Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical assembly of tubular frameworks driven by covalent and coordinate bonding

Abstract

Hierarchical assembly is used to construct complex materials using elementary building units, mainly depending on the non-covalent interactions involving dynamic bonds. Here we present a hierarchical assembly strategy to build highly crystalline tubular frameworks. A multi-level assembly process driven by dynamic covalent bonds and coordination bonds is shown to produce a supramolecular nanotubular framework and three tubular covalent organic frameworks (COFs). These materials consist of well-ordered triangular nanotubes assembled in an oriented manner. In tubular COFs, the spacing between adjacent nanotubes can be systematically adjusted by altering the connector lengths to create mesoporous structures with adjustable pore size. Moreover, reversible transformations between tubular COFs and layered COFs were achieved by the reversible addition and removal of Zn(NO3)2. The facile demetallation–remetallation process confers tuneable structural properties to the materials and enables the layered COFs to serve as efficient ‘sponges’ for metal ions. This study represents a notable advance in hierarchical assembly; incorporating covalent bonding into this process is expected to greatly accelerate the development of new materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The schematic representation of the hierarchical assembly and structural transformation of tubular frameworks.
Fig. 2: Synthesis and characterization of the SNF.
Fig. 3: The construction of covalently linked tubular frameworks.
Fig. 4: Structural characterization of tubular COFs.
Fig. 5: Structural transformations of SNF-LIFM1 and tubular COFs.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2282802 (model compound M1), 2282805 (model compound M2) and 2282825 (the macrocycle, demetallated SNF-LIFM1). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All data needed to evaluate the conclusions in the paper are present in the article or Supplementary Information. Source data are provided with this paper.

References

  1. Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kadler, K. E., Baldock, C., Bella, J. & Boot-Handford, R. P. Collagens at a glance. J. Cell Sci. 120, 1955–1958 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).

    Article  CAS  Google Scholar 

  4. Datta, S., Saha, M. L. & Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 51, 2047–2063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003).

    Article  CAS  Google Scholar 

  6. Ikkala, O. & ten Brinke, G. Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem. Commun. 2131–2137 (2004).

  7. Rest, C., Kandanelli, R. & Fernández, G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem. Soc. Rev. 44, 2543–2572 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  Google Scholar 

  10. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Segura, J. L., Mancheño, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Veber, G. et al. Reticular growth of graphene nanoribbon 2D covalent organic frameworks. Chem 6, 1125–1133 (2020).

    Article  CAS  Google Scholar 

  16. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  17. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Chopra, N. G. et al. Boron nitride nanotubes. Science 269, 966–967 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Otsubo, K. et al. Bottom-up realization of a porous metal–organic nanotubular assembly. Nat. Mater. 10, 291–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1444 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Korde, A. et al. Single-walled zeolitic nanotubes. Science 375, 62–66 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Li, G., Yu, W. & Cui, Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J. Am. Chem. Soc. 130, 4582–4583 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, Y. et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295–3346 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Picini, F. et al. Supramolecular polymerization of triarylamine-based macrocycles into electroactive nanotubes. J. Am. Chem. Soc. 143, 6498–6504 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Koner, K. et al. Porous covalent organic nanotubes and their assembly in loops and toroids. Nat. Chem. 14, 507–514 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, C. et al. High aspect ratio nanotubes assembled from macrocyclic iminium salts. Proc. Natl Acad. Sci. USA 115, 8883–8888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strauss, M. J. et al. Lithium-conducting self-assembled organic nanotubes. J. Am. Chem. Soc. 143, 17655–17665 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Bong, D. T., Clark, T. D., Granja, J. R. & Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40, 988–1011 (2001).

    Article  CAS  Google Scholar 

  31. Gong, B. & Shao, Z. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Acc. Chem. Res. 46, 2856–2866 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Maeda, K. et al. Construction of covalent organic nanotubes by light-induced cross-linking of diacetylene-based helical polymers. J. Am. Chem. Soc. 138, 11001–11008 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Strauss, M. J. et al. Divergent nanotube synthesis through reversible macrocycle assembly. Acc. Mater. Res. 3, 935–947 (2022).

    Article  CAS  Google Scholar 

  34. Chaix, A. et al. Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity. J. Am. Chem. Soc. 140, 14571–14575 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Elbert, S. M. et al. Metal-assisted salphen organic frameworks (MaSOFs) with trinuclear metal units for synergic gas sorption. Chem. Mater. 31, 6210–6223 (2019).

    Article  CAS  Google Scholar 

  36. Zhang, D., Ronson, T. K. & Nitschke, J. R. Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 51, 2423–2436 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Browne, C., Ronson, T. K. & Nitschke, J. R. Palladium-templated subcomponent self-assembly of macrocycles, catenanes, and rotaxanes. Angew. Chem. Int. Ed. 53, 10701–10705 (2014).

    Article  CAS  Google Scholar 

  38. Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, K. et al. Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal–organic cages via metalloligand strategy for guest trapping and protection. J. Am. Chem. Soc. 136, 4456–4459 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura, T., Ube, H., Shiro, M. & Shionoya, M. A self-assembled multiporphyrin cage complex through three different Zinc(II) center formation under well-balanced aqueous conditions. Angew. Chem. Int. Ed. 52, 720–723 (2013).

    Article  CAS  Google Scholar 

  41. Yue, N. L. S., Jennings, M. C. & Puddephatt, R. J. Disilver(I) macrocycles: variation of cavity size with anion binding. Inorg. Chem. 44, 1125–1131 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lozano-Castelló, D., Cazorla-Amorós, D. & Linares-Solano, A. Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon 42, 1233–1242 (2004).

    Article  Google Scholar 

  43. Luo, Y. et al. High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction. Nat. Chem. 15, 483–490 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Svensson Grape, E. et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nat. Water 1, 433–442 (2023).

    Article  Google Scholar 

  46. Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    Article  PubMed  Google Scholar 

  47. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Mu, Z. et al. Covalent organic frameworks with record pore apertures. J. Am. Chem. Soc. 144, 5145–5154 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Hussain, A., Chaniago, Y. D., Riaz, A. & Lee, M. Process design alternatives for producing ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate. Ind. Eng. Chem. Res. 58, 2246–2257 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.-Y.S. acknowledges the funding support from the NKRD Program of China (2021YFA1500401). H.-S.X. acknowledges the funding support from the National Natural Science Foundation of China (22101308), Natural Science Foundation of Guangdong Province (2022A1515011286) and Science and Technology Planning Project of Guangzhou (202201011156). C.-Y.S. acknowledges the funding support from the National Natural Science Foundation of China (21821003 and 21890380) and the LIRT Project of Guangdong PRT Program (2017BT01C161). K.P.L. acknowledges funding support from Singapore’s National Research Foundation Competitive Research Program NRF-CRP16-2015-02. T.W. and M.N. acknowledge the Swedish Research Council (VR, 2019-05465). We thank L. Jiang at Sun Yat-Sen University Instrumental Analysis and Research Center for collecting the single-crystal XRD data of demetallated SNF-LIFM1. We also thank the Inorganic and Elemental Analysis Platform at Sun Yat-Sen University Instrumental Analysis and Research Center for the support in conducting ICP analysis.

Author information

Authors and Affiliations

Authors

Contributions

H.-S.X., C.-Y.S. and K.P.L. designed and led the project. H.-S.X. conceived the idea and performed the research. T.W. and M.N. conducted the STEM measurements. Y.L. carried out the 3D ED measurement. Y.L. and T.W. performed the crystal structure analysis. R.L. helped to prepare Fig. 1. W.-N.J., S.H., W.-D.Z., H.W. and T.C. helped to synthesize the building blocks and conduct the characterization. F.C., Q.G., X.L. and M.P. helped to interpret the results. H.-S.X., C.-Y.S., K.P.L. and T.W. wrote the paper.

Corresponding authors

Correspondence to Tom Willhammar, Kian Ping Loh or Cheng-Yong Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–86 and Tables 1–7.

Supplementary Video 1

The demetallation and remetallation processes.

Supplementary Data 1

Crystallographic data for M1, CCDC 2282802.

Supplementary Data 2

Crystallographic data for M2, CCDC 2282805.

Supplementary Data 3

Crystallographic data for the macrocycle, CCDC 2282825.

Supplementary Data 4

Structural modelling for SNF-LIFM1.

Supplementary Data 5

Structural modelling for tubular COF-LIFM1.

Supplementary Data 6

Structural modelling for tubular COF-LIFM2.

Supplementary Data 7

Structural modelling for tubular COF-LIFM3.

Supplementary Data 8

Structural modelling for layered COF-LIFM1.

Supplementary Data 9

Structural modelling for layered COF-LIFM2.

Supplementary Data 10

Structural modelling for layered COF-LIFM3.

Source data

Source Data Fig. 2

The CO2 adsorption data at 195 K for SNF-LIFM1.

Source Data Fig. 4

The PXRD data of tubular COF-LIFM1, tubular COF-LIFM2 and tubular COF-LIFM3.

Source Data Fig. 5

The PXRD data of tubular COF-LIFM2 and layered COF-LIFM2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HS., Luo, Y., Li, R. et al. Hierarchical assembly of tubular frameworks driven by covalent and coordinate bonding. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00632-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00632-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing