Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

On the characterization of γ-graphyne

The Original Article was published on 09 May 2022

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulated electron diffraction and WAXS patterns for multilayer γ-graphyne.
Fig. 2: Comparison of HRTEM images of carbon materials.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Hu, Y. et al. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 1, 449–454 (2022).

    Article  Google Scholar 

  2. Baughman, R. H., Eckhardt, H. & Kertesz, M. Structure–property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687–6699 (1987).

    Article  CAS  Google Scholar 

  3. Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 42, 8617–8636 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Nery, J. P., Calandra, M. & Mauri, F. Long-range rhombohedral-stacked graphene through shear. Nano Lett. 20, 5017–5023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yun, J. et al. Tunable band gap of graphyne-based homo- and hetero-structures by stacking sequences, strain and electric field. Phys. Chem. Chem. Phys. 20, 26934–26946 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vanpoucke, D. E. P., Lejaeghere, K., Van Speybroeck, V., Waroquier, M. & Ghysels, A. Mechanical properties from periodic plane wave quantum mechanical codes: the challenge of the flexible nanoporous MIL-47(V) framework. J. Phys. Chem. C 119, 23752–23766 (2015).

    Article  CAS  Google Scholar 

  8. Energy vs volume: volume relaxations and Pulay stress. VASP Wiki https://www.vasp.at/wiki/index.php/Energy_vs_volume_Volume_relaxations_and_Pulay_stress (2022).

  9. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  10. Franken, L. E., Grunewald, K., Boekema, E. J. & Stuart, M. C. A. A technical introduction to transmission electron microscopy for soft-matter: imaging, possibilities, choices and technical developments. Small 16, e1906198 (2020).

    Article  PubMed  Google Scholar 

  11. Czigany, Z. & Kis, V. K. Acquisition and evaluation procedure to improve the accuracy of SAED. Microsc. Res. Tech. 86, 144–156 (2023).

    Article  PubMed  Google Scholar 

  12. Johns, S. et al. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite. J. Nucl. Mater. 505, 62–68 (2018).

    Article  CAS  Google Scholar 

  13. Mazur, A. S., Vovk, M. A. & Tolstoy, P. M. Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fuller. Nanotub. Carbon Nanostruct. 28, 202–213 (2019).

    Article  Google Scholar 

  14. Li, Y. et al. Designed synthesis of a highly conjugated hexaethynylbenzene-based host for supramolecular architectures. Chem. Asian J. 9, 2842–2849 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Beamson, G. & Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, 1992).

Download references

Acknowledgements

We thank the authors of ref. 1 for providing their VASP input files. Funding from the US Department of Energy (grant number DE-SC0022100) and the National Science Foundation (GFRP award 1451075 to W.B.M.) is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Contributions

V.O.R., W.B.M. and S.M.P. conceptualized the idea and led the project. W.B.M., S.M.P. and R.E.W. performed the modelling. V.O.R., W.B.M., S.M.P. and R.E.W. interpreted the results and wrote the paper.

Corresponding author

Correspondence to Valentin O. Rodionov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jean-François Morin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Table 1 and Discussion.

Supplementary Data 1

Computational data. TURBOMOLE and VASP input and output files.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, W.B., Warburton, R.E., Parker, S.M. et al. On the characterization of γ-graphyne. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00642-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing