Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolic mechanisms of heart failure with preserved ejection fraction

Abstract

Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence worldwide, already accounting for at least half of all cases of heart failure. As most patients with HFpEF are obese with metabolic syndrome, metabolic stress has been implicated in syndrome pathogenesis. Recently, compelling evidence for bidirectional cross-talk between metabolic stress and chronic inflammation has emerged, and alterations in systemic and cardiac immune responses have been shown to participate in HFpEF pathophysiology. Indeed, based on both preclinical and clinical evidence, comorbidity-driven systemic inflammation, coupled with metabolic stress is held to participate in HFpEF pathogenesis. As metabolic alterations impact immune function(s) in HFpEF, major changes in immune cell metabolism are also recognized in HFpEF and in HFpEF-predisposing conditions. Both arms of immunity—innate and adaptive—are implicated in the cardiomyocyte response in HFpEF. Indeed, we submit that cross-talk among adipose tissue, the immune system and the heart represents a critical component of HFpEF pathobiology. Here, we review recent evidence in support of immunometabolic mechanisms as drivers of HFpEF pathogenesis, discuss pivotal biological mechanisms underlying the syndrome, and highlight questions requiring additional inquiry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of common phenotypes of heart failure with preserved ejection fraction.
Fig. 2: Cardiometabolic HFpEF.
Fig. 3: Cardiometabolic stress triggers alterations in adaptive immunity in heart failure with preserved ejection fraction.
Fig. 4: Potential contributions of innate immunity to the pathogenesis of cardiometabolic heart failure with preserved ejection fraction.

Similar content being viewed by others

References

  1. Mensah, G. A., Roth, G. A. & Fuster, V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J. Am. Coll. Cardiol. 74, 2529–2532 (2019).

    Article  PubMed  Google Scholar 

  2. GBD 2016 Causes of Death Collaboratorsollaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).

  3. Finkelstein, E. A. et al. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 42, 563–570 (2012).

    Article  PubMed  Google Scholar 

  4. Virani, S. S. et al. Heart disease and stroke statistics–2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  PubMed  Google Scholar 

  5. Boyle, J. P., Thompson, T. J., Gregg, E. W., Barker, L. E. & Williamson, D. F. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality and prediabetes prevalence. Popul. Health Metr. 8, 29 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Timmis, A. et al. European Society of Cardiology: cardiovascular disease statistics 2017. Eur. Heart J. 39, 508–579 (2018).

    Article  PubMed  Google Scholar 

  7. Bragazzi, N. L. et al. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur. J. Prev. Cardiol. 28, 1682–1690 (2021).

    Article  PubMed  Google Scholar 

  8. Benjamin, E. J. et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139, e56–e528 (2019).

    Article  PubMed  Google Scholar 

  9. Ponikowski, P. et al. 2016 ESC fuidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    Article  PubMed  Google Scholar 

  10. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128, 1810–1852 (2013).

    Article  PubMed  Google Scholar 

  11. Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

    Article  PubMed  Google Scholar 

  12. Shah, S. J. et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134, 73–90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mishra, S. & Kass, D. A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 18, 400–423 (2021).

    Article  PubMed  Google Scholar 

  14. Borlaug, B. A. & Redfield, M. M. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123, 2006–2013; discussion 2014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Figtree, G. A. et al. Effects of canagliflozin on heart failure outcomes associated with preserved and reduced ejection fraction in type 2 diabetes mellitus. Circulation 139, 2591–2593 (2019).

    Article  PubMed  Google Scholar 

  16. Shah, S. J. et al. Research priorities for heart failure with preserved ejection fraction. Circulation 141, 1001–1026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021). EMPEROR-Preserved was the first large-scale randomized clinical trial to meet its primary endpoint in patients with HFpEF.

    Article  CAS  PubMed  Google Scholar 

  18. Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Kitzman, D. W. & Shah, S. J. The HFpEF obesity phenotype: the elephant in the room. J. Am. Coll. Cardiol. 68, 200–203 (2016).

    Article  PubMed  Google Scholar 

  20. Obokata, M., Reddy, Y. N. V., Pislaru, S. V., Melenovsky, V. & Borlaug, B. A. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136, 6–19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Withaar, C., Lam, C. S. P., Schiattarella, G. G., de Boer, R. A. & Meems, L. M. G. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur. Heart J. 42, 4420–4430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schiattarella, G. G., Rodolico, D. & Hill, J. A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovas. Res. 117, 423–434 (2020).

    Article  Google Scholar 

  23. Packer, M., Zannad, F. & Anker, S. D. Heart failure and a preserved ejection fraction: a side-by-side examination of the PARAGON-HF and EMPEROR-Preserved trials. Circulation 144, 1193–1195 (2021).

    Article  PubMed  Google Scholar 

  24. Kato, E. T. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139, 2528–2536 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Nassif, M. E. et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat. Med. 27, 1954–1960 (2021). The PRESERVED-HF randomized clinical trial showed that the SGLT2-inhibitor dapagliflozin unequivocally improved health status and exercise capacity in patients with HFpEF who fit a cardiometabolic, congested phenotype that is typically associated with high levels of systemic inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abraham, W. T. et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur. Heart J. 42, 700–710 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Schiattarella, G. G., Sequeira, V. & Ameri, P. Distinctive patterns of inflammation across the heart failure syndrome. Heart Fail. Rev. 26, 1333–1344 (2020).

    Article  Google Scholar 

  28. Rao, V. N., Fudim, M., Mentz, R. J., Michos, E. D. & Felker, G. M. Regional adiposity and heart failure with preserved ejection fraction. Eur. J. Heart Fail. 22, 1540–1550 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Karlsson, T. et al. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat. Med. 25, 1390–1395 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Tibrewala, A. & Yancy, C. W. Heart failure with preserved ejection fraction in women. Heart Fail. Clin. 15, 9–18 (2019).

    Article  PubMed  Google Scholar 

  31. Sorimachi, H. et al. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. Eur. Heart J. 42, 1595–1605 (2021).

    Article  PubMed  Google Scholar 

  32. Packer, M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J. Am. Coll. Cardiol. 71, 2360–2372 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Xue, B. et al. Leptin mediates high-fat diet sensitization of angiotensin II-elicited hypertension by upregulating the brain renin–angiotensin system and inflammation. Hypertension 67, 970–976 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Packer, M. Leptin–aldosterone–neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation 137, 1614–1631 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Paulus, W. J. Unfolding discoveries in heart failure. N. Engl. J. Med. 382, 679–682 (2020).

    Article  PubMed  Google Scholar 

  36. Yoon, S. et al. S-nitrosylation of histone deacetylase 2 by neuronal nitric oxide synthase as a mechanism of diastolic dysfunction. Circulation 143, 1912–1925 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Schiattarella, G. G. et al. Xbp1s–FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat. Commun. 12, 1684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019). This study developed a new, clinically meaningful, animal model of cardiometabolic HFpEF identifying metabolic inflammation (meta-inflammation) as a key driver of HFpEF pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong, D. et al. Female sex is protective in a preclinical model of heart failure with preserved ejection fraction. Circulation 140, 1769–1771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hahn, V. S. et al. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Heart Fail. 8, 712–724 (2020). This large human study of patients with HFpEF who underwent endomyocardial biopsy showed that monocyte infiltration was greater in patients with HFpEF versus controls, suggesting that immune dysfunction has an important role in driving HFpEF pathogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marelli-Berg, F. M. & Aksentijevic, D. Immunometabolic cross-talk in the inflamed heart. Cell Stress 3, 240–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Norata, G. D. et al. The cellular and molecular basis of translational immunometabolism. Immunity 43, 421–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Mouton, A. J., Li, X., Hall, M. E. & Hall, J. E. Obesity, hypertension and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ. Res. 126, 789–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishida, K. & Otsu, K. Inflammation and metabolic cardiomyopathy. Cardiovasc. Res. 113, 389–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Vyas, V. et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight https://doi.org/10.1172/jci.insight.145495 (2021).

  46. Guzik, T. J., Skiba, D. S., Touyz, R. M. & Harrison, D. G. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc. Res. 113, 1009–1023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng, Q. et al. A unique population: adipose-resident regulatory T cells. Front. Immunol. 9, 2075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cipolletta, D., Cohen, P., Spiegelman, B. M., Benoist, C. & Mathis, D. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet and PPARγ effects. Proc. Natl Acad. Sci. USA 112, 482–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, D. et al. Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol. 49, 336–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Deswal, A. et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103, 2055–2059 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Briasoulis, A., Androulakis, E., Christophides, T. & Tousoulis, D. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail. Rev. 21, 169–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Rai, A. et al. Adaptive immune disorders in hypertension and heart failure: focusing on T cell subset activation and clinical implications. J. Hypertens. 38, 1878–1889 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020). This study provided a picture of human heart at single-cell resolution which will be useful for the study of intercellular cross-talk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Nevers, T. et al. Left ventricular T cell recruitment contributes to the pathogenesis of heart failurecalc. Circ. Heart Fail 8, 776–787 (2015). This study demonstrated that T cells are necessary for the progression of pressure overload-induced heart failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carrillo-Salinas, F. J., Ngwenyama, N., Anastasiou, M., Kaur, K. & Alcaide, P. Heart inflammation: immune cell roles and roads to the heart. Am. J. Pathol. 189, 1482–1494 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Blanton, R. M., Carrillo-Salinas, F. J. & Alcaide, P. T cell recruitment to the heart: friendly guests or unwelcome visitors? Am. J. Physiol. Heart Circ. Physiol. 317, H124–H140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borg, N. et al. CD73 on T cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136, 297–313 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017). Study demonstrating the role of T cells in myocardial infarction-induced heart failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Forte, E. et al. Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart. J. Cell. Mol. Med. 25, 229–243 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Hofmann, U. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 1652–1663 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramos, G. C. et al. Myocardial aging as a T cell-mediated phenomenon. Proc. Natl Acad. Sci. USA 114, E2420–E2429 (2017). Study exploring the dynamics of T cells in cardiac aging, establishing causality between T cell behavior and myocardial aging.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martini, E. et al. T cell co-stimulation blockade blunts age-related heart failure. Circ. Res. 127, 1115–1117 (2020). Study providing experimental evidence demonstrating the role of T cell-targeting therapy in age-related heart failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Laroumanie, F. et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129, 2111–2124 (2014). Seminal study pointing to the role of T cells in cardiac hypertrophy and heart failure development.

  71. Kallikourdis, M. et al. T cell co-stimulation blockade blunts pressure overload-induced heart failure. Nat. Commun. 8, 14680 (2017). Study demonstrating therapeutic feasibility of targeting T cells in heart failure models.

  72. Groschel, C. et al. T helper cells with specificity for an antigen in cardiomyocytes promote pressure overload-induced progression from hypertrophy to heart failure. Sci. Rep. 7, 15998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ngwenyama, N. et al. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight https://doi.org/10.1172/jci.insight.125527 (2019).

  74. Sintou, A. et al. Mediastinal lymphadenopathy, class-switched auto-antibodies and myocardial immune-complexes during heart failure in rodents and humans. Front. Cell Dev. Biol. 8, 695 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Heinrichs, M. et al. The healing myocardium mobilizes a distinct B cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc. Res. 117, 2664–2676 (2021).

    CAS  PubMed  Google Scholar 

  76. Horckmans, M. et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis and cardiac function after myocardial infarction. Circulation 137, 948–960 (2018).

    Article  PubMed  Google Scholar 

  77. Ngwenyama, N. et al. Isolevuglandin-modified cardiac proteins drive CD4+ T cell activation in the heart and promote cardiac dysfunction. Circulation 143, 1242–1255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. 129, 4922–4936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Basavalingappa, R. H. et al. Viral myocarditis involves the generation of autoreactive T cells with multiple antigen specificities that localize in lymphoid and nonlymphoid organs in the mouse model of CVB3 infection. Mol. Immunol. 124, 218–228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Komarowska, I. et al. Hepatocyte growth factor receptor c-Met instructs T cell cardiotropism and promotes T cell migration to the heart via autocrine chemokine release. Immunity 42, 1087–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44–52 (2011).

    Article  PubMed  Google Scholar 

  83. Li, N. et al. The TH17/Treg imbalance exists in patients with heart failure with normal ejection fraction and heart failure with reduced ejection fraction. Clin. Chim. Acta 411, 1963–1968 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Lu, X. & Crowley, S. D. Inflammation in salt-sensitive hypertension and renal damage. Curr. Hypertens. Rep. 20, 103 (2018).

  85. Liu, R. & Nikolajczyk, B. S. Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front. Immunol. https://doi.org/10.3389/fimmu.2019.01587 (2019).

  86. Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  87. Franssen, C. et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 4, 312–324 (2016).

    Article  PubMed  Google Scholar 

  88. van Heerebeek, L. et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117, 43–51 (2008).

    Article  PubMed  Google Scholar 

  89. Macdougall, C. E. et al. Visceral adipose tissue immune homeostasis is regulated by the cross-talk between adipocytes and dendritic cell subsets. Cell Metab. 27, 588–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mauro, C. et al. Obesity-induced metabolic stress leads to biased effector memory CD4+ T cell differentiation via PI3K p110δ-Akt-mediated signals. Cell Metab. 25, 593–609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, T. et al. Upregulation of SLAMF3 on human T cells is induced by palmitic acid through the STAT5-PI3K/Akt pathway and features the chronic inflammatory profiles of type 2 diabetes. Cell Death Dis. 10, 559 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007). This study pinpoints immune cells as mediators of hypertensive effects on vasculature.

  93. Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018). Data reported in this study implicate cardiac macrophages as therapeutic targets for cardiac fibrosis leading to diastolic dysfunction.

  95. Short, J. D. et al. Dyslipidemic diet-induced monocyte ‘priming’ and dysfunction in non-human primates is triggered by elevated plasma cholesterol and accompanied by altered histone acetylation. Front. Immunol. 8, 958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ecker, J. et al. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl Acad. Sci. USA 107, 7817–7822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. DeBerge, M., Shah, S. J., Wilsbacher, L. & Thorp, E. B. Macrophages in heart failure with reduced versus preserved ejection fraction. Trends Mol. Med. 4, 328–340 (2019).

    Article  Google Scholar 

  98. Tabas, I. & Bornfeldt, K. E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118, 653–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sager, H. B. et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119, 853–864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stiekema, L. C. A. et al. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. Eur. Heart J. 42, 4309–4320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  103. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lam, C. S., Donal, E., Kraigher-Krainer, E. & Vasan, R. S. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 13, 18–28 (2011).

    Article  PubMed  Google Scholar 

  105. Marechaux, S. et al. Prognostic importance of comorbidities in heart failure with preserved left ventricular ejection fraction. Heart Vessels 26, 313–320 (2011).

    Article  PubMed  Google Scholar 

  106. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bajpai, G. et al. Tissue-resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pinto, A. R. et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE 7, e36814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Obokata, M. et al. Myocardial injury and cardiac reserve in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 72, 29–40 (2018).

  112. Shah, S. J. et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart Journal 39, 3439–3450 (2018).

    Article  CAS  Google Scholar 

  113. Yang, J. H. et al. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 22, 432–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Mann, D. L. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ. Res. 116, 1254–1268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dick, S. A. & Epelman, S. Chronic heart failure and inflammation: what do we really know? Circ. Res. 119, 159–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petrova, G., Ferrante, A. & Gorski, J. Cross-reactivity of T cells and its role in the immune system. Crit. Rev. Immunol. 32, 349–372 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Marelli-Berg, F. M., Fu, H. & Mauro, C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T cell-mediated immunity. Immunology 136, 363–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cho, S. H. et al. Hypoxia-inducible factors in CD4+ T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. Proc. Natl Acad. Sci. USA 116, 8975–8984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang, H., Long, L., Zhou, P., Chapman, N. M. & Chi, H. mTOR signaling at the crossroads of environmental signals and T cell fate decisions. Immunol. Rev. 295, 15–38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020). This study shows that cardiac macrophages are responsible for the elimination of defective mitochondria in cardiomyocytes, preventing metabolic alterations and maintaining ventricular function.

  122. DeBerge, M. et al. MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury. Circ. Res. 121, 930–940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. van Teijlingen Bakker, N. & Pearce, E. J. Cell-intrinsic metabolic regulation of mononuclear phagocyte activation: findings from the tip of the iceberg. Immunol. Rev. 295, 54–67 (2020).

    Article  PubMed  Google Scholar 

  124. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reklou, A. et al. Reduction of vascular inflammation, LDL-C, or both for the protection from cardiovascular events? Open Cardiovas. Med. J. 12, 29–40 (2018).

    Article  CAS  Google Scholar 

  127. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kolwicz, S. C. Jr., Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Palsson-McDermott, E. M. & O’Neill, L. A. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays 35, 965–973 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Hoque, R., Farooq, A., Ghani, A., Gorelick, F. & Mehal, W. Z. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146, 1763–1774 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30, 1055–1074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fernandez-Caggiano, M. & Eaton, P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ. 28, 1149–1158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fernandez-Caggiano, M. et al. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat. Metab. 2, 1223–1231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. McCommis, K. S. et al. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat. Metab. 2, 1232–1247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Narula, J. et al. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335, 1182–1189 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Halestrap, A. P., Wang, X., Poole, R. C., Jackson, V. N. & Price, N. T. Lactate transport in heart in relation to myocardial ischemia. Am. J. Cardiol. 80, 17A–25A (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Xu, J. et al. Intracellular lactate signaling cascade in atrial remodeling of mitral valvular patients with atrial fibrillation. J. Cardiothorac. Surg. 8, 34 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014). Study demonstrating a critical role of succinate as mediator of myocardial ischemia/reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sadagopan, N. et al. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am. J. Hypertens. 20, 1209–1215 (2007).

    CAS  PubMed  Google Scholar 

  142. van Diepen, J. A. et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 60, 1304–1313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rubic, T. et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol. 9, 1261–1269 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Tong, D. et al. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ. Res. 128, 1629–1641 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abd7064 (2021).

  149. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 9, 1286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the DZHK (German Centre for Cardiovascular Research) to G.G.S.; the Deutsche Forschungsgemeinschaft (German Research Foundation; SFB-1470-A02) to G.G.S.; IMI2-CARDIATEAM (no. 821508) and the Netherlands Cardiovascular Research Initiative, Dutch Cardiovascular Alliance CVON2016-Early HFPEF, 2015-10, CVON She-PREDICTS, no. 2017-21 (to S.H.); US National Institutes of Health (HL144477 to P.A., HL122309 to E.B.T., HL160273, HL107577, HL127028, HL140731, HL149423 to S.J.S. and HL126012, HL128215, HL120732, HL147933 and HL155765 to J.A.H.) and the American Heart Association (19TPA34910006 to J.A.H.). We regret that we were unable to recognize all pertinent research in this field and contributions from all investigators owing to journal space limitations. All figures were created with BioRender.com licensed to G.G.S.

Author information

Authors and Affiliations

Authors

Contributions

G.G.S., P.A., G.C., T.G.G., S.H., E.A.V.J., M.K., A.L., F.M.-B., S.J.S., E.B.T. and J.A.H. contributed substantially to the conception, design and writing of the article. Each reviewed and interpreted the relevant literature and revised the manuscript critically for important intellectual content. All authors have approved the submitted version.

Corresponding author

Correspondence to Joseph A. Hill.

Ethics declarations

Competing interests

S.J.S. has received research grants from Actelion, AstraZeneca, Corvia, Novartis, and Pfizer; and has received consulting fees from Abbott, Actelion, AstraZeneca, Amgen, Aria CV, Axon Therapies, Bayer, Boehringer-Ingelheim, Boston Scientific, Bristol-Myers Squibb, Cardiora, Coridea, CVRx, Cyclerion, Cytokinetics, Edwards Lifesciences, Eidos, Eisai, Imara, Impulse Dynamics, Intellia, Ionis, Ironwood, Lilly, Merck, MyoKardia, Novartis, Novo Nordisk, Pfizer, Prothena, Regeneron, Rivus, Sanofi, Shifamed, Tenax, Tenaya, and United Therapeutics. All the other authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Christoph Maack, Barry Borlaug and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiattarella, G.G., Alcaide, P., Condorelli, G. et al. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat Cardiovasc Res 1, 211–222 (2022). https://doi.org/10.1038/s44161-022-00032-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00032-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing