Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cre toxicity in mouse models of cardiovascular physiology and disease

Abstract

The Cre–LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre–LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, which are independent of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilizing the Cre–LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cre–LoxP-mediated recombination of target genes.
Fig. 2: Organs affected by Cre toxicity.
Fig. 3: Endothelial CreERT2 activation impairs retinal angiogenesis.
Fig. 4: Cre/CreER-induced toxicity carries hallmarks of known cellular responses to DNA damage.

Similar content being viewed by others

References

  1. Orban, P. C., Chui, D. & Marth, J. D. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6861–6865 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Agah, R. et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmidt, A. et al. lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res. Brain Res. Protoc. 3, 54–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Li, S. et al. Overview of the reporter genes and reporter mouse models. Animal Model. Exp. Med. 1, 29–35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C. M., Krohn, J., Bhattacharya, S. & Davies, B. A comparison of exogenous promoter activity at the ROSA26 locus using a PhiiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS ONE 6, e23376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawamoto, S. et al. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470, 263–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Sakai, K. & Miyazaki, J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Heffner, C. S. et al. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3, 1218 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Alva, J. A. et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev. Dyn. 235, 759–767 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Feil, R. et al. Ligand-activated site-specific recombination in mice. Proc. Natl Acad. Sci. USA 93, 10887–10890 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl Acad. Sci. USA 92, 6991–6995 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. et al. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valny, M., Honsa, P., Kirdajova, D., Kamenik, Z. & Anderova, M. Tamoxifen in the mouse brain: implications for fate-mapping studies using the tamoxifen-inducible Cre–loxP system. Front. Cell. Neurosci.10, 243 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhong, Q. et al. Boronic prodrug of 4-hydroxytamoxifen is more efficacious than tamoxifen with enhanced bioavailability independent of CYP2D6 status. BMC Cancer 15, 625 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Thanos, A. et al. Evidence for baseline retinal pigment epithelium pathology in the Trp1-Cre mouse. Am. J. Pathol. 180, 1917–1927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lam, P. T. et al. Considerations for the use of Cre recombinase for conditional gene deletion in the mouse lens. Hum. Genomics 13, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Amin, S. R. et al. Viral vector-mediated Cre recombinase expression in substantia nigra induces lesions of the nigrostriatal pathway associated with perturbations of dopamine-related behaviors and hallmarks of programmed cell death. J. Neurochem. 150, 330–340 (2019).

    Article  CAS  Google Scholar 

  25. Forni, P. E. et al. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J. Neurosci. 26, 9593–9602 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeannotte, L. et al. Unsuspected effects of a lung-specific Cre deleter mouse line. Genesis 49, 152–159 (2011).

    Article  PubMed  Google Scholar 

  27. Balkawade, R. S. et al. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am. J. Physiol. Renal Physiol. 316, F1026–F1040 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bohin, N., Carlson, E. A. & Samuelson, L. C. Genome toxicity and impaired stem cell function after conditional activation of CreERT2 in the intestine. Stem Cell Reports 11, 1337–1346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huh, W. J., Mysorekar, I. U. & Mills, J. C. Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of ‘floxed’ alleles. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G368–G380 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y., Choi, P. S., Casey, S. C. & Felsher, D. W. Activation of Cre recombinase alone can induce complete tumor regression. PLoS ONE 9, e107589 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Janbandhu, V. C., Moik, D. & Fassler, R. Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle 13, 462–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Ng, W. A., Grupp, I. L., Subramaniam, A. & Robbins, J. Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ. Res. 68, 1742–1750 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Sohal, D. S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res. 89, 20–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Pugach, E. K., Richmond, P. A., Azofeifa, J. G., Dowell, R. D. & Leinwand, L. A. Prolonged Cre expression driven by the α-myosin heavy chain promoter can be cardiotoxic. J. Mol. Cell. Cardiol. 86, 54–61 (2015).

  35. Garbern, J. et al. Analysis of Cre-mediated genetic deletion of Gdf11 in cardiomyocytes of young mice. Am. J. Physiol. Heart. Circ. Physiol. 317, H201–H212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McLean, B. A. et al. PI3Kα is essential for the recovery from Cre/tamoxifen cardiotoxicity and in myocardial insulin signalling but is not required for normal myocardial contractility in the adult heart. Cardiovasc. Res. 105, 292–303 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Lexow, J., Poggioli, T., Sarathchandra, P., Santini, M. P. & Rosenthal, N. Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver. Dis. Model Mech. 6, 1470–1476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bersell, K. et al. Moderate and high amounts of tamoxifen in αMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis. Model Mech. 6, 1459–1469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Theis, M. et al. Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29, 1–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Sorensen, I., Adams, R. H. & Gossler, A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. Okabe, K. et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46, 74–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Payne, S., Val, S. D. & Neal, A. Endothelial-specific Cre mouse models. Arterioscler. Thromb. Vasc. Biol. 38, 2550–2561 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brash, J., Bolton, R., Rashbrook, V., Denti, L. & Ruhrberg, C. Tamoxifen-activated CreERT impairs retinal angiogenesis independently of gene deletion. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.120.317025 (2020).

  46. Kanki, Y. et al. Bivalent-histone-marked immediate-early gene regulation is vital for VEGF-responsive angiogenesis. Cell Rep. 38, 110332 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ruhrberg, C. & Bautch, V. L. Neurovascular development and links to disease. Cell. Mol. Life Sci. 70, 1675–1684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pitulescu, M. E., Schmidt, I., Benedito, R. & Adams, R. H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5, 1518–1534 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Powner, M. B. et al. Visualization of gene expression in whole mouse retina by in situ hybridization. Nat. Protoc. 7, 1086–1096 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Toullec, A. et al. HIF-1α deletion in the endothelium, but not in the epithelium, protects from radiation-induced enteritis. Cell Mol. Gastroenterol. Hepatol. 5, 15–30 (2018).

    Article  PubMed  Google Scholar 

  51. Mohamed, R. et al. Inducible overexpression of endothelial proNGF as a mouse model to study microvascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 746–757 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Naldini, A. & Carraro, F. Role of inflammatory mediators in angiogenesis. Curr. Drug Targets Inflamm. Allergy 4, 3–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Limbourg, A. et al. MAP-kinase activated protein kinase 2 links endothelial activation and monocyte/macrophage recruitment in arteriogenesis. PLoS ONE 10, e0138542 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol. 14, 133–144 (2017).

    PubMed  Google Scholar 

  55. Higashi, A. Y. et al. Direct hematological toxicity and illegitimate chromosomal recombination caused by the systemic activation of CreERT2. J. Immunol. 182, 5633–5640 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kurachi, M., Ngiow, S. F., Kurachi, J., Chen, Z. & Wherry, E. J. Hidden caveat of inducible Cre recombinase. Immunity 51, 591–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Zeitrag, J., Alterauge, D., Dahlstrom, F. & Baumjohann, D. Gene dose matters: considerations for the use of inducible CD4–CreERT2 mouse lines. Eur. J. Immunol. 50, 603–605 (2020).

    Article  PubMed  CAS  Google Scholar 

  58. Popov, D. Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. Int. J. Diabetes Mellit. 2, 189–195 (2010).

    Article  CAS  Google Scholar 

  59. Sweet, I. R. et al. Endothelial inflammation induced by excess glucose is associated with cytosolic glucose 6-phosphate but not increased mitochondrial respiration. Diabetologia 52, 921–931 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hempel, A. et al. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ. Res. 81, 363–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Karbach, S. et al. Hyperglycemia and oxidative stress in cultured endothelial cells–a comparison of primary endothelial cells with an immortalized endothelial cell line. J Diabetes Complications 26, 155–162 (2012).

    Article  PubMed  Google Scholar 

  62. Duvillie, B. et al. Phenotypic alterations in insulin-deficient mutant mice. Proc. Natl Acad. Sci. USA 94, 5137–5140 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. Y. et al. RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J. Biol. Chem. 281, 2649–2653 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Pomplun, D., Florian, S., Schulz, T., Pfeiffer, A. F. & Ristow, M. Alterations of pancreatic beta-cell mass and islet number due to Ins2-controlled expression of Cre recombinase: RIP-Cre revisited; part 2. Horm. Metab. Res. 39, 336–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Silver, D. P. & Livingston, D. M. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol. Cell 8, 233–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Thyagarajan, B., Guimaraes, M. J., Groth, A. C. & Calos, M. P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Semprini, S. et al. Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res. 35, 1402–1410 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Norbury, C. J. & Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene 23, 2797–2808 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Xiao, Y. et al. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS ONE 7, e41097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu, J., Nguyen, M. T., Nakamura, E., Yang, J. & Mackem, S. Cre-mediated recombination can induce apoptosis in vivo by activating the p53 DNA damage-induced pathway. Genesis 50, 102–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X., Lauth, A., Wan, T. C., Lough, J. W. & Auchampach, J. A. Myh6-driven Cre recombinase activates the DNA damage response and the cell cycle in the myocardium in the absence of loxP sites. Dis. Model Mech. https://doi.org/10.1242/dmm.046375 (2020).

  73. Rehmani, T., Salih, M. & Tuana, B. S. Cardiac-specific cre induces age-dependent dilated cardiomyopathy (DCM) in mice. Molecules https://doi.org/10.3390/molecules24061189 (2019).

  74. Pfeifer, A., Brandon, E. P., Kootstra, N., Gage, F. H. & Verma, I. M. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc. Natl Acad. Sci. USA 98, 11450–11455 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baba, Y., Nakano, M., Yamada, Y., Saito, I. & Kanegae, Y. Practical range of effective dose for Cre recombinase-expressing recombinant adenovirus without cell toxicity in mammalian cells. Microbiol. Immunol. 49, 559–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Naiche, L. A. & Papaioannou, V. E. Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 45, 768–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Gangoda, L. et al. Cre transgene results in global attenuation of the cAMP/PKA pathway. Cell Death Dis. 3, e365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sassone-Corsi, P. The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a011148 (2012).

  79. Pepin, G. et al. Cre-dependent DNA recombination activates a STING-dependent innate immune response. Nucleic Acids Res. 44, 5356–5364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gerhart-Hines, Z. et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol Cell 44, 851–863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Merksamer, P. I. et al. The sirtuins, oxidative stress and aging: an emerging link. Aging 5, 144–150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roth, M. & Chen, W. Y. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609–1620 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Potente, M. et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21, 2644–2658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kitada, M., Ogura, Y. & Koya, D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging 8, 2290–2307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goodwin, L. O. et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res. 29, 494–505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cain-Hom, C. et al. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification. Nucleic Acids Res. 45, e62 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewis, A. E., Vasudevan, H. N., O’Neill, A. K., Soriano, P. & Bush, J. O. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev. Biol. 379, 229–234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harkins, S. & Whitton, J. L. Chromosomal mapping of the αMHC–MerCreMer transgene in mice reveals a large genomic deletion. Transgenic Res. 25, 639–648 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Declercq, J. et al. Metabolic and behavioural phenotypes in nestin-Cre mice are caused by hypothalamic expression of human growth hormone. PLoS ONE 10, e0135502 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Fernandez-Chacon, M. et al. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat. Commun. 10, 2262 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ved, N., Curran, A., Ashcroft, F. M. & Sparrow, D. B. Tamoxifen administration in pregnant mice can be deleterious to both mother and embryo. Lab. Anim. 53, 630–633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wyatt, K. D., Sakamoto, K. & Watford, W. T. Tamoxifen administration induces histopathologic changes within the lungs of Cre-recombinase-negative mice: a case report. Lab. Anim. https://doi.org/10.1177/00236772211042968 (2021).

  93. Keeley, T. M., Horita, N. & Samuelson, L. C. Tamoxifen-induced gastric injury: effects of dose and method of administration. Cell Mol. Gastroenterol. Hepatol. 8, 365–367 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Patel, S. H. et al. Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics. Sci Rep. 7, 8991 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sun, M. R., Steward, A. C., Sweet, E. A., Martin, A. A. & Lipinski, R. J. Developmental malformations resulting from high-dose maternal tamoxifen exposure in the mouse. PLoS ONE 16, e0256299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahn, S. H. et al. Tamoxifen suppresses pancreatic beta-cell proliferation in mice. PLoS ONE 14, e0214829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alsina-Sanchis, E. et al. Intraperitoneal oil application causes local inflammation with depletion of resident peritoneal macrophages. Mol. Cancer Res. 19, 288–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Brash, J. T., Denti, L., Ruhrberg, C. & Bucher, F. VEGF188 promotes corneal reinnervation after injury. JCI Insight https://doi.org/10.1172/jci.insight.130979 (2019).

  99. Fantin, A. et al. NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121, 2352–2362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jahn, H. M. et al. Refined protocols of tamoxifen injection for inducible DNA recombination in mouse astroglia. Sci Rep. 8, 5913 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Carlos-Reyes, A., Muniz-Lino, M. A., Romero-Garcia, S., Lopez-Camarillo, C. & Hernandez-de la Cruz, O. N. Biological adaptations of tumor cells to radiation therapy. Front. Oncol. 11, 718636 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wilm, T. P. et al. Restricted differentiative capacity of Wt1-expressing peritoneal mesothelium in postnatal and adult mice. Sci Rep. 11, 15940 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stearns, V. et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl Cancer Inst. 95, 1758–1764 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Fan, Q., Mao, H., Xie, L. & Pi, X. Prolyl hydroxylase domain-2 protein regulates lipopolysaccharide-induced vascular inflammation. Am. J. Pathol. 189, 200–213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hameyer, D. et al. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol. Genomics 31, 32–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6, e18556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Luo, W. et al. Arterialization requires the timely suppression of cell growth. Nature 589, 437–441 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Meuwissen, R., Linn, S. C., van der Valk, M., Mooi, W. J. & Berns, A. Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20, 6551–6558 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Han, X. et al. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell https://doi.org/0.1016/j.stem.2021.01.007 (2021).

  113. Tycko, J. et al. Mitigation of off-target toxicity in CRISPR–Cas9 screens for essential noncoding elements. Nat. Commun. 10, 4063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.S.R. and J.T.B. were supported by the British Heart Foundation (PG/19/37/3439 and FS/18/65/34186), and C.R. by Wellcome (205099/Z/16/Z).

Author information

Authors and Affiliations

Authors

Contributions

V.S.R., J.T.B. and C.R. conceived and wrote the manuscript.

Corresponding author

Correspondence to Christiana Ruhrberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Bin Zhou, Rui Benedito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashbrook, V.S., Brash, J.T. & Ruhrberg, C. Cre toxicity in mouse models of cardiovascular physiology and disease. Nat Cardiovasc Res 1, 806–816 (2022). https://doi.org/10.1038/s44161-022-00125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00125-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing