Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide for assessment of myocardial stiffness in health and disease

Abstract

Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stiffness in the cardiac cell and cytoskeleton.
Fig. 2: In vitro assessment of myocardial stiffness.
Fig. 3: In vivo assessment of the myocardial stiffness.

Similar content being viewed by others

References

  1. deTombe, P. P. Cardiac myofilaments: mechanics and regulation. J. Biomech. 36, 721730 (2003).

    Google Scholar 

  2. Ferreira-Martins, J. & Leite-Moreira, A. F. Physiologic basis and pathophysiologic implications of the diastolic properties of the cardiac muscle. J. Biomed. Biotechnol. 2010, 807084 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mirsky, I. Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. Cardiovasc. Dis. 18, 277308 (1976). This manuscript described the theory of passive myocardial stiffness assessment.

    Article  Google Scholar 

  4. Nowicki, A. & Dobruch-Sobczak, K. Introduction to ultrasound elastography. J. Ultrason. 16, 113–124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Voigt, J.-U. Direct stiffness measurements by echocardiography. JACC Cardiovasc. Imaging 12, 1146–1148 (2019).

    Article  PubMed  Google Scholar 

  6. Boyer, G. et al. Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device. J. Mech. Behav. Biomed. Mater. 27, 273–282 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Sequeira, V., Nijenkamp, L. L. A. M., Regan, J. A. & van der Velden, J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim. Biophys. Acta Biomembr. 1838, 700–722 (2014).

    Article  CAS  Google Scholar 

  8. Tskhovrebova, L. & Trinick, J. Roles of titin in the structure and elasticity of the sarcomere. J. Biomed. Biotech. 2010, 1–7 (2010).

    Article  Google Scholar 

  9. Linke, W. A. Titin stiffness in heart disease. Circulation 107, e73 (2003).

  10. Ahmed, S. H. & Lindsey, M. L. Titin phosphorylation: myocardial passive stiffness regulated by the intracellular giant. Circ. Res. 105, 611–613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hidalgo, C. et al. PKC phosphorylation of titin’s PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Circ. Res. 105, 631–638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fukuda, N., Wu, Y., Nair, P. & Granzier, H. L. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J. Gen. Physiol. 125, 257–271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grimes, K. M., Prasad, V. & McNamara, J. W. Supporting the heart: functions of the cardiomyocyte’s non-sarcomeric cytoskeleton. J. Mol. Cell. Cardiol. 131, 187–196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, S. K., Li, Y. & Guo, M. Anisotropic mechanics and dynamics of a living mammalian cytoplasm. Soft Matter 15, 190–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Hein, S. The role of the cytoskeleton in heart failure. Cardiovasc. Res. 45, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tsikitis, M., Galata, Z., Mavroidis, M., Psarras, S. & Capetanaki, Y. Intermediate filaments in cardiomyopathy. Biophys. Rev. 10, 1007–1031 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seltmann, K., Fritsch, A. W., Kas, J. A. & Magin, T. M. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc. Natl Acad. Sci. USA 110, 18507–18512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramms, L. et al. Keratins as the main component for the mechanical integrity of keratinocytes. Proc. Natl Acad. Sci. USA 110, 18513–18518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rappaport, L. & Samuel, J. L. Microtubules in cardiac myocytes. in International Review of Cytology vol. 113 101–143 (Elsevier, 1988).

  21. Cooper, G. IV Cardiocyte cytoskeleton in hypertrophied myocardium. Heart Fail. Rev. 5, 187–201 (2000).

    Article  PubMed  Google Scholar 

  22. Nishimura, S. et al. Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ. Res. 98, 81–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Swiatlowska, P., Sanchez-Alonso, J. L., Wright, P. T., Novak, P. & Gorelik, J. Microtubules regulate cardiomyocyte transversal Young’s modulus. Proc. Natl Acad. Sci. USA 117, 2764–2766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caporizzo, M. A., Chen, C. Y., Bedi, K., Margulies, K. B. & Prosser, B. L. Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation 141, 902–915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gelse, K. Collagens — structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Bing, R. & Dweck, M. R. Myocardial fibrosis: why image, how to image and clinical implications. Heart 105, 1832–1840 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Eghbali, M. & Weber, K. T. Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol. Cell Biochem. 96, 1–14 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Colomo, F., Piroddi, N., Poggesi, C., te Kronnie, G. & Tesi, C. Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog. J. Physiol. 500, 535–548 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tesi, C., Colomo, F., Nencini, S., Piroddi, N. & Poggesi, C. The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys. J. 78, 3081–3092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piroddi, N. et al. Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Arch. 454, 63–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sugiura, S., Nishimura, S., Yasuda, S., Hosoya, Y. & Katoh, K. Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes. Nat. Protoc. 1, 1453–1457 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mou, Y. A., Bollensdorff, C., Cazorla, O., Magdi, Y. & de Tombe, P. P. Exploring cardiac biophysical properties. Global Cardiol. Sci. Prac. 2015, 10 (2015).

    Article  Google Scholar 

  33. Krueger, J. W. & Pollack, G. H. Myocardial sarcomere dynamics during isometric contraction. J. Physiol. 251, 627–643 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hunter, P. J., McCulloch, A. D. & ter Keurs, H. E. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–331 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. ter Keurs, H. E., Rijnsburger, W. H., van Heuningen, R. & Nagelsmit, M. J. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ. Res. 46, 703–714 (1980).

    Article  PubMed  Google Scholar 

  36. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018). This manuscript showed a comparison of different techniques for assessing in vitro cell mechanical properties, including stiffness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlick, S. F. et al. Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium. Prog. Biophys. Mol. Biol. 144, 51–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Tagawa, H. et al. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ. Res. 80, 281–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, G., Burnham, N. A., Camesano, T. A. & Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. J. Vis. Exp. 76, e50497 (2013)

  40. Ankudinov, A. V. & Khalisov, M. M. Contact stiffness measurements with an atomic force microscope. Tech. Phys. 65, 1866–1872 (2020).

    Article  Google Scholar 

  41. Borin, D., Pecorari, I., Pena, B. & Sbaizero, O. Novel insights into cardiomyocytes provided by atomic force microscopy. Semin. Cell Dev. Biol. 73, 4–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Dufrêne, Y. F. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184, 5205–5213 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Palmeri, M., Mcaleavey, S., Fong, K., Trahey, G. & Nightingale, K. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation. IEEE Trans. Ultrason. Ferroelect. Freq. Control 53, 2065–2079 (2006).

    Article  Google Scholar 

  44. Doherty, J. R., Trahey, G. E., Nightingale, K. R. & Palmeri, M. L. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans. Ultrason. Ferroelect. Freq. Control 60, 685–701 (2013).

    Article  Google Scholar 

  45. Eyerly, S. A. et al. An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions. J. Cardiovasc. Electrophys. 21, 557–563 (2010).

    Article  Google Scholar 

  46. Kakkad, V., LeFevre, M., Hollender, P., Kisslo, J. & Trahey, G. E. Non-invasive measurement of dynamic myocardial stiffness using acoustic radiation force impulse imaging. Ultrasound Med. Biol. 45, 1112–1130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Villemain, O. et al. Ultrafast ultrasound imaging in pediatric and adult cardiology. JACC Cardiovasc. Imaging 13, 1771–1791 (2020). This manuscript is a review of ultrafast ultrasound imaging, including the various techniques that use ultrasound to assess the myocardial stiffness.

    Article  PubMed  Google Scholar 

  48. Pernot, M. & Villemain, O. In the heart of stiffness. JACC Cardiovasc. Imaging 12, 2399–2401 (2019).

    Article  PubMed  Google Scholar 

  49. Petrescu, A. et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis. JACC Cardiovasc. Imaging 12, 2389–2398 (2019).

    Article  PubMed  Google Scholar 

  50. Villemain, O. et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc. Imaging 12, 1135–1145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Papadacci, C., Finel, V., Villemain, O., Tanter, M. & Pernot, M. 4D ultrafast ultrasound imaging of naturally occurring shear waves in the human heart. IEEE Trans. Med. Imaging 39, 4436–4444 (2020).

    Article  PubMed  Google Scholar 

  52. Santos, P. et al. Natural shear wave imaging in the human heart: normal values, feasibility, and reproducibility. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 442–452 (2019).

    Article  Google Scholar 

  53. Puntmann, V. O., Peker, E., Chandrashekhar, Y. & Nagel, E. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ. Res. 119, 277–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Varnava, A. M. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84, 476–482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Webb, J. et al. The emerging role of cardiac magnetic resonance imaging in the evaluation of patients with HFpEF. Curr. Heart Fail. Rep. 15, 1–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Iles, L. et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52, 1574–1580 (2008).

    Article  PubMed  Google Scholar 

  57. Rommel, K.-P. et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 67, 1815–1825 (2016).

    Article  PubMed  Google Scholar 

  58. Haaf, P. et al. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J. Cardiovasc. Magn. Reson. 18, 89 (2017).

    Article  Google Scholar 

  59. Neubauer, S. et al. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM registry. J. Am. Coll. Cardiol. 74, 2333–2345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. da Silveira, J. S. et al. Quantification of myocardial stiffness using magnetic resonance elastography in right ventricular hypertrophy: initial feasibility in dogs. Magn. Reson. Imaging 34, 26–34 (2016).

    Article  PubMed  Google Scholar 

  61. Chang, I. C. Y. et al. Feasibility study of cardiac magnetic resonance elastography in cardiac amyloidosis. Amyloid 24, 161–161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Khan, S., Fakhouri, F., Majeed, W. & Kolipaka, A. Cardiovascular magnetic resonance elastography: a review. NMR Biomed. 31, e3853 (2018).

    Article  PubMed  Google Scholar 

  63. Kolipaka, A., Araoz, P. A., McGee, K. P., Manduca, A. & Ehman, R. L. Magnetic resonance elastography as a method for the assessment of effective myocardial stiffness throughout the cardiac cycle. Magn. Reson. Med. 64, 862–870 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Elgeti, T. et al. Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology 271, 681–687 (2014).

    Article  PubMed  Google Scholar 

  65. Burkhoff, D., Mirsky, I. & Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. 289, H501–H512 (2005). This review paper is a reference for the physiological concepts involving ventricular properties via pressure–volume analysis.

    Article  CAS  Google Scholar 

  66. Clark, J. E. & Marber, M. S. Advancements in pressure–volume catheter technology — stress remodelling after infarction: advancements in pressure–volume catheter technology. Exp. Physiol. 98, 614–621 (2013).

    Article  PubMed  Google Scholar 

  67. Bastos, M. B. et al. Invasive left ventricle pressure–volume analysis: overview and practical clinical implications. Eur. Heart J. 41, 1286–1297 (2020).

    Article  PubMed  Google Scholar 

  68. Herberg, U. et al. 3D real-time echocardiography combined with mini pressure wire generate reliable pressure–volume loops in small hearts. PLoS ONE 11, e0165397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schmitt, B. et al. Integrated assessment of diastolic and systolic ventricular function using diagnostic cardiac magnetic resonance catheterization. JACC Cardiovasc. Imaging 2, 1271–1281 (2009).

    Article  PubMed  Google Scholar 

  70. Su, H. et al. Fiber-optic force sensors for MRI-guided interventions and rehabilitation: a review. IEEE Sensors J. 17, 1952–1963 (2017).

    Article  CAS  Google Scholar 

  71. Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol. 16, 100–111 (2019). This manuscript summarizes the computational models in cardiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mangion, K., Gao, H., Husmeier, D., Luo, X. & Berry, C. Advances in computational modelling for personalised medicine after myocardial infarction. Heart 104, 550–557 (2018).

    Article  PubMed  Google Scholar 

  73. Suga, H., Sagawa, K. & Shoukas, A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973). This manuscript provided results in support of the load independence idea of myocardial contractility.

    Article  CAS  PubMed  Google Scholar 

  74. Schiavazzi, D. E., Baretta, A., Pennati, G., Hsia, T. & Marsden, A. L. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int. J. Numer. Method Biomed. Eng. 33, e0279 (2017).

    Article  Google Scholar 

  75. Davidson, S. et al. Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. Biomed. Eng. Online 16, 42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Harrod, K. K., Rogers, J. L., Feinstein, J. A., Marsden, A. L. & Schiavazzi, D. E. Predictive modeling of secondary pulmonary hypertension in left ventricular diastolic dysfunction. Front. Physiol. 12, 666915 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xi, J. et al. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17, 133–146 (2013).

    Article  PubMed  Google Scholar 

  78. Hadjicharalambous, M. et al. Non-invasive model-based assessment of passive left-ventricular myocardial stiffness in healthy subjects and in patients with non-ischemic dilated cardiomyopathy. Ann. Biomed. Eng. 45, 605–618 (2017).

    Article  PubMed  Google Scholar 

  79. Asner, L. et al. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech. Model. Mechanobiol. 15, 1121–1139 (2016).

    Article  PubMed  Google Scholar 

  80. Genet, M. et al. A novel method for quantifying smooth regional variations in myocardial contractility within an infarcted human left ventricle based on delay-enhanced magnetic resonance imaging. J. Biomech. Eng. 137, 081009 (2015).

    Article  PubMed  Google Scholar 

  81. Land, S. et al. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J. Mol. Cell. Cardiol. 106, 68–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Guccione, J. M., McCulloch, A. D. & Waldman, L. K. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 42–55 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Holzapfel, G. A. & Ogden, R. W. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. R. Soc. A 367, 3445–3475 (2009).

    Article  PubMed  Google Scholar 

  84. Klotz, S. et al. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291, H403–H412 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Nikou, A. et al. Computational modeling of healthy myocardium in diastole. Ann. Biomed. Eng. 44, 980–992 (2016).

    Article  PubMed  Google Scholar 

  86. Bhagavan, D., Padovano, W. M. & Kovács, S. J. Alternative diastolic function models of ventricular longitudinal filling velocity are mathematically identical. Am. J. Physiol. Heart Circ. Physiol. 318, H1059–H1067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van Osta, N. et al. Electromechanical substrate characterization in arrhythmogenic cardiomyopathy using imaging-based patient-specific computer simulations. Europace 23, i153–i160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gaasch, W. H., Levine, H. J., Quinones, M. A. & Alexander, J. K. Left ventricular compliance: Mechanisms and clinical implications. Am. J. Cardiol. 38, 645–653 (1976).

    Article  CAS  PubMed  Google Scholar 

  89. Fujimoto, N. et al. Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans: effect of ageing on left ventricular compliance. J. Physiol. 590, 1871–1880 (2012). This paper provided important results on the physiological aging of ventricular compliance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sonnenblick, E. H., Siegel, J. H. & Sarnoff, S. J. Ventricular distensibility and pressure-volume curve during sympathetic stimulation. Am. J. Physiol. 204, 1–4 (1963).

    Article  CAS  PubMed  Google Scholar 

  91. van der Meer, P., Gaggin, H. K. & Dec, G. W. ACC/AHA versus ESC guidelines on heart failure. J. Am. Coll. Cardiol. 73, 2756–2768 (2019).

    Article  PubMed  Google Scholar 

  92. McCain, M. L., Yuan, H., Pasqualini, F. S., Campbell, P. H. & Parker, K. K. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am. J. Physiol. Heart Circ. Physiol. 306, H1525–H1539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Muir, W. W. & Hamlin, R. L. Myocardial contractility: historical and contemporary considerations. Front. Physiol. 11, 222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cikes, M. & Solomon, S. D. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur. Heart J. 37, 1642–1650 (2016).

    Article  PubMed  Google Scholar 

  95. Bijnens, B. H., Cikes, M., Claus, P. & Sutherland, G. R. Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur. J. Echocardiogr. 10, 216–226 (2008).

    Article  PubMed  Google Scholar 

  96. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 18, 891–975 (2016).

    Article  PubMed  Google Scholar 

  97. Sagawa, K., Suga, H., Shoukas, A. A. & Bakalar, K. M. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am. J. Cardiol. 40, 748–753 (1977). The manuscript presents some important results on animal models that confirm the load independence of ventricular contractility.

    Article  CAS  PubMed  Google Scholar 

  98. Taubert, K., Willerson, J. T., Shapiro, W. & Templeton, G. H. Contraction and resting stiffness of isolated cardiac muscle: effects of inotropic agents. Am. J. Physiol. 232, H275–H282 (1977).

    CAS  PubMed  Google Scholar 

  99. Royse, C. F., Royse, A. G., Rohrlach, R., Wright, C. E. & Angus, J. A. The cardiovascular effects of adrenaline, dobutamine and milrinone in rabbits using pressure-volume loops and guinea pig isolated atrial tissue. Anaesth. Intensive Care 35, 180–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Mirsky, I., Tajimi, T. & Peterson, K. L. The development of the entire end-systolic pressure–volume and ejection fraction–afterload relations: a new concept of systolic myocardial stiffness. Circulation 76, 343–356 (1987).

    Article  CAS  PubMed  Google Scholar 

  101. Livingston, J. Z., Halperin, H. R. & Yin, F. C. P. Accounting for the Gregg effect in tetanised coronary arterial pressure–flow relationships. Cardiovasc.Res. 28, 228–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Pernot, M. Real time assessment of myocardial contractility using shear wave imaging. J. Am. Coll. Cardiol. 58, 65–72 (2011). The manuscript shows the correlation between contractility and systolic myocardial stiffness, assessed by shear wave imaging.

    Article  PubMed  Google Scholar 

  103. van Heerebeek, L. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113, 1966–1973 (2006).

    Article  PubMed  Google Scholar 

  104. Borbély, A. et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation 111, 774–781 (2005).

    Article  PubMed  Google Scholar 

  105. Zile, M. R. et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131, 1247–1259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van Loon, T. et al. Increased myocardial stiffness more than impaired relaxation function limits cardiac performance during exercise in heart failure with preserved ejection fraction: a virtual patient study. Eur. Heart. J. Digit. Health 1, 40–50 (2020).

    Article  Google Scholar 

  107. Watanabe, S. et al. Predictive importance of left ventricular myocardial stiffness for the prognosis of patients with congestive heart failure. J. Cardiol. 58, 245–252 (2011).

    Article  PubMed  Google Scholar 

  108. Makarenko, I. et al. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ. Res. 95, 708–716 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Amano, M. et al. Predictors of prognosis in light-chain amyloidosis and chronological changes in cardiac morphology and function. Am. J. Cardiol. 120, 2041–2048 (2017).

  111. Pislaru, C. et al. Increased myocardial stiffness detected by intrinsic cardiac elastography in patients with amyloidosis. JACC Cardiovasc. Imaging 12, 375–377 (2019).

    Article  PubMed  Google Scholar 

  112. Arani, A. et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J. Magn. Reson. Imaging 46, 1361–1367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sandor, G. G. S. & Olley, P. M. Determination of left ventricular diastolic chamber stiffness and myocardial stiffness in patients with congenital heart disease. Am. J. Cardiol. 49, 771–779 (1982).

    Article  CAS  PubMed  Google Scholar 

  114. Chaturvedi, R. R. et al. Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121, 979–988 (2010).

    Article  PubMed  Google Scholar 

  115. Sandor, G. G. S., Puterman, M. L., Patterson, M. W. H., Tipple, M. A. & Vince, D. J. Effect of pressure loading, volume loading and surgery on left ventricular chamber and myocardial stiffness in congenital heart disease, with a reevaluation of normal pediatric values. J. Am. Coll. Cardiol. 8, 371–378 (1986).

    Article  CAS  PubMed  Google Scholar 

  116. Kozak, M. F. et al. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study. Pediatr. Radiol. 44, 403–409 (2014).

    Article  PubMed  Google Scholar 

  117. Babu-Narayan, S. V. et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation 113, 405–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Munkhammar, P., Carlsson, M., Arheden, H. & Pesonen, E. Restrictive right ventricular physiology after Tetralogy of Fallot repair is associated with fibrosis of the right ventricular outflow tract visualized on cardiac magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging 14, 978–985 (2013).

    Article  PubMed  Google Scholar 

  119. Pernot, M. et al. Real-time assessment of myocardial contractility using shear wave imaging. J. Am. Coll. Cardiol. 58, 65–72 (2011).

  120. Hossain, M., Moore, C. J. & Gallippi, C. M. Acoustic radiation force impulse-induced peak displacements reflect degree of anisotropy in transversely isotropic elastic materials. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64, 989–1001 (2017).

    Article  Google Scholar 

  121. Ohnuki, Y. et al. Effects of protein kinase A on the phosphorylation status and transverse stiffness of cardiac myofibrils. J. Pharmacol. Sci. 123, 279–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Édes, I. F. et al. Rate of tension redevelopment is not modulated by sarcomere length in permeabilized human, murine, and porcine cardiomyocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R20–R29 (2007).

    Article  PubMed  Google Scholar 

  123. Borbely, A. et al. Peroxynitrite-induced α-actinin nitration and contractile alterations in isolated human myocardial cells. Cardiovasc. Res. 67, 225–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. van Heerebeek, L. et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117, 43–51 (2008).

    Article  PubMed  Google Scholar 

  125. Vahl, C. F. et al. Myocardial length-force relationship in end stage dilated cardiomyopathy and normal human myocardium: analysis of intact and skinned left ventricular trabeculae obtained during 11 heart transplantations. Basic Res. Cardiol. 92, 261–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Fatemifar, F., Feldman, M. D., Oglesby, M. & Han, H.-C. Comparison of biomechanical properties and microstructure of trabeculae carneae, papillary muscles, and myocardium in the human heart. J. Biomech. Eng. 141, 021007 (2019).

    Article  Google Scholar 

  127. Sommer, G. et al. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24, 172–192 (2015).

    Article  PubMed  Google Scholar 

  128. Wassenaar, P. A. et al. Measuring age-dependent myocardial stiffness across the cardiac cycle using MR elastography: a reproducibility study. Magn. Reson. Med. 75, 1586–1593 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Petrescu, A. et al. Shear wave elastography using high-frame-rate imaging in the follow-up of heart transplantation recipients. JACC Cardiovasc. Imaging 13, 2304–2313 (2020).

    Article  PubMed  Google Scholar 

  130. Kim, H., Yoo, L., Shin, A. & Demer, J. L. Determination of poisson ratio of bovine extraocular muscle by computed X-ray tomography. Biomed. Res. Int. 2013, 1–5 (2013).

    Google Scholar 

  131. Islam, Md. T. et al. Non-invasive imaging of Young’s modulus and Poisson’s ratio in cancers in vivo. Sci. Rep. 10, 7266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. C. V. L. made substantial contributions to the design of the work, drafted the work and substantively revised it; J. B. made substantial contributions to the conception of the work, drafted the work and contributed to its revision; M. B. N., A. A., A. M., J. L., L.M., M. K. F. and C. A. S. drafted the work; M. P. drafted the work and substantively revised it; O. V. made substantial contributions to the conception and design of the work, drafted the work and substantively revised it. All authors have approved the submitted version. All authors have agreed both to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated and resolved, with the resolution documented in the literature.

Corresponding author

Correspondence to Olivier Villemain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Christopher Nguyen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalobos Lizardi, J.C., Baranger, J., Nguyen, M.B. et al. A guide for assessment of myocardial stiffness in health and disease. Nat Cardiovasc Res 1, 8–22 (2022). https://doi.org/10.1038/s44161-021-00007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-021-00007-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research