Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Computational insights on coronary artery function

Collateral arteries may act as natural bypasses that reduce hypoperfusion after a coronary blockage. 3D imaging of neonatal and adult mouse hearts, plus human fetal and diseased adult hearts, is now used to computationally predict flow within the heart, and understand the cardioprotective role of collateral arteries in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pipeline for image acquisition and computational prediction of flow dynamics in collaterals of the mouse heart after myocardial infarction.


  1. Timmis, A. et al. Eur. Heart J. 43, 716–799 (2022).

    Article  Google Scholar 

  2. Virani, S. S. et al. Circulation 143, e254–e743 (2021).

    Article  Google Scholar 

  3. Zhao, D. JACC Asia 1, 1–13 (2021).

    Article  Google Scholar 

  4. Lazar, E. et al. Eur. Heart J. 38, 2333–2342 (2017).

    Article  Google Scholar 

  5. Garbern, J. C. et al. Dev. Cell 57, 424–439 (2022).

    Article  CAS  Google Scholar 

  6. Tian, X. et al. J. Mol. Cell. Cardiol. 167, 67–82 (2022).

    Article  CAS  Google Scholar 

  7. Cortis, B. S. et al. Cardiologia 43, 77–81 (1998).

    CAS  PubMed  Google Scholar 

  8. Wustmann, K. et al. Circulation 107, 2213–2220 (2003).

    Article  Google Scholar 

  9. Seiler, C. Eur. J. Clin. Invest. 40, 465–476 (2010).

    Article  Google Scholar 

  10. Zhang, H. et al. J. Mol. Cell. Cardiol. 87, 4–16 (2015).

    Article  CAS  Google Scholar 

  11. He, L. et al. Cardiovasc. Res. 109, 419–430 (2016).

    Article  CAS  Google Scholar 

  12. Das, S. et al. Cell 176, 1128–1142 (2019).

    Article  CAS  Google Scholar 

  13. Anbazhakan, S. et al. Nat. Cardiovas. Res. (2022).

    Article  Google Scholar 

  14. Renier, N. et al. Cell 159, 896–910 (2014).

    Article  CAS  Google Scholar 

  15. Kirst, C. et al. Cell 180, 780–795 (2020).

    Article  CAS  Google Scholar 

  16. Olarte, O. E., Andilla, J., Gualda, E. J. & Loza-Alvarez, P. Adv. Opt. Photonics 10, 111–179 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joshua D. Wythe.

Ethics declarations

Competing interests

D.M. is a founder and stakeholder of Swift Front.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayerich, D., Wythe, J.D. Computational insights on coronary artery function. Nat Cardiovasc Res 1, 691–693 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing