Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational analysis of modular diazotransfer reactions for the development of predictive reactivity models and diazotransfer reagents

Abstract

The development of the sulfur(VI)–fluoride exchange (SuFEx) and modular diazotransfer (MoDAT) reactions represent important milestones in the evolution of click chemistry. However, their reactivity profiles, chemoselectivity origins and underlying mechanisms remain unclear. Here we report a computational study of the MoDAT and SuFEx pathways, focusing on the reaction between the diazotransfer reagent fluorosulfuryl azide and primary amines. Our calculations reveal that the MoDAT reaction possesses a small kinetic barrier and a strong driving force, making it kinetically and thermodynamically more favourable than the SuFEx reaction. Through mechanistic scrutiny and structure–activity relationship studies, we have formulated predictive models for the reactivity and selectivity of the MoDAT reaction. Leveraging these insights, an easy-to-prepare and easily handled diazotransfer reagent with excellent reactivity has been developed, which holds broad promise for applications in chemistry and biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Click reactions.
Fig. 2: Mechanisms of the MoDAT and SuFEx reactions.
Fig. 3: Predictive models for the selectivity and reactivity of primary amines in the MoDAT reaction.
Fig. 4: Predictive models for the reactivity of diazotransfer reagents.
Fig. 5: Design and preparation of diazotransfer reagents.
Fig. 6: Isolated azide products prepared from the corresponding primary amines.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC 2336497 (PSIA-II). These data can be obtained free of charge from the CCDC via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  2. Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Devaraj, N. K. & Finn, M. G. Introduction: click chemistry. Chem. Rev. 121, 6697–6698 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Finn, M. G., Kolb, H. C. & Sharpless, K. B. Click chemistry connections for functional discovery. Nat. Synth. 1, 8–10 (2022).

    Article  Google Scholar 

  5. Huisgen, R. 1,3-Dipolar cycloadditions past and future. Angew. Chem. Int. Ed. 2, 565–632 (1963).

    Article  Google Scholar 

  6. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  7. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  PubMed  Google Scholar 

  8. Meldal, M. & Tornøe, C. W. Cu-catalyzed azide–alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005).

    Article  Google Scholar 

  11. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Manetsch, R. et al. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126, 12809–12818 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Narayan, S. et al. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).

    Article  CAS  Google Scholar 

  14. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  16. Kölmel, D. K. & Kool, E. T. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117, 10358–10376 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun, S. et al. Phosphorus fluoride exchange: multidimensional catalytic click chemistry from phosphorus connective hubs. Chem 9, 2128–2143 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    Article  CAS  Google Scholar 

  19. Zeng, D., Deng, W.-P. & Jiang, X. Linkage chemistry of S(VI) fluorides. Chem. Eur. J. 29, e202300536 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, D., Deng, W.-P. & Jiang, X. Advances in the construction of diverse SuFEx linkers. Natl Sci. Rev. 10, nwad123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bernús, M. et al. A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins. Nat. Synth. 3, 185–191 (2024).

    Article  Google Scholar 

  22. Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. The linkage of sulfonimidoyl fluorides and unactivated alkenes via hydrosulfonimidoylation. Angew. Chem. Int. Ed. 61, e202207100 (2022).

    Article  CAS  Google Scholar 

  23. Zhao, S., Zeng, D., Wang, M. & Jiang, X. C-SuFEx linkage of sulfonimidoyl fluorides and organotrifluoroborates. Nat. Commun. 15, 727 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Teng, S., Shultz, Z. P., Shan, C., Wojtas, L. & Lopchuk, J. M. Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent. Nat. Chem. 16, 183–192 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017).

    Article  CAS  Google Scholar 

  26. Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020).

    Article  CAS  Google Scholar 

  27. Peng, Z. et al. Enantioselective sulfur(VI) fluoride exchange reaction of iminosulfur oxydifluorides. Nat. Chem. 16, 353–362 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13, 858–867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liang, D.-D., Pujari, S. P., Subramaniam, M., Besten, M. & Zuilhof, H. Configurationally chiral SuFEx-based polymers. Angew. Chem. Int. Ed. 61, e202116158 (2022).

    Article  CAS  Google Scholar 

  31. Chao, Y. et al. Sulfur–phenolate exchange: SuFEx-derived dynamic covalent reactions and degradation of SuFEx polymers. Angew. Chem. Int. Ed. 61, e202207456 (2022).

    Article  CAS  Google Scholar 

  32. Lou, T. S.-B. & Willis, M. C. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat. Rev. Chem. 6, 146–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Hoppmann, C. & Wang, L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53–Mdm4. Chem. Commun. 52, 5140–5143 (2016).

    Article  CAS  Google Scholar 

  34. Yang, B. et al. Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA 115, 11162–11167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, N. et al. Genetically encoding fluorosulfate‑l‑tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. Divergent sulfur(VI) fluoride exchange linkage of sulfonimidoyl fluorides and alkynes. Nat. Synth. 1, 455–463 (2022).

    Article  Google Scholar 

  37. Li, S., Wang, N., Yu, B., Sun, W. & Wang, L. Genetically encoded chemical crosslinking of carbohydrate. Nat. Chem. 15, 33–42 (2023).

    Article  PubMed  Google Scholar 

  38. Sun, W. et al. Genetically encoded chemical crosslinking of RNA in vivo. Nat. Chem. 15, 21–32 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Qin, Z. et al. Discovering covalent inhibitors of protein–protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides. Nat. Chem. 15, 1705–1714 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Q. et al. Developing covalent protein drugs via proximity enabled reactive therapeutics. Cell 182, 85–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, B. et al. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 8, 2766–2783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Homer, J. A. et al. Sulfur fluoride exchange. Nat. Rev. Methods Primers 3, 58 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruff, J. K. Sulfur oxyfluoride derivatives. II. Inorg. Chem. 4, 567–570 (1965).

    Article  CAS  Google Scholar 

  44. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Krasheninina, O. A., Thaler, J., Erlacher, M. D. & Micura, R. Amine-to-azide conversion on native RNA via metal-free diazotransfer opens new avenues for RNA manipulations. Angew. Chem. Int. Ed. 60, 6970–6974 (2021).

    Article  CAS  Google Scholar 

  46. Liu, H. et al. Construction of an IMiD-based azide library as a kit for PROTAC research. Org. Biomol. Chem. 19, 166–170 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, J. & Dong, J. Modular click chemistry library: searching for better functions. Chin. J. Chem. 39, 1025–1027 (2021).

    Article  CAS  Google Scholar 

  48. Moreno, S., Pittol, J. M. R., Hartl, M. & Micura, R. Robust synthesis of 2′-azido modified RNA from 2′-amino precursors by diazotransfer reaction. Org. Biomol. Chem. 20, 7845–7850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kofsky, J. M., Daskhan, G. C., Macauley, M. S. & Capicciotti, C. J. Efficient synthesis of azido sugars using fluorosulfuryl azide diazotransfer reagent. Eur. J. Org. Chem. 2022, e202200108 (2022).

    Article  CAS  Google Scholar 

  50. Cui, Q. et al. Discovery of a novel potent antitumor molecule, P19G1, by erlotinib derivative libraries synthesized by modular click-chemistry. Technol. Cancer Res. Treat. 21, 1–14 (2022).

    Article  Google Scholar 

  51. Xin, Y. et al. Affinity selection of double-click triazole libraries for rapid discovery of allosteric modulators for GLP-1 receptor. Proc. Natl Acad. Sci. USA 120, e2220767120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian, W. Q. & Wang, Y. A. Mechanisms of Staudinger reactions within density functional theory. J. Org. Chem. 69, 4299–4308 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Pandiakumar, A. K., Sarma, S. P. & Samuelson, A. G. Mechanistic studies on the diazo transfer reaction. Tetrahedron Lett. 55, 2917–2920 (2014).

    Article  CAS  Google Scholar 

  54. Stevens, M. Y., Sawant, R. T. & Odell, L. R. Synthesis of sulfonyl azides via diazotransfer using an imidazole-1-sulfonyl azide salt: scope and 15N NMR labeling experiments. J. Org. Chem. 79, 4826–4831 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Gwak, S., Lee, J. H., Kwon, H.-J. & Han, H. A study on the diazo-transfer reaction using o-nitrobenzenesulfonyl azide. Synlett 35, 1429–1435 (2024).

    CAS  Google Scholar 

  56. Fischer, W. & Anselme, J.-P. Reaction of amine anions with p-toluenesulfonyl azide. Novel azide synthesis. J. Am. Chem. Soc. 89, 5284–5285 (1967).

    Article  CAS  Google Scholar 

  57. Nyffeler, P. T., Liang, C.-H., Koeller, K. M. & Wong, C.-H. The chemistry of amine–azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 124, 10773–10778 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Luy, J.-N. & Tonner, R. Complementary base lowers the barrier in SuFEx click chemistry for primary amine nucleophiles. ACS Omega 5, 31432–31439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei, M. et al. A broad-spectrum catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew. Chem. Int. Ed. 60, 7397–7404 (2021).

    Article  CAS  Google Scholar 

  60. Han, B. et al. Calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx): mechanistic insights toward instigating catalysis. Inorg. Chem. 61, 9746–9755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smedley, C. J. et al. Accelerated SuFEx click chemistry for modular synthesis. Angew. Chem. Int. Ed. 61, e202112375 (2022).

    Article  CAS  Google Scholar 

  62. Yang, J.-D., Xue, X.-S., Ji, P., Li, X. & Cheng, J.-P. Internet bond-energy databank (pKa and BDE): iBonD home page. http://ibond.nankai.edu.cn. Accessed Aug 2022.

  63. Regitz, M. New methods of preparative organic chemistry. Transfer of diazo groups. Angew. Chem. Int. Ed. 6, 733–749 (1967).

    Article  CAS  Google Scholar 

  64. Goddard-Borger, E. D. & Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 9, 3797–3800 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kitamura, M., Tashiro, N. & Okauchi, T. 2-Azido-1,3-dimethylimidazolinium chloride: an efficient diazo transfer reagent for 1,3-dicarbonyl compounds. Synlett 18, 2943–2944 (2009).

    Article  Google Scholar 

  66. Samet, M., Buhle, J., Zhou, Y. & Kass, S. R. Charge-enhanced acidity and catalyst activation. J. Am. Chem. Soc. 137, 4678–4680 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  PubMed  Google Scholar 

  68. Johnson, C. R., Janiga, E. R. & Haake, M. Chemistry of sulfoxides and related compounds. X. Ylides from salts of sulfoximines. J. Am. Chem. Soc. 90, 3890–3891 (1968).

    Article  CAS  Google Scholar 

  69. Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. Fluorinated Johnson reagent for transfer-trifluoromethylation to carbon nucleophiles. Eur. J. Org. Chem. 2008, 3465–3468 (2008).

    Article  Google Scholar 

  70. Vogel, J. A. et al. Synthesis of highly reactive sulfone iminium fluorides and their use in deoxyfluorination and sulfur fluoride exchange chemistry. Org. Lett. 24, 5962–5966 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).

  72. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 15, 2847–2862 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).

    Article  PubMed  Google Scholar 

  77. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).

    Article  Google Scholar 

  78. Luchini, G., Alegre-Requena, J. V., Funes-Ardoiz, I. & Paton, R. S. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data [version 1; peer review: 2 approved with reservations]. F1000Res. 9, 291 (2020).

    Article  Google Scholar 

  79. Alecu, I. M., Zheng, J., Zhao, Y. & Truhlar, D. G. Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J. Chem. Theory Comput. 6, 2872–2887 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Li, Y.-P., Gomes, J., Sharada, S. M., Bell, A. T. & Head-Gordon, M. Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015).

    Article  CAS  Google Scholar 

  81. Legault, C. Y. CYLview, 1.0b. http://www.cylview.org (Université de Sherbrooke, 2009).

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2021YFF0701700 to X.-S.X.), the National Natural Science Foundation of China (grant numbers 22122104, 22193012 and 21933004 to X.-S.X.), the CAS Project for Young Scientists in Basic Research (grant numbers YSBR-095 and YSBR-052 to X.-S.X.) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB0590000 to X.-S.X.). We thank F. Zhang and P. Ji for their inspiring discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

X.-S.X. conceived and directed the project. M.-M.Z. and H.-D.T. conducted the DFT calculations. L.C., T.M. and X.L. performed the experiments. M.-M.Z., L.C., J.D. and X.-S.X. discussed the results. M.-M.Z., L.C. and X.-S.X. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Jiajia Dong or Xiao-Song Xue.

Ethics declarations

Competing interests

X.-S.X., L.C. and M.-M.Z. have filed a patent application lodged with Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (reference number CN2024103608309) based on this work. T.M., H.-D.T., X.L. and J.D. declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Trevor Hamlin, Patrick Melvin and Han Zuilhof for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Table 1, computational details, reagent development and characterization data.

Supplementary Data 1

Crystallographic data for compound PSIA-II, CCDC 2336497

Supplementary Data 2

Computational data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MM., Cai, L., Ma, T. et al. Computational analysis of modular diazotransfer reactions for the development of predictive reactivity models and diazotransfer reagents. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00633-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing