Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).
Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).
Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Ka inhibitors. Science 366, 714–723 (2019).
Peyre, M. et al. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. N. Engl. J. Med. 385, 996–1004 (2021).
Ren, A. A. et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594, 271–276 (2021).
Ten Broek, R. W. et al. Comprehensive molecular and clinicopathological analysis of vascular malformations: a study of 319 cases. Genes Chromosomes Cancer 58, 541–550 (2019).
Bilanges, B., Posor, Y. & Vanhaesebroeck, B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 20, 515–534 (2019).
Fox, M., Mott, H. R. & Owen, D. Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem. Soc. Trans. 48, 1397–1417 (2020).
Kurosu, H. et al. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β Is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272, 24252–24256 (1997).
Murga, C., Fukuhara, S. & Gutkind, J. S. A novel role for phosphatidylinositol 3-kinase beta in signaling from G-protein-coupled receptors to Akt. J. Biol. Chem. 275, 12069–12073 (2000).
Bresnick, A. R. & Backer, J. M. PI3Kβ-A versatile transducer for GPCR, RTK and small GTPase signaling. Endocrinology 160, 536–555 (2019).
Rivière, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).
Lindhurst, M. J. et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat. Genet. 44, 928–933 (2012).
Kurek, K. C. et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 90, 1108–1115 (2012).
Keppler-Noreuil, K. M. et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am. J. Med. Genet. A 167, 287–295 (2015).
Madsen, R. R., Vanhaesebroeck, B. & Semple, R. K. Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol. Med. 24, 856–870 (2018).
Limaye, N. et al. Somatic activating PIK3CA mutations cause venous malformation. Am. J. Hum. Genet. 97, 914–921 (2015).
Castel, P. et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci. Transl. Med. 8, 332ra42 (2016).
Castillo, S. D. et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci. Transl. Med. 8, 332ra43 (2016).
Luks, V. L. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J. Pediatr. 166, 1048–1054 (2015).
Mirzaa, G., Conway, R., Graham, J. M. & Dobyns, W. B. PIK3CA-related overgrowth spectrum. in GeneReviews (eds. M. P. Adams et al.) (University of Washington, 2021).
Martinez‐Glez, V. et al. Segmental undergrowth is associated with pathogenic variants in vascular malformation genes: a retrospective case‐series study. Clin. Genet. 101, 296–306 (2021).
Mussa, A. et al. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1,007 patients with PIK3CA pathogenetic variants. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2021-108093 (2022).
Couto, J. A. et al. A somatic GNA11 mutation is associated with extremity capillary malformation and overgrowth. Angiogenesis 20, 303–306 (2017).
De Graer, C. et al. Novel features of PIK3CA-related overgrowth spectrum: lesson from an aborted fetus presenting a de novo constitutional PIK3CA mutation. Eur. J. Med. Genet. 63, 103775 (2020).
Berenjeno, I. M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat. Commun. 8, 1773 (2017).
Hare, L. M. et al. Heterozygous expression of the oncogenic Pik3caH1047R mutation during murine development results in fatal embryonic and extraembryonic defects. Dev. Biol. 404, 14–26 (2015).
Castel, P., Rauen, K. A. & McCormick, F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat. Rev. Cancer 20, 383–397 (2020).
Happle, R. The categories of cutaneous mosaicism: a proposed classification. Am. J. Med. Genet. A 170, 452–459 (2016).
Orloff, M. S. et al. Germline PIK3CA and AKT1 mutations in cowden and cowden-like syndromes. Am. J. Hum. Genet. 92, 76–80 (2013).
Yeung, K. S. et al. Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism. Mol. Autism 8, 66 (2017).
Zollino, M. et al. Germline pathogenic variant in PIK3CA leading to symmetrical overgrowth with marked macrocephaly and mild global developmental delay. Mol. Genet. Genomic Med. 7, e845 (2019).
Park, H. J. et al. Detailed analysis of phenotypes and genotypes in megalencephaly-capillary malformation-polymicrogyria syndrome caused by somatic mosaicism of PIK3CA mutations. Orphanet. J. Rare Dis. 15, 205 (2020).
Rodríguez-Laguna, L. et al. Mapping the PIK3CA-related overgrowth spectrum (PROS) patient and caregiver journey using a patient-centered approach. Orphanet J. Rare Dis. 17, 189 (2022).
Brouillard, P. et al. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations. Orphanet J. Rare Dis. 16, 267 (2021).
Hafner, C. et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc. Natl Acad. Sci. USA 104, 13450–13454 (2007).
Kobialka, P. et al. The onset of PI3K-related vascular malformations occurs during angiogenesis and is prevented by the AKT inhibitor miransertib. EMBO Mol. Med. 14, e15619 (2022).
Boscolo, E. et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis 18, 151–162 (2015).
Kuentz, P. et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet. Med. 19, 989–997 (2017).
Kłaniewska, M. et al. CLOVES syndrome caused by mosaic mutation in the PIK3CA gene identified in fibroblasts. Pediatr. Pol. 96, 148–152 (2021).
Ranieri, C. et al. In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 19, 77–91 (2018).
Sun, B. et al. Activating PIK3CA mutation promotes adipogenesis of adipose-derived stem cells in macrodactyly via up-regulation of E2F1. Cell Death Dis. 11, 600 (2020).
Couto, J. A. et al. Somatic PIK3CA mutations are present in multiple tissues of facial infiltrating lipomatosis. Pediatr. Res. 82, 850–854 (2017).
Jansen, L. A. et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138, 1613–1628 (2015).
Lee, J. H. et al. De novo somatic mutations in components of the PI3K–AKT3–mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945 (2012).
Blackburn, P. R. et al. PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth. Mod. Pathol. 33, 420–430 (2019).
Wu, J. et al. An investigation of PIK3CA mutations in isolated an investigation of PIK3CA mutations in isolated macrodactylymacrodactyly. J. Hand Surg. Eur. Vol. 43, 756–760 (2018).
Ebner, B. A. et al. Brachial plexus lipomatosis with perineurial pseudoonion bulb formation: result of a mosaic PIK3CA mutation in the para‐axial mesoderm state. Brain Pathol. 32, e13057 (2022).
Van Keymeulen, A. et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525, 119–123 (2015).
Madsen, R. R. et al. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc. Natl. Acad. Sci. USA 116, 8380–8389 (2019).
Herms, A. et al. Levelling out differences in aerobic glycolysis neutralizes the competitive advantage of oncogenic PIK3CA mutant progenitors in the esophagus. Preprint at bioRxiv https://doi.org/10.1101/2021.05.28.446104 (2021).
Usui, H. et al. A novel method for isolating lymphatic endothelial cells from lymphatic malformations and detecting PIK3CA somatic mutation in these isolated cells. Surg. Today 51, 439–446 (2020).
Zenner, K. et al. Genotype correlates with clinical severity in PIK3CA-associated lymphatic malformations. JCI Insight 4, e129884 (2019).
Mirzaa, G. et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight 1, e87623 (2016).
McDermott, J. H. et al. Hypoglycaemia represents a clinically significant manifestation of PIK3CA- and CCND2-associated segmental overgrowth. Clin. Genet. 93, 687–692 (2018).
Venot, Q. et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558, 540–546 (2018).
Döcker, D. et al. Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP)—pure coincidence? Eur. J. Hum. Genet. 23, 409–412 (2014).
İli, E. G. et al. Phenotypic and molecular characterization of five patients with PIK3CA-related overgrowth spectrum (PROS). Am. J. Med. Genet. A 188, 1792–1800 (2022).
Burke, J. E., Perisic, O., Masson, G. R., Vadas, O. & Williams, R. L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. USA 109, 15259–15264 (2012).
Dornan, G. L. & Burke, J. E. Molecular mechanisms of human disease mediated by oncogenic and primary immunodeficiency mutations in class IA phosphoinositide 3-kinases. Front. Immunol. 9, 575 (2018).
Zhao, L. & Vogt, P. K. Hot-spot mutations in p110α of phosphatidylinositol 3-kinase (PI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle 9, 596–600 (2010).
Hao, Y. et al. Nuclear translocation of p85β promotes tumorigenesis of PIK3CA helical domain mutant cancer. Nat. Commun. 13, 1974 (2022).
Dogruluk, T. et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 75, 5341–5354 (2015).
Gymnopoulos, M., Elsliger, M. A. & Vogt, P. K. Rare cancer-specific mutations in PIK3CA show gain of function. Proc. Natl Acad. Sci. USA 104, 5569–5574 (2007).
Yu, K. et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166–171 (2020).
Roy, A. et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. Elife 4, e12703 (2015).
Martinez-Corral, I. et al. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat. Commun. 11, 2869 (2020).
Petkova, M. et al. Immunoregulatory subtype of dermal lymphatic endothelial cells at capillary terminals drives lymphatic malformations. Preprint at bioRxiv https://doi.org/10.1101/2022.05.22.492950 (2022).
Angulo-Urarte, A., van der Wal, T. & Huveneers, S. Cell–cell junctions as sensors and transducers of mechanical forces. Biochim. Biophys. Acta Biomembr. 1862, 183316 (2020).
Valet, M., Siggia, E. D. & Brivanlou, A. H. Mechanical regulation of early vertebrate embryogenesis. Nat. Rev. Mol. Cell Biol. 23, 169–184 (2021).
De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23, 465–480 (2022).
Gordon, E., Schimmel, L. & Frye, M. The importance of mechanical forces for in vitro endothelial cell biology. Front. Physiol. 11, 684 (2020).
Weiss, J. M. et al. Anatomic position determines oncogenic specificity in melanoma. Nature 604, 354–361 (2022).
Broders-Bondon, F., Nguyen Ho-Bouldoires, T. H., Fernandez-Sanchez, M.-E. & Farge, E. Mechanotransduction in tumor progression: the dark side of the force. J. Cell Biol. 217, 1571–1587 (2018).
Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021).
Karthikeyan, S. et al. Hierarchical tumor heterogeneity mediated by cell contact between distinct genetic subclones. J. Clin. Invest. 131, e143557 (2021).
Hassanein, A. H. et al. Venous malformation: risk of progression during childhood and adolescence. Ann. Plast. Surg. 68, 198–201 (2012).
Orsenigo, F. et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. Elife 9, e61413 (2020).
Alhazzab, A., Alkhaibary, A., Khairy, S. & Alshaya, W. CLOVES syndrome and cervical arteriovenous fistula: a unique association managed by combined microsurgical and endovascular therapy. J. Surg. Case Rep. 2021, rjab122 (2021).
Martinez-Lopez, A. et al. CLOVES syndrome: review of a PIK3CA-related overgrowth spectrum (PROS). Clin. Genet. 91, 14–21 (2017).
Rodriguez‑Laguna, L. et al. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. J. Exp. Med. 216, 407–418 (2019).
Delestre, F. et al. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients. Sci. Transl. Med. 13, eabg0809 (2021).
Dasgupta, R. & Fishman, S. J. ISSVA classification. Semin. Pediatr. Surg. 23, 158–161 (2014).
Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118–124 (2008).
Soblet, J., Limaye, N., Uebelhoer, M., Boon, L. M. & Vikkula, M. Variable somatic TIE2 mutations in half of sporadic venous malformations. Mol. Syndromol. 4, 179–183 (2013).
Goines, J. et al. A xenograft model for venous malformation. Angiogenesis 21, 725–735 (2018).
Zhou, Z. et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3–KLF2/4 signalling. Nature 532, 122–126 (2016).
Fischer, A., Zalvide, J., Faurobert, E., Albiges-Rizo, C. & Tournier-Lasserve, E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol. Med. 19, 302–308 (2013).
Hong, T. et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain 144, 2648–2658 (2021).
Weng, J. et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am. J. Hum. Genet. 108, 942–950 (2021).
Snellings, D. A. et al. Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. Nat. Cardiovasc. Res. 1, 246–252 (2022).
Holm, A., Heumann, T. & Augustin, H. G. Microvascular mural cell organotypic heterogeneity and functional plasticity. Trends Cell Biol. 28, 302–316 (2018).
Ren, J., Hong, T. & Zhang, H. Cellular origin of sporadic CCMs. N. Engl. J. Med. 386, 1290–1292 (2022).
Figueiredo, A. M. et al. Phosphoinositide 3-kinase-regulated pericyte maturation governs vascular remodeling. Circulation 142, 688–704 (2020).
Zhang, P., Liu, L., Cao, Y., Wang, S. & Zhao, J. Cerebellar cavernous malformations with and without associated developmental venous anomalies. BMC Neurol. 13, 134 (2013).
Idiculla, P. S., Gurala, D., Philipose, J., Rajdev, K. & Patibandla, P. Cerebral cavernous malformations, developmental venous anomaly, and its coexistence: a review. Eur. Neurol. 83, 360–368 (2020).
Goss, J. A. et al. Diffuse capillary malformation with overgrowth contains somatic PIK3CA variants. Clin. Genet. 97, 736–740 (2020).
Rosenthal, J., Sibbald, C., Jen, M., Deardorff, M. A. & Treat, J. A PIK3CA mutation in an acquired capillary malformation. Pediatr. Dermatol. 37, 246–247 (2020).
Ricci, K. W. et al. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham–Stout disease. Pediatr. Blood Cancer 66, e27614 (2019).
Maruani, A. et al. Sirolimus (rapamycin) for slow-flow malformations in children: the observational-phase randomized clinical PERFORMUS trial. JAMA Dermatol. 157, 1289–1298 (2021).
Hammer, J. et al. Sirolimus is efficacious in treatment for extensive and/or complex slow-flow vascular malformations: a monocentric prospective phase II study. Orphanet J. Rare Dis. 13, 191 (2018).
Adams, D. M. et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics 137, e20153257 (2016).
Parker, V. E. R. et al. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genet. Med. 21, 1189–1198 (2019).
Forde, K. et al. Clinical experience with the AKT1 inhibitor miransertib in two children with PIK3CA-related overgrowth syndrome. Orphanet J. Rare Dis. 16, 109 (2021).
Biesecker, L. G. et al. Clinical report: one year of treatment of Proteus syndrome with miransertib (ARQ 092). Cold Spring Harb. Mol. Case Stud. 6, a004549 (2020).
Luu, M. et al. Safety and efficacy of low-dose PI3K inhibitor taselisib in adult patients with CLOVES and Klippel–Trenaunay syndrome (KTS): the TOTEM trial, a phase 1/2 multicenter, open-label, single-arm study. Genet. Med. 23, 2433–2442 (2021).
Pagliazzi, A. et al. PIK3CA-related overgrowth spectrum from diagnosis to targeted therapy: a case of CLOVES syndrome treated With alpelisib. Front. Pediatr. 9, 732836 (2021).
Garreta Fontelles, G., Pardo Pastor, J. & Grande Moreillo, C. Alpelisib to treat CLOVES syndrome, a member of the PIK3CA-related overgrowth syndrome spectrum. Br. J. Clin. Pharmacol. 88, 3891–3895 (2022).
Morin, G. et al. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. J. Exp. Med. 219, e20212148 (2022).
Canaud, G. et al. LBA23 EPIK-P1: retrospective chart review study of patients with PIK3CA-related overgrowth spectrum (PROS) who have received alpelisib as part of a compassionate use programme. Ann. Oncol. 32, S1297 (2021).
Drolet, B. A. et al. Consensus-derived practice standards plan for complicated kaposiform hemangioendothelioma. J. Pediatr. 163, 285–291 (2013).
Canaud, G. et al. EPIK-P2: a prospective phase 2, double-blind, randomized, placebo-controlled study of alpelisib in pediatric and adult patients with PIK3CA-related overgrowth spectrum (PROS). J. Clin. Oncol. 39, TPS3160 (2021).
Groesser, L., Herschberger, E., Landthaler, M. & Hafner, C. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis. Br. J. Dermatol. 166, 784–788 (2012).
Rios, J. J. et al. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum. Mol. Genet. 22, 444–451 (2013).
Frisk, S. et al. Early activating somatic PIK3CA mutations promote ectopic muscle development and upper limb overgrowth. Clin. Genet. 96, 118–125 (2019).
Maclellan, R. A. et al. PIK3CA activating mutations in facial infiltrating lipomatosis. Plast. Reconstr. Surg. 133, 12e–19e (2014).
Lee, M. S., Liang, M. G. & Mulliken, J. B. Diffuse capillary malformation with overgrowth: a clinical subtype of vascular anomalies with hypertrophy. J. Am. Acad. Dermatol. 69, 589–594 (2013).
Vahidnezhad, H., Youssefian, L. & Uitto, J. Klippel–Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Exp. Dermatol. 25, 17–19 (2016).
Rodriguez-Laguna, L. et al. CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype. Genet. Med. 20, 882–889 (2018).
Keppler-Noreuil, K. M. et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am. J. Med. Genet. A 164, 1713–1733 (2014).
Tian, W. et al. Activating PIK3CA postzygotic mutations in segmental overgrowth of muscles with bone involvement in the body extremities. Mol. Genet. Genomics 297, 387–396 (2022).
Hori, Y. et al. PIK3CA mutation correlates with mTOR pathway expression but not clinical and pathological features in fibroadipose vascular anomaly (FAVA). Diagn. Pathol 17, 43 (2022).
Koutlas, I. G. et al. Orofacial overgrowth with peripheral nerve enlargement and perineuriomatous pseudo-onion bulb proliferations is part of the PIK3CA-related overgrowth spectrum. HGG Adv. 1, 100009 (2020).
Li, J. F. et al. An analysis of the pathogenic genes and mutation sites of macrodactyly. Pharmgenomics. Pers. Med. 15, 55–64 (2022).
Nathan, N., Keppler-Noreuil, K. M., Biesecker, L. G., Moss, J. & Darling, T. N. Mosaic disorders of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway. Dermatol. Clin. 35, 51–60 (2017).
Mester, J. & Eng, C. PTEN hamartoma tumor syndrome. Handb. Clin. Neurol. 132, 129–137 (2015).
Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8, 15816 (2017).
Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).
Hussain, K. et al. An activating mutation of AKT2 and human hypoglycemia. Science 334, 474 (2011).
Alcantara, D. et al. Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain 140, 2610–2622 (2017).
Cottrell, C. E. et al. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth. Genet. Med. 23, 1882–1888 (2021).
Mirzaa, G. M. et al. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia and pigmentary mosaicism. JAMA Neurol. 73, 836–845 (2016).
Moller, R. S. et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol. Genet. 2, e118 (2016).
Madsen, R. R. & Vanhaesebroeck, B. Cracking the context-specific PI3K signaling code. Sci. Signal. 13, eaay2940 (2020).
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
Lee, Y. R., Chen, M. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547–562 (2018).
Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).
Webb, A. E. & Brunet, A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem. Sci. 39, 159–169 (2014).
Gripp, K. W. et al. Nephroblastomatosis or Wilms tumor in a fourth patient with a somatic PIK3CA mutation. Am. J. Med. Genet. A 170, 2559–2569 (2016).
Griff, J. R., Duffy, K. A. & Kalish, J. M. Characterization and childhood tumor risk assessment of genetic and epigenetic syndromes associated with lateralized overgrowth. Front. Pediatr. 8, 613260 (2020).
Hendricks, L. A. J., Hoogerbrugge, N., Schuurs-Hoeijmakers, J. H. M. & Vos, J. R. A review on age-related cancer risks in PTEN hamartoma tumor syndrome. Clin. Genet. 99, 219–225 (2021).
Kobialka, P. & Graupera, M. Revisiting PI3-kinase signalling in angiogenesis. Vasc. Biol. 1, H125–H134 (2019).
Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).
Stanczuk, L. et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10, 1708–1721 (2015).
Gupta, S. et al. Binding of Ras to phosphoinositide 3-kinase p110α is required for Ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).
Lee, M. Y. et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc. Natl. Acad. Sci. USA 111, 12865–12870 (2014).
Gambardella, L. et al. PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis. Sci. Signal. 3, ra76 (2010).
Chu, M. et al. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII. Elife 5, e21032 (2016).
Angulo-Urarte, A. et al. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat. Commun. 9, 4826 (2018).
Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat. Commun. 6, 7935 (2015).
Monelli, E. et al. Angiocrine polyamine production regulates adiposity. Nat. Metab. 4, 327–343 (2022).
Acknowledgements
We thank CERCA Programme/Generalitat de Catalunya and and the Josep Carreras Foundation for institutional support. M.G.’s laboratory in the context of PI3K-related vascular malformations is supported by the research grants from the Spanish Ministry of Science and Innovation (PID2020-116184RB-110), PTEN RESEARCH Foundation (BRR-17-001/IJC-21-001) and La Caixa Foundation (LCF/PR/PR16/51110035 and LCF/PR/HR19/52160023); A.A.-U. and M.G. are recipients of a CLOVES syndrome community research grant. We thank S. D. Castillo and T. Mäkinen for their valuable feedback. We apologize to the many authors whose primary papers could not be cited owing to space constraints.
Author information
Authors and Affiliations
Contributions
A.A.-U. and M.G. wrote the manuscript and created the figures.
Corresponding authors
Ethics declarations
Competing interests
M.G. had a research agreement with Merck & Co. and Venthera to test their inhibitors of the PI3K pathway in vascular malformations.
Peer review
Peer review information
Nature Cardiovascular Research thanks Guillaume Canaud, Victor Martinez-Glez and Len Stephens for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Angulo-Urarte, A., Graupera, M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. Nat Cardiovasc Res 1, 700–714 (2022). https://doi.org/10.1038/s44161-022-00107-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44161-022-00107-8