Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

When, where and which PIK3CA mutations are pathogenic in congenital disorders

Subjects

Abstract

PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of PROS disorders.
Fig. 2: Intrinsic and extrinsic factors that define PIK3CA-related pathogenesis in PROS.
Fig. 3: PIK3CA variants in PROS.

Similar content being viewed by others

References

  1. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Ka inhibitors. Science 366, 714–723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peyre, M. et al. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. N. Engl. J. Med. 385, 996–1004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ren, A. A. et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594, 271–276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ten Broek, R. W. et al. Comprehensive molecular and clinicopathological analysis of vascular malformations: a study of 319 cases. Genes Chromosomes Cancer 58, 541–550 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bilanges, B., Posor, Y. & Vanhaesebroeck, B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 20, 515–534 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Fox, M., Mott, H. R. & Owen, D. Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem. Soc. Trans. 48, 1397–1417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurosu, H. et al. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β Is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272, 24252–24256 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Murga, C., Fukuhara, S. & Gutkind, J. S. A novel role for phosphatidylinositol 3-kinase beta in signaling from G-protein-coupled receptors to Akt. J. Biol. Chem. 275, 12069–12073 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bresnick, A. R. & Backer, J. M. PI3Kβ-A versatile transducer for GPCR, RTK and small GTPase signaling. Endocrinology 160, 536–555 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rivière, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lindhurst, M. J. et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat. Genet. 44, 928–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurek, K. C. et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 90, 1108–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keppler-Noreuil, K. M. et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am. J. Med. Genet. A 167, 287–295 (2015).

    Article  CAS  Google Scholar 

  16. Madsen, R. R., Vanhaesebroeck, B. & Semple, R. K. Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol. Med. 24, 856–870 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Limaye, N. et al. Somatic activating PIK3CA mutations cause venous malformation. Am. J. Hum. Genet. 97, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castel, P. et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci. Transl. Med. 8, 332ra42 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Castillo, S. D. et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci. Transl. Med. 8, 332ra43 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Luks, V. L. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J. Pediatr. 166, 1048–1054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mirzaa, G., Conway, R., Graham, J. M. & Dobyns, W. B. PIK3CA-related overgrowth spectrum. in GeneReviews (eds. M. P. Adams et al.) (University of Washington, 2021).

  22. Martinez‐Glez, V. et al. Segmental undergrowth is associated with pathogenic variants in vascular malformation genes: a retrospective case‐series study. Clin. Genet. 101, 296–306 (2021).

    Article  PubMed  CAS  Google Scholar 

  23. Mussa, A. et al. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1,007 patients with PIK3CA pathogenetic variants. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2021-108093 (2022).

  24. Couto, J. A. et al. A somatic GNA11 mutation is associated with extremity capillary malformation and overgrowth. Angiogenesis 20, 303–306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Graer, C. et al. Novel features of PIK3CA-related overgrowth spectrum: lesson from an aborted fetus presenting a de novo constitutional PIK3CA mutation. Eur. J. Med. Genet. 63, 103775 (2020).

    Article  PubMed  Google Scholar 

  26. Berenjeno, I. M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat. Commun. 8, 1773 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hare, L. M. et al. Heterozygous expression of the oncogenic Pik3caH1047R mutation during murine development results in fatal embryonic and extraembryonic defects. Dev. Biol. 404, 14–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Castel, P., Rauen, K. A. & McCormick, F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat. Rev. Cancer 20, 383–397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Happle, R. The categories of cutaneous mosaicism: a proposed classification. Am. J. Med. Genet. A 170, 452–459 (2016).

    Article  CAS  Google Scholar 

  30. Orloff, M. S. et al. Germline PIK3CA and AKT1 mutations in cowden and cowden-like syndromes. Am. J. Hum. Genet. 92, 76–80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yeung, K. S. et al. Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism. Mol. Autism 8, 66 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zollino, M. et al. Germline pathogenic variant in PIK3CA leading to symmetrical overgrowth with marked macrocephaly and mild global developmental delay. Mol. Genet. Genomic Med. 7, e845 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Park, H. J. et al. Detailed analysis of phenotypes and genotypes in megalencephaly-capillary malformation-polymicrogyria syndrome caused by somatic mosaicism of PIK3CA mutations. Orphanet. J. Rare Dis. 15, 205 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodríguez-Laguna, L. et al. Mapping the PIK3CA-related overgrowth spectrum (PROS) patient and caregiver journey using a patient-centered approach. Orphanet J. Rare Dis. 17, 189 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brouillard, P. et al. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations. Orphanet J. Rare Dis. 16, 267 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hafner, C. et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc. Natl Acad. Sci. USA 104, 13450–13454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobialka, P. et al. The onset of PI3K-related vascular malformations occurs during angiogenesis and is prevented by the AKT inhibitor miransertib. EMBO Mol. Med. 14, e15619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boscolo, E. et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis 18, 151–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Kuentz, P. et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet. Med. 19, 989–997 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Kłaniewska, M. et al. CLOVES syndrome caused by mosaic mutation in the PIK3CA gene identified in fibroblasts. Pediatr. Pol. 96, 148–152 (2021).

    Article  Google Scholar 

  41. Ranieri, C. et al. In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 19, 77–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, B. et al. Activating PIK3CA mutation promotes adipogenesis of adipose-derived stem cells in macrodactyly via up-regulation of E2F1. Cell Death Dis. 11, 600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Couto, J. A. et al. Somatic PIK3CA mutations are present in multiple tissues of facial infiltrating lipomatosis. Pediatr. Res. 82, 850–854 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jansen, L. A. et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138, 1613–1628 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee, J. H. et al. De novo somatic mutations in components of the PI3K–AKT3–mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blackburn, P. R. et al. PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth. Mod. Pathol. 33, 420–430 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Wu, J. et al. An investigation of PIK3CA mutations in isolated an investigation of PIK3CA mutations in isolated macrodactylymacrodactyly. J. Hand Surg. Eur. Vol. 43, 756–760 (2018).

    Article  PubMed  Google Scholar 

  48. Ebner, B. A. et al. Brachial plexus lipomatosis with perineurial pseudoonion bulb formation: result of a mosaic PIK3CA mutation in the para‐axial mesoderm state. Brain Pathol. 32, e13057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Keymeulen, A. et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525, 119–123 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Madsen, R. R. et al. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc. Natl. Acad. Sci. USA 116, 8380–8389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herms, A. et al. Levelling out differences in aerobic glycolysis neutralizes the competitive advantage of oncogenic PIK3CA mutant progenitors in the esophagus. Preprint at bioRxiv https://doi.org/10.1101/2021.05.28.446104 (2021).

  52. Usui, H. et al. A novel method for isolating lymphatic endothelial cells from lymphatic malformations and detecting PIK3CA somatic mutation in these isolated cells. Surg. Today 51, 439–446 (2020).

    Article  PubMed  CAS  Google Scholar 

  53. Zenner, K. et al. Genotype correlates with clinical severity in PIK3CA-associated lymphatic malformations. JCI Insight 4, e129884 (2019).

    Article  PubMed Central  Google Scholar 

  54. Mirzaa, G. et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight 1, e87623 (2016).

    Article  PubMed Central  Google Scholar 

  55. McDermott, J. H. et al. Hypoglycaemia represents a clinically significant manifestation of PIK3CA- and CCND2-associated segmental overgrowth. Clin. Genet. 93, 687–692 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Venot, Q. et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558, 540–546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Döcker, D. et al. Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP)—pure coincidence? Eur. J. Hum. Genet. 23, 409–412 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. İli, E. G. et al. Phenotypic and molecular characterization of five patients with PIK3CA-related overgrowth spectrum (PROS). Am. J. Med. Genet. A 188, 1792–1800 (2022).

    Article  CAS  Google Scholar 

  59. Burke, J. E., Perisic, O., Masson, G. R., Vadas, O. & Williams, R. L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. USA 109, 15259–15264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dornan, G. L. & Burke, J. E. Molecular mechanisms of human disease mediated by oncogenic and primary immunodeficiency mutations in class IA phosphoinositide 3-kinases. Front. Immunol. 9, 575 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhao, L. & Vogt, P. K. Hot-spot mutations in p110α of phosphatidylinositol 3-kinase (PI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle 9, 596–600 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Hao, Y. et al. Nuclear translocation of p85β promotes tumorigenesis of PIK3CA helical domain mutant cancer. Nat. Commun. 13, 1974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dogruluk, T. et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 75, 5341–5354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gymnopoulos, M., Elsliger, M. A. & Vogt, P. K. Rare cancer-specific mutations in PIK3CA show gain of function. Proc. Natl Acad. Sci. USA 104, 5569–5574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, K. et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roy, A. et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. Elife 4, e12703 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Martinez-Corral, I. et al. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat. Commun. 11, 2869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petkova, M. et al. Immunoregulatory subtype of dermal lymphatic endothelial cells at capillary terminals drives lymphatic malformations. Preprint at bioRxiv https://doi.org/10.1101/2022.05.22.492950 (2022).

  69. Angulo-Urarte, A., van der Wal, T. & Huveneers, S. Cell–cell junctions as sensors and transducers of mechanical forces. Biochim. Biophys. Acta Biomembr. 1862, 183316 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Valet, M., Siggia, E. D. & Brivanlou, A. H. Mechanical regulation of early vertebrate embryogenesis. Nat. Rev. Mol. Cell Biol. 23, 169–184 (2021).

    Article  PubMed  CAS  Google Scholar 

  71. De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23, 465–480 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Gordon, E., Schimmel, L. & Frye, M. The importance of mechanical forces for in vitro endothelial cell biology. Front. Physiol. 11, 684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Weiss, J. M. et al. Anatomic position determines oncogenic specificity in melanoma. Nature 604, 354–361 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Broders-Bondon, F., Nguyen Ho-Bouldoires, T. H., Fernandez-Sanchez, M.-E. & Farge, E. Mechanotransduction in tumor progression: the dark side of the force. J. Cell Biol. 217, 1571–1587 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Karthikeyan, S. et al. Hierarchical tumor heterogeneity mediated by cell contact between distinct genetic subclones. J. Clin. Invest. 131, e143557 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  77. Hassanein, A. H. et al. Venous malformation: risk of progression during childhood and adolescence. Ann. Plast. Surg. 68, 198–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Orsenigo, F. et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. Elife 9, e61413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alhazzab, A., Alkhaibary, A., Khairy, S. & Alshaya, W. CLOVES syndrome and cervical arteriovenous fistula: a unique association managed by combined microsurgical and endovascular therapy. J. Surg. Case Rep. 2021, rjab122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Martinez-Lopez, A. et al. CLOVES syndrome: review of a PIK3CA-related overgrowth spectrum (PROS). Clin. Genet. 91, 14–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Rodriguez‑Laguna, L. et al. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. J. Exp. Med. 216, 407–418 (2019).

    Article  CAS  Google Scholar 

  82. Delestre, F. et al. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients. Sci. Transl. Med. 13, eabg0809 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Dasgupta, R. & Fishman, S. J. ISSVA classification. Semin. Pediatr. Surg. 23, 158–161 (2014).

    Article  PubMed  Google Scholar 

  84. Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118–124 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Soblet, J., Limaye, N., Uebelhoer, M., Boon, L. M. & Vikkula, M. Variable somatic TIE2 mutations in half of sporadic venous malformations. Mol. Syndromol. 4, 179–183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goines, J. et al. A xenograft model for venous malformation. Angiogenesis 21, 725–735 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou, Z. et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3–KLF2/4 signalling. Nature 532, 122–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fischer, A., Zalvide, J., Faurobert, E., Albiges-Rizo, C. & Tournier-Lasserve, E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol. Med. 19, 302–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Hong, T. et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain 144, 2648–2658 (2021).

    Article  PubMed  Google Scholar 

  90. Weng, J. et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am. J. Hum. Genet. 108, 942–950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Snellings, D. A. et al. Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. Nat. Cardiovasc. Res. 1, 246–252 (2022).

    Article  PubMed  Google Scholar 

  92. Holm, A., Heumann, T. & Augustin, H. G. Microvascular mural cell organotypic heterogeneity and functional plasticity. Trends Cell Biol. 28, 302–316 (2018).

    Article  PubMed  Google Scholar 

  93. Ren, J., Hong, T. & Zhang, H. Cellular origin of sporadic CCMs. N. Engl. J. Med. 386, 1290–1292 (2022).

    Article  PubMed  Google Scholar 

  94. Figueiredo, A. M. et al. Phosphoinositide 3-kinase-regulated pericyte maturation governs vascular remodeling. Circulation 142, 688–704 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, P., Liu, L., Cao, Y., Wang, S. & Zhao, J. Cerebellar cavernous malformations with and without associated developmental venous anomalies. BMC Neurol. 13, 134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Idiculla, P. S., Gurala, D., Philipose, J., Rajdev, K. & Patibandla, P. Cerebral cavernous malformations, developmental venous anomaly, and its coexistence: a review. Eur. Neurol. 83, 360–368 (2020).

    Article  PubMed  Google Scholar 

  97. Goss, J. A. et al. Diffuse capillary malformation with overgrowth contains somatic PIK3CA variants. Clin. Genet. 97, 736–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rosenthal, J., Sibbald, C., Jen, M., Deardorff, M. A. & Treat, J. A PIK3CA mutation in an acquired capillary malformation. Pediatr. Dermatol. 37, 246–247 (2020).

    Article  PubMed  Google Scholar 

  99. Ricci, K. W. et al. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham–Stout disease. Pediatr. Blood Cancer 66, e27614 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Maruani, A. et al. Sirolimus (rapamycin) for slow-flow malformations in children: the observational-phase randomized clinical PERFORMUS trial. JAMA Dermatol. 157, 1289–1298 (2021).

    Article  PubMed  Google Scholar 

  101. Hammer, J. et al. Sirolimus is efficacious in treatment for extensive and/or complex slow-flow vascular malformations: a monocentric prospective phase II study. Orphanet J. Rare Dis. 13, 191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Adams, D. M. et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics 137, e20153257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Parker, V. E. R. et al. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genet. Med. 21, 1189–1198 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Forde, K. et al. Clinical experience with the AKT1 inhibitor miransertib in two children with PIK3CA-related overgrowth syndrome. Orphanet J. Rare Dis. 16, 109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Biesecker, L. G. et al. Clinical report: one year of treatment of Proteus syndrome with miransertib (ARQ 092). Cold Spring Harb. Mol. Case Stud. 6, a004549 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Luu, M. et al. Safety and efficacy of low-dose PI3K inhibitor taselisib in adult patients with CLOVES and Klippel–Trenaunay syndrome (KTS): the TOTEM trial, a phase 1/2 multicenter, open-label, single-arm study. Genet. Med. 23, 2433–2442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pagliazzi, A. et al. PIK3CA-related overgrowth spectrum from diagnosis to targeted therapy: a case of CLOVES syndrome treated With alpelisib. Front. Pediatr. 9, 732836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Garreta Fontelles, G., Pardo Pastor, J. & Grande Moreillo, C. Alpelisib to treat CLOVES syndrome, a member of the PIK3CA-related overgrowth syndrome spectrum. Br. J. Clin. Pharmacol. 88, 3891–3895 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Morin, G. et al. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. J. Exp. Med. 219, e20212148 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Canaud, G. et al. LBA23 EPIK-P1: retrospective chart review study of patients with PIK3CA-related overgrowth spectrum (PROS) who have received alpelisib as part of a compassionate use programme. Ann. Oncol. 32, S1297 (2021).

    Article  Google Scholar 

  111. Drolet, B. A. et al. Consensus-derived practice standards plan for complicated kaposiform hemangioendothelioma. J. Pediatr. 163, 285–291 (2013).

    Article  PubMed  Google Scholar 

  112. Canaud, G. et al. EPIK-P2: a prospective phase 2, double-blind, randomized, placebo-controlled study of alpelisib in pediatric and adult patients with PIK3CA-related overgrowth spectrum (PROS). J. Clin. Oncol. 39, TPS3160 (2021).

    Article  Google Scholar 

  113. Groesser, L., Herschberger, E., Landthaler, M. & Hafner, C. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis. Br. J. Dermatol. 166, 784–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Rios, J. J. et al. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum. Mol. Genet. 22, 444–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Frisk, S. et al. Early activating somatic PIK3CA mutations promote ectopic muscle development and upper limb overgrowth. Clin. Genet. 96, 118–125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maclellan, R. A. et al. PIK3CA activating mutations in facial infiltrating lipomatosis. Plast. Reconstr. Surg. 133, 12e–19e (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, M. S., Liang, M. G. & Mulliken, J. B. Diffuse capillary malformation with overgrowth: a clinical subtype of vascular anomalies with hypertrophy. J. Am. Acad. Dermatol. 69, 589–594 (2013).

    Article  PubMed  Google Scholar 

  118. Vahidnezhad, H., Youssefian, L. & Uitto, J. Klippel–Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Exp. Dermatol. 25, 17–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Rodriguez-Laguna, L. et al. CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype. Genet. Med. 20, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Keppler-Noreuil, K. M. et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am. J. Med. Genet. A 164, 1713–1733 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  121. Tian, W. et al. Activating PIK3CA postzygotic mutations in segmental overgrowth of muscles with bone involvement in the body extremities. Mol. Genet. Genomics 297, 387–396 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Hori, Y. et al. PIK3CA mutation correlates with mTOR pathway expression but not clinical and pathological features in fibroadipose vascular anomaly (FAVA). Diagn. Pathol 17, 43 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Koutlas, I. G. et al. Orofacial overgrowth with peripheral nerve enlargement and perineuriomatous pseudo-onion bulb proliferations is part of the PIK3CA-related overgrowth spectrum. HGG Adv. 1, 100009 (2020).

    PubMed  PubMed Central  Google Scholar 

  124. Li, J. F. et al. An analysis of the pathogenic genes and mutation sites of macrodactyly. Pharmgenomics. Pers. Med. 15, 55–64 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nathan, N., Keppler-Noreuil, K. M., Biesecker, L. G., Moss, J. & Darling, T. N. Mosaic disorders of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway. Dermatol. Clin. 35, 51–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mester, J. & Eng, C. PTEN hamartoma tumor syndrome. Handb. Clin. Neurol. 132, 129–137 (2015).

    Article  PubMed  Google Scholar 

  127. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8, 15816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hussain, K. et al. An activating mutation of AKT2 and human hypoglycemia. Science 334, 474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alcantara, D. et al. Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain 140, 2610–2622 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cottrell, C. E. et al. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth. Genet. Med. 23, 1882–1888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mirzaa, G. M. et al. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia and pigmentary mosaicism. JAMA Neurol. 73, 836–845 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Moller, R. S. et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol. Genet. 2, e118 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Madsen, R. R. & Vanhaesebroeck, B. Cracking the context-specific PI3K signaling code. Sci. Signal. 13, eaay2940 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, Y. R., Chen, M. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Webb, A. E. & Brunet, A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem. Sci. 39, 159–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gripp, K. W. et al. Nephroblastomatosis or Wilms tumor in a fourth patient with a somatic PIK3CA mutation. Am. J. Med. Genet. A 170, 2559–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Griff, J. R., Duffy, K. A. & Kalish, J. M. Characterization and childhood tumor risk assessment of genetic and epigenetic syndromes associated with lateralized overgrowth. Front. Pediatr. 8, 613260 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hendricks, L. A. J., Hoogerbrugge, N., Schuurs-Hoeijmakers, J. H. M. & Vos, J. R. A review on age-related cancer risks in PTEN hamartoma tumor syndrome. Clin. Genet. 99, 219–225 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Kobialka, P. & Graupera, M. Revisiting PI3-kinase signalling in angiogenesis. Vasc. Biol. 1, H125–H134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Stanczuk, L. et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10, 1708–1721 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Gupta, S. et al. Binding of Ras to phosphoinositide 3-kinase p110α is required for Ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, M. Y. et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc. Natl. Acad. Sci. USA 111, 12865–12870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gambardella, L. et al. PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis. Sci. Signal. 3, ra76 (2010).

    Article  PubMed  CAS  Google Scholar 

  148. Chu, M. et al. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII. Elife 5, e21032 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Angulo-Urarte, A. et al. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat. Commun. 9, 4826 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat. Commun. 6, 7935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Monelli, E. et al. Angiocrine polyamine production regulates adiposity. Nat. Metab. 4, 327–343 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CERCA Programme/Generalitat de Catalunya and and the Josep Carreras Foundation for institutional support. M.G.’s laboratory in the context of PI3K-related vascular malformations is supported by the research grants from the Spanish Ministry of Science and Innovation (PID2020-116184RB-110), PTEN RESEARCH Foundation (BRR-17-001/IJC-21-001) and La Caixa Foundation (LCF/PR/PR16/51110035 and LCF/PR/HR19/52160023); A.A.-U. and M.G. are recipients of a CLOVES syndrome community research grant. We thank S. D. Castillo and T. Mäkinen for their valuable feedback. We apologize to the many authors whose primary papers could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

A.A.-U. and M.G. wrote the manuscript and created the figures.

Corresponding authors

Correspondence to Ana Angulo-Urarte or Mariona Graupera.

Ethics declarations

Competing interests

M.G. had a research agreement with Merck & Co. and Venthera to test their inhibitors of the PI3K pathway in vascular malformations.

Peer review

Peer review information

Nature Cardiovascular Research thanks Guillaume Canaud, Victor Martinez-Glez and Len Stephens for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angulo-Urarte, A., Graupera, M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. Nat Cardiovasc Res 1, 700–714 (2022). https://doi.org/10.1038/s44161-022-00107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00107-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing