Abstract
The development of the sulfur(VI)–fluoride exchange (SuFEx) and modular diazotransfer (MoDAT) reactions represent important milestones in the evolution of click chemistry. However, their reactivity profiles, chemoselectivity origins and underlying mechanisms remain unclear. Here we report a computational study of the MoDAT and SuFEx pathways, focusing on the reaction between the diazotransfer reagent fluorosulfuryl azide and primary amines. Our calculations reveal that the MoDAT reaction possesses a small kinetic barrier and a strong driving force, making it kinetically and thermodynamically more favourable than the SuFEx reaction. Through mechanistic scrutiny and structure–activity relationship studies, we have formulated predictive models for the reactivity and selectivity of the MoDAT reaction. Leveraging these insights, an easy-to-prepare and easily handled diazotransfer reagent with excellent reactivity has been developed, which holds broad promise for applications in chemistry and biology.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data supporting the findings of this study are available within the Article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC 2336497 (PSIA-II). These data can be obtained free of charge from the CCDC via https://www.ccdc.cam.ac.uk/structures/.
References
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).
Devaraj, N. K. & Finn, M. G. Introduction: click chemistry. Chem. Rev. 121, 6697–6698 (2021).
Finn, M. G., Kolb, H. C. & Sharpless, K. B. Click chemistry connections for functional discovery. Nat. Synth. 1, 8–10 (2022).
Huisgen, R. 1,3-Dipolar cycloadditions past and future. Angew. Chem. Int. Ed. 2, 565–632 (1963).
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).
Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).
Meldal, M. & Tornøe, C. W. Cu-catalyzed azide–alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).
Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).
Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005).
Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).
Manetsch, R. et al. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126, 12809–12818 (2004).
Narayan, S. et al. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).
Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).
Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).
Kölmel, D. K. & Kool, E. T. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117, 10358–10376 (2017).
Sun, S. et al. Phosphorus fluoride exchange: multidimensional catalytic click chemistry from phosphorus connective hubs. Chem 9, 2128–2143 (2023).
Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).
Zeng, D., Deng, W.-P. & Jiang, X. Linkage chemistry of S(VI) fluorides. Chem. Eur. J. 29, e202300536 (2023).
Zeng, D., Deng, W.-P. & Jiang, X. Advances in the construction of diverse SuFEx linkers. Natl Sci. Rev. 10, nwad123 (2023).
Bernús, M. et al. A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins. Nat. Synth. 3, 185–191 (2024).
Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. The linkage of sulfonimidoyl fluorides and unactivated alkenes via hydrosulfonimidoylation. Angew. Chem. Int. Ed. 61, e202207100 (2022).
Zhao, S., Zeng, D., Wang, M. & Jiang, X. C-SuFEx linkage of sulfonimidoyl fluorides and organotrifluoroborates. Nat. Commun. 15, 727 (2024).
Teng, S., Shultz, Z. P., Shan, C., Wojtas, L. & Lopchuk, J. M. Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent. Nat. Chem. 16, 183–192 (2024).
Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017).
Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020).
Peng, Z. et al. Enantioselective sulfur(VI) fluoride exchange reaction of iminosulfur oxydifluorides. Nat. Chem. 16, 353–362 (2024).
Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).
Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13, 858–867 (2021).
Liang, D.-D., Pujari, S. P., Subramaniam, M., Besten, M. & Zuilhof, H. Configurationally chiral SuFEx-based polymers. Angew. Chem. Int. Ed. 61, e202116158 (2022).
Chao, Y. et al. Sulfur–phenolate exchange: SuFEx-derived dynamic covalent reactions and degradation of SuFEx polymers. Angew. Chem. Int. Ed. 61, e202207456 (2022).
Lou, T. S.-B. & Willis, M. C. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat. Rev. Chem. 6, 146–162 (2022).
Hoppmann, C. & Wang, L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53–Mdm4. Chem. Commun. 52, 5140–5143 (2016).
Yang, B. et al. Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA 115, 11162–11167 (2018).
Wang, N. et al. Genetically encoding fluorosulfate‑l‑tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).
Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. Divergent sulfur(VI) fluoride exchange linkage of sulfonimidoyl fluorides and alkynes. Nat. Synth. 1, 455–463 (2022).
Li, S., Wang, N., Yu, B., Sun, W. & Wang, L. Genetically encoded chemical crosslinking of carbohydrate. Nat. Chem. 15, 33–42 (2023).
Sun, W. et al. Genetically encoded chemical crosslinking of RNA in vivo. Nat. Chem. 15, 21–32 (2023).
Qin, Z. et al. Discovering covalent inhibitors of protein–protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides. Nat. Chem. 15, 1705–1714 (2023).
Li, Q. et al. Developing covalent protein drugs via proximity enabled reactive therapeutics. Cell 182, 85–97 (2020).
Yu, B. et al. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 8, 2766–2783 (2022).
Homer, J. A. et al. Sulfur fluoride exchange. Nat. Rev. Methods Primers 3, 58 (2023).
Ruff, J. K. Sulfur oxyfluoride derivatives. II. Inorg. Chem. 4, 567–570 (1965).
Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).
Krasheninina, O. A., Thaler, J., Erlacher, M. D. & Micura, R. Amine-to-azide conversion on native RNA via metal-free diazotransfer opens new avenues for RNA manipulations. Angew. Chem. Int. Ed. 60, 6970–6974 (2021).
Liu, H. et al. Construction of an IMiD-based azide library as a kit for PROTAC research. Org. Biomol. Chem. 19, 166–170 (2021).
Zhang, J. & Dong, J. Modular click chemistry library: searching for better functions. Chin. J. Chem. 39, 1025–1027 (2021).
Moreno, S., Pittol, J. M. R., Hartl, M. & Micura, R. Robust synthesis of 2′-azido modified RNA from 2′-amino precursors by diazotransfer reaction. Org. Biomol. Chem. 20, 7845–7850 (2022).
Kofsky, J. M., Daskhan, G. C., Macauley, M. S. & Capicciotti, C. J. Efficient synthesis of azido sugars using fluorosulfuryl azide diazotransfer reagent. Eur. J. Org. Chem. 2022, e202200108 (2022).
Cui, Q. et al. Discovery of a novel potent antitumor molecule, P19G1, by erlotinib derivative libraries synthesized by modular click-chemistry. Technol. Cancer Res. Treat. 21, 1–14 (2022).
Xin, Y. et al. Affinity selection of double-click triazole libraries for rapid discovery of allosteric modulators for GLP-1 receptor. Proc. Natl Acad. Sci. USA 120, e2220767120 (2023).
Tian, W. Q. & Wang, Y. A. Mechanisms of Staudinger reactions within density functional theory. J. Org. Chem. 69, 4299–4308 (2004).
Pandiakumar, A. K., Sarma, S. P. & Samuelson, A. G. Mechanistic studies on the diazo transfer reaction. Tetrahedron Lett. 55, 2917–2920 (2014).
Stevens, M. Y., Sawant, R. T. & Odell, L. R. Synthesis of sulfonyl azides via diazotransfer using an imidazole-1-sulfonyl azide salt: scope and 15N NMR labeling experiments. J. Org. Chem. 79, 4826–4831 (2014).
Gwak, S., Lee, J. H., Kwon, H.-J. & Han, H. A study on the diazo-transfer reaction using o-nitrobenzenesulfonyl azide. Synlett 35, 1429–1435 (2024).
Fischer, W. & Anselme, J.-P. Reaction of amine anions with p-toluenesulfonyl azide. Novel azide synthesis. J. Am. Chem. Soc. 89, 5284–5285 (1967).
Nyffeler, P. T., Liang, C.-H., Koeller, K. M. & Wong, C.-H. The chemistry of amine–azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 124, 10773–10778 (2002).
Luy, J.-N. & Tonner, R. Complementary base lowers the barrier in SuFEx click chemistry for primary amine nucleophiles. ACS Omega 5, 31432–31439 (2020).
Wei, M. et al. A broad-spectrum catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew. Chem. Int. Ed. 60, 7397–7404 (2021).
Han, B. et al. Calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx): mechanistic insights toward instigating catalysis. Inorg. Chem. 61, 9746–9755 (2022).
Smedley, C. J. et al. Accelerated SuFEx click chemistry for modular synthesis. Angew. Chem. Int. Ed. 61, e202112375 (2022).
Yang, J.-D., Xue, X.-S., Ji, P., Li, X. & Cheng, J.-P. Internet bond-energy databank (pKa and BDE): iBonD home page. http://ibond.nankai.edu.cn. Accessed Aug 2022.
Regitz, M. New methods of preparative organic chemistry. Transfer of diazo groups. Angew. Chem. Int. Ed. 6, 733–749 (1967).
Goddard-Borger, E. D. & Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 9, 3797–3800 (2007).
Kitamura, M., Tashiro, N. & Okauchi, T. 2-Azido-1,3-dimethylimidazolinium chloride: an efficient diazo transfer reagent for 1,3-dicarbonyl compounds. Synlett 18, 2943–2944 (2009).
Samet, M., Buhle, J., Zhou, Y. & Kass, S. R. Charge-enhanced acidity and catalyst activation. J. Am. Chem. Soc. 137, 4678–4680 (2015).
Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).
Johnson, C. R., Janiga, E. R. & Haake, M. Chemistry of sulfoxides and related compounds. X. Ylides from salts of sulfoximines. J. Am. Chem. Soc. 90, 3890–3891 (1968).
Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. Fluorinated Johnson reagent for transfer-trifluoromethylation to carbon nucleophiles. Eur. J. Org. Chem. 2008, 3465–3468 (2008).
Vogel, J. A. et al. Synthesis of highly reactive sulfone iminium fluorides and their use in deoxyfluorination and sulfur fluoride exchange chemistry. Org. Lett. 24, 5962–5966 (2022).
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 15, 2847–2862 (2019).
Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).
Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).
Luchini, G., Alegre-Requena, J. V., Funes-Ardoiz, I. & Paton, R. S. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data [version 1; peer review: 2 approved with reservations]. F1000Res. 9, 291 (2020).
Alecu, I. M., Zheng, J., Zhao, Y. & Truhlar, D. G. Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J. Chem. Theory Comput. 6, 2872–2887 (2010).
Li, Y.-P., Gomes, J., Sharada, S. M., Bell, A. T. & Head-Gordon, M. Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015).
Legault, C. Y. CYLview, 1.0b. http://www.cylview.org (Université de Sherbrooke, 2009).
Acknowledgements
This work was supported by the Ministry of Science and Technology of China (2021YFF0701700 to X.-S.X.), the National Natural Science Foundation of China (grant numbers 22122104, 22193012 and 21933004 to X.-S.X.), the CAS Project for Young Scientists in Basic Research (grant numbers YSBR-095 and YSBR-052 to X.-S.X.) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB0590000 to X.-S.X.). We thank F. Zhang and P. Ji for their inspiring discussions and comments.
Author information
Authors and Affiliations
Contributions
X.-S.X. conceived and directed the project. M.-M.Z. and H.-D.T. conducted the DFT calculations. L.C., T.M. and X.L. performed the experiments. M.-M.Z., L.C., J.D. and X.-S.X. discussed the results. M.-M.Z., L.C. and X.-S.X. wrote the manuscript. All authors reviewed and edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
X.-S.X., L.C. and M.-M.Z. have filed a patent application lodged with Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (reference number CN2024103608309) based on this work. T.M., H.-D.T., X.L. and J.D. declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Trevor Hamlin, Patrick Melvin and Han Zuilhof for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–30, Table 1, computational details, reagent development and characterization data.
Supplementary Data 1
Crystallographic data for compound PSIA-II, CCDC 2336497
Supplementary Data 2
Computational data
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zheng, MM., Cai, L., Ma, T. et al. Computational analysis of modular diazotransfer reactions for the development of predictive reactivity models and diazotransfer reagents. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00633-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s44160-024-00633-2