Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacially coupled Cu-cluster/GaN photocathode for efficient CO2 to ethylene conversion

Abstract

The photoelectrochemical synthesis of valuable multicarbon products from carbon dioxide, sunlight and water is a promising pathway for clean energy generation and carbon neutrality. However, it is challenging to create and stabilize efficient C–C coupling sites to achieve multicarbon products with high selectivity, yield and stability. Here we designed a low-coordinated copper-cluster catalyst interfacially coupled in situ with a GaN nanowire photocathode, achieving a high ethylene Faradaic efficiency of 61% and a partial current density of 14.2 mA cm−2, with a robust stability of 116 h. The in situ self-optimized Ga–N–O interface was confirmed to facilitate and stabilize the interfacially oxidized copper species of copper clusters, which function as efficient C–C coupling sites for ethylene production. Furthermore, the hydrogen-feeding effect of GaN for promoting CO hydrogenation also guides the facile CHO-involved C–C coupling pathway. This work sheds light on the interface design and understanding of efficient and stable (photo)electrosynthesis of highly valuable fuels from CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the in situ construction of the strongly coupled copper cluster and GaN NW/Si photocathode during the PEC CO2RR process.
Fig. 2: Structural characterization of s-Cu/GaN NWs/Si.
Fig. 3: PEC CO2RR performance.
Fig. 4: Experimental mechanism investigation.
Fig. 5: Theoretical mechanism for the optimized Cu–GaN interface for the CO2RR to C2H4 conversion.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files. Source data are provided with this paper.

References

  1. Zhou, B. et al. Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat. Catal. 6, 987–995 (2023).

    Article  CAS  Google Scholar 

  2. Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020).

    Article  CAS  Google Scholar 

  3. Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang, B. & Xiao, F.-X. An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels. ACS Catal. 12, 9023–9057 (2022).

    Article  CAS  Google Scholar 

  5. Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).

    Article  Google Scholar 

  6. Brennaman, M. K. et al. Finding the way to solar fuels with dye-sensitized photoelectrosynthesis cells. J. Am. Chem. Soc. 138, 13085–13102 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Shan, B. et al. Binary molecular–semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nat. Energy 4, 290–299 (2019).

    Article  CAS  Google Scholar 

  8. Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Kumaravel, V., Bartlett, J. & Pillai, S. C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5, 486–519 (2020).

    Article  CAS  Google Scholar 

  10. Choi, S. K. et al. Sn-coupled p-Si nanowire arrays for solar formate production from CO2. Adv. Energy Mater. 4, 1301614 (2014).

    Article  Google Scholar 

  11. Wen, Z. et al. Aqueous CO2 reduction on Si photocathodes functionalized by cobalt molecular catalysts/carbon nanotubes. Angew. Chem. Int. Ed. 61, e202201086 (2022).

    Article  CAS  Google Scholar 

  12. Zhao, B., Huang, X., Ding, Y. & Bi, Y. Bias-free solar-driven syngas production: a Fe2O3 photoanode featuring single-atom cobalt integrated with a silver–palladium cathode. Angew. Chem. Int. Ed. 62, e202213067 (2023).

    Article  CAS  Google Scholar 

  13. Zhou, B. et al. Highly efficient binary Cu–iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl Acad. Sci. USA 117, 1330–1338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chu, S. et al. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 140, 7869–7877 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, H., Wang, Z. & Wang, L. Photocatalytic and photoelectrochemical carbon dioxide reductions toward value-added multicarbon products. ACS ES T Engg. 2, 975–988 (2022).

    Article  Google Scholar 

  16. Roh, I. et al. Photoelectrochemical CO2 reduction toward multicarbon products with silicon nanowire photocathodes interfaced with cu nanoparticles. J. Am. Chem. Soc. 144, 8002–8006 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, C. et al. Codesign of an integrated metal–insulator–semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene. Energy Environ. Sci. 16, 2968–2976 (2023).

    Article  CAS  Google Scholar 

  18. Rahaman, M. et al. Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf. Nat. Energy 8, 629–638 (2023).

    Article  CAS  Google Scholar 

  19. Liu, G. et al. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nat. Energy 6, 1124–1132 (2021).

    Article  CAS  Google Scholar 

  20. Hemmerling, J. R., Mathur, A. & Linic, S. Design principles for efficient and stable water splitting photoelectrocatalysts. Acc. Chem. Res. 54, 1992–2002 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Digdaya, I. A., Adhyaksa, G. W. P., Trześniewski, B. J., Garnett, E. C. & Smith, W. A. Interfacial engineering of metal–insulator–semiconductor junctions for efficient and stable photoelectrochemical water oxidation. Nat. Commun. 8, 15968 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hemmerling, J., Quinn, J. & Linic, S. Quantifying losses and assessing the photovoltage limits in metal–insulator–semiconductor water splitting systems. Adv. Energy Mater. 10, 1903354 (2020).

    Article  CAS  Google Scholar 

  23. Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).

    Article  Google Scholar 

  24. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    Article  CAS  Google Scholar 

  25. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on Cu in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  27. Lum, Y. & Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2018).

    Article  CAS  Google Scholar 

  28. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  CAS  Google Scholar 

  29. Wu, Z.-Z., Gao, F.-Y. & Gao, M.-R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 14, 1121–1139 (2021).

    Article  CAS  Google Scholar 

  30. Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, B. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 142, 13606–13613 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, W. et al. Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat. Catal. 6, 885–894 (2023).

    Article  CAS  Google Scholar 

  33. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  34. Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented Cu. Nat. Catal. 2, 251–258 (2019).

    Article  CAS  Google Scholar 

  35. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Singh, A. K., Montoya, J. H., Gregoire, J. M. & Persson, K. A. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat. Commun. 10, 443 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. & Guo, L. On factors limiting the performance of photoelectrochemical CO2 reduction. J. Chem. Phys. 152, 100901 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. He, J. & Janáky, C. Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett. 5, 1996–2014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng, G. et al. Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat. Mater. 20, 1130–1135 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Xiao, Y. et al. Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration. Nat. Commun. 14, 2047 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, A. et al. Structure of the catalytically active Cu–ceria interfacial perimeter. Nat. Catal. 2, 334–341 (2019).

    Article  CAS  Google Scholar 

  42. Liu, W. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolter, S. D. et al. X-ray photoelectron spectroscopy and X-ray diffraction study of the thermal oxide on gallium nitride. Appl. Phys. Lett. 70, 2156–2158 (1997).

    Article  CAS  Google Scholar 

  44. Zhang, T., Yuan, B., Wang, W., He, J. & Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem. Int. Ed. 62, e202302096 (2023).

    Article  CAS  Google Scholar 

  45. Cao, Y. et al. Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. 62, e202303048 (2023).

    Article  CAS  Google Scholar 

  46. Li, J. et al. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 12, 3502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified Cu. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  48. Zhou, X. et al. Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane. J. Am. Chem. Soc. 144, 2079–2084 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, Y. et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020).

    Article  CAS  Google Scholar 

  50. Guo, C. et al. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cuδ+ species. Angew. Chem. Int. Ed. 61, e202205909 (2022).

    Article  CAS  Google Scholar 

  51. Xu, A. et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 5, 1081–1088 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the United States Army Research Office Award (grant no. W911NF2110337 to Z.M.). The authors also acknowledge technical support from the Lurie Nanofabrication Facility and the Michigan Center for Materials Characterization.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and Z.M. conceived this project. Z.M. supervised the whole project. B.Z. designed the catalyst system and carried out (photo)electrochemical experiments. P.Z. performed DFT calculations. B.Z and Z.M. participated in discussion of the theoretical calculations. I.A.N. and Y.P. prepared the n+–p silicon solar cell and performed MBE growth of n+-GaN nanowires on silicon. Z.Y. helped with XPS and SEM measurements. K.S. helped with STEM measurements. B.Z., Z.Y. and P.Z. collected the FTIR spectra. Y.X. participated in data analysis and discussion. All the authors contributed to the overall scientific discussions and edited the paper. The paper was written by B.Z. and Z.M. with contributions from all coauthors.

Corresponding authors

Correspondence to Bingxing Zhang or Zetian Mi.

Ethics declarations

Competing interests

Some intellectual property related to the synthesis of GaN nanowires was licensed to NS Nanotech, Inc. and NX Fuels, Inc., which were cofounded by Z.M. The University of Michigan and Z.M. have a financial interest in these companies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Longhua Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Table 1 and References 1–22.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhou, P., Ye, Z. et al. Interfacially coupled Cu-cluster/GaN photocathode for efficient CO2 to ethylene conversion. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00648-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing