)

Waist to hip ratio
Cohen's f^2 = 0.0076

GAM interaction P = 4.7e 221

Blood pressure parameters

60

70

80

90

100

20 40 60 80
age

D
ia

st
ol

ic
 b

lo
od

 p
re

ss
ur

e 
(m

m
 H

g)

Diastolic blood pressure
Cohen's f^2 = 0.0084

GAM interaction P = 5.43e 246

110

130

150

20 40 60 80
age

S
ys

to
lic

 b
lo

od
 p

re
ss

ur
e 

(m
m

 H
g)

Systolic blood pressure
Cohen's f^2 = 0.0110

GAM interaction P = 8.35e 322

80

90

100

110

120

20 40 60 80
age

M
ea

n 
av

er
ag

e 
pr

es
su

re
 (

m
m

 H
g)

Mean average pressure
Cohen's f^2 = 0.0033

GAM interaction P = 1.2e 95

50

60

70

80

90

20 40 60 80
age

P
ul

se
 r

at
e 

(b
ea

ts
 p

er
 m

in
ut

e)

Pulse rate
Cohen's f^2 = 0.0005

GAM interaction P = 2.38e 14

Lifestyle factors

0.00

0.25

0.50

0.75

1.00

20 40 60 80
age

C
ur

re
nt

 s
m

ok
in

g 
fr

eq
ue

nc
y

Current smoking
Cohen's f^2 = 0.0007

GAM interaction P = 3.01e 16

10

20

30

40

20 40 60 80
age

D
ie

t s
co

re

Diet score
Cohen's f^2 = 0.0002

GAM interaction P = 0.000179

0

5000

10000

15000

20 40 60 80
age

P
hy

si
ca

l a
ct

iv
ity

 s
co

re

Physical activity score
Cohen's f^2 = 0.0011

GAM interaction P = 2.72e 27

0

2

4

6

8

20 40 60 80
age

C
hr

on
ic

 s
tr

es
s 

sc
or

e

Chronic stress score
Cohen's f^2 = 0.0018

GAM interaction P = 1.63e 48

0

10

20

30

20 40 60 80
age

A
lc

oh
ol

 in
ta

ke
 (

g/
da

y)

Alcohol intake
Cohen's f^2 = 0.0023

GAM interaction P = 5.27e 58

6.0

6.5

7.0

7.5

8.0

20 40 60 80
age

A
ve

ra
ge

 s
le

ep
 d

ur
at

io
n

Average sleep duration
Cohen's f^2 = 0.0090

GAM interaction P = 2.6e 253

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Age-dependent sex differences for anthropometric phenotypes and lifestyle factors. For each phenotype, the plots show 
the density of observations for men (blue contours) and women (red contours) and fitted lines obtained using GAM: men (blue) and women (red). 
Confidence intervals (+/− 1.96 Se) around the lines are depicted in a more transparent hue. For binary phenotypes, colored bars represent the frequency 
of the phenotype in men (blue) and women (red). Cohen’s f 2 reflects the effect size of the age by sex interaction. GAM interaction P indicates the 
significance of the age by sex interaction term.
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Extended Data Fig. 4 | Lifestyle factors affect blood phenotypes in an age- and sex-dependent way. phenotypes showing a significant age by sex 
interaction (columns) were fitted using GAMs with age, sex, lifestyle factors and all their 2- and 3-way interactions as predictors (rows). 50 bootstraps 
were run to evaluate model stability. The circle size and color reflect the number of bootstraps in which the corresponding predictor term was significant, 
that is predictors with a dark blue circle are important for predicting the phenotype and predictors with a white/light blue circle have no or a weak 
effect on the phenotype. (A) Lifestyle factors partly explain age-dependent sex differences in phenotype levels. The plots reflect the comparison of term 
significance without (upper plot) and with (bottom plot) lifestyle factors as covariates. (B) Lifestyle factors affect blood phenotypes in an age- and sex-
dependent way. No medication was used for albumin levels, therefore the corresponding cells contain NAs.
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Extended Data Fig. 5 | Variance in protein levels explained by age, sex and their interaction. The fraction of total variance explained by sex (green), age 
(orange) and age by sex interaction (purple) in addition to covariates (grey) is visualized in the circular bar plot for each protein. Bar height reflects the 
explained variance proportion. The inner part of the plot represents hierarchical clustering of age-dependent patterns of sex differences.
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Extended Data Fig. 6 | Age-dependent sex differences for CVD-related circulating proteins. For each protein, the plots show scaled values for each 
person and fitted lines obtained using GAMs: men (blue) and women (red). Confidence intervals (+/− 1.96 Se) around the lines are depicted in a more 
transparent hue. Fsq (Cohen’s f 2) reflects the effect size of the age by sex interaction. GAM interaction p indicates the significance of the age by sex 
interaction term. Only results with a significant age by sex interaction after Bonferroni correction are plotted.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection No software was used for data collection

Data analysis All data analyses were conducted using publicly available tools. Data analysis was performed in R using the following R packages: mgcv (v. 
1.8-31 ), gamclass (v. 0.62.3), vegan (v. 2.5-6), circlize (v. 0.4.14) and custom scripts publicly available at: https://github.com/
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Biobank (https://www.lifelines.nl/researcher/how-to-apply). All data access to the Lifelines population cohort must follow the informed consent regulations of the 
Medical Ethics Review Board of the University Medical Center Groningen described at http://lifelines.nl/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The aim of this paper was to study age effect on sex differences in clinical and molecular phenotypes, thus all analyses were 
sex-based.

Population characteristics Our study involved 146,021 individuals (58% female) across an age span from 20 to 80 years from the Dutch population-
based cohort Lifelines. The average age of participants was 45 years old (SD = 12).

Recruitment Participants of the Lifelines cohort have been recruited in three stages: recruitment of an index population via general 
practitioners, subsequent inclusion of their family members, and online self-registration. This cohort is considered 
representative of adult population of the North of the Netherlands. Thus some of the reported results may be population-
specific and not generalizable to non-European ethnicities. Another potential bias is that CVD status was self-reported, which 
likely leads to underestimation of disease incidence and the number of new CVD events, especially for women. In addition, 
this study only included individuals between 20 and 80 years of age, thus the sex differences in childhood and older age could 
not be estimated.

Ethics oversight The Lifelines study was approved by the ethics committee of the University Medical Center Groningen, document number 
METc2007/152. All Lifelines participants signed an informed consent form prior to sample collection. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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All studies must disclose on these points even when the disclosure is negative.

Sample size Our study involved 146,021 individuals from the Dutch population-based cohort Lifelines. For a subset of this cohort additional data were 
examined: plasma proteomics was available for 1,447 samples and NMR lipidomics was available for 1,440 samples. In order to ensure the 
analysis power, our study includes as many samples as possible, thus no sample size calculation was performed.

Data exclusions In this study we selected participants across an age span from 20 to 80 years due to low sample size outside this range. To meet the 
requirements of generalized additive models we removed extreme outliers by excluding observations that were more than three interquartile 
ranges below the first quartile or more than three interquartile ranges above the third quartile from the whole dataset, not taking age and sex 
into account. We report both the results without covariate correction and the results corrected for current smoking, hormone therapy,BMI,  
glucose levels, total cholesterol, HDL cholesterol, systolic blood pressure and type 2 diabetes.

Replication To ensure the reproducibility of our results we performed 10-fold cross-validation and bootstrapping.

Randomization This is human cohort-based analysis. The sample collection and sequencing were performed in a random order. No extra randomization was 
done for this study.

Blinding This study is a human cohort-based, observational study. Thus no blinding was performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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