Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic carbyne reactivity of phosphorus ylides for three-component formal cycloaddition reactions

Abstract

Selective reactions between more than two molecules are governed by appropriate combinations of polar functionalities. This restriction can be ameliorated by photoredox umpolung reactivity, which enables the functionalization of unreactive bonds of chemical reagents while leaving their inherent reactive functional groups intact, paving the way for otherwise difficult multicomponent reactions. Here we report that the photocatalytic single-electron oxidation of phosphorus ylides underpins their sequential assembly with electron-rich olefins and α,β-unsaturated carbonyl compounds to form functionalized six-membered carbocycles. This three-component formal cycloaddition, featuring consecutive C–H functionalization and Wittig reaction of phosphorus ylides, offers a carbyne-like transformation that involves the conversion of inert C–H and C=P bonds into C–C and C=C bonds, respectively, as a powerful tool for the rapid construction of versatile synthetic building blocks from readily available substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transformation of carbynes and carbyne equivalents.
Fig. 2: Proposed mechanism for the three-component formal cycloaddition.
Fig. 3: Scope of the substrates.
Fig. 4: Gibbs free energy profile of the radical additions of the phosphorus ylide to t-butyl vinyl ether and acrolein.
Fig. 5: Four-component coupling reaction.

Similar content being viewed by others

Data availability

The experimental procedures, characterization (including the spectra of the new compounds) and details of the theoretical studies are available in the Supplementary Information. Crystallographic data for the structure reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2287406 (2q). A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Minh, D. M., Gunning, H. E. & Strausz, O. P. Formation and reactions of monovalent carbon Intermediates. I. Photolysis of diethyl mercuribisdiazoacetate. J. Am. Chem. Soc. 89, 6785–6787 (1967).

    Article  Google Scholar 

  2. Strausz, O. P., Thap, D. M. & Font, J. Formation and reactions of monovalent carbon intermediates. II. Further studies on the decomposition of diethyl mercurybisdiazoacetate. J. Am. Chem. Soc. 90, 1930–1931 (1968).

    Article  CAS  Google Scholar 

  3. Strausz, O. P. et al. The formation and reactions of monovalent carbon intermediates. III. The reaction of carbethoxymethyne with olefins. J. Am. Chem. Soc. 96, 5723–5732 (1974).

    Article  CAS  Google Scholar 

  4. Ruzsicska, B. P., Jodhan, A., Choi, H. K. J., Strausz, O. P. & Bell, T. N. Chemistry of carbynes: reaction of CF, CCl, and CBr with alkenes. J. Am. Chem. Soc. 105, 2489–2490 (1983).

    Article  CAS  Google Scholar 

  5. Bogoslavsky, B. et al. Do carbyne radicals really exist in aqueous solution? Angew. Chem. Int. Ed. 51, 90–94 (2012).

    Article  CAS  Google Scholar 

  6. Danovich, D., Bino, A. & Shaik, S. Formation of carbon–carbon triply bonded molecules from two free carbyne radicals via a conical intersection. J. Phys. Chem. Lett. 4, 58–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Li, W. L. et al. Formation and characterization of a BeOBeC multiple radical featuring a quartet carbyne moiety. Angew. Chem. Int. Ed. 59, 6923–6928 (2020).

    Article  CAS  Google Scholar 

  8. Wang, Z., Jiang, L., Sarró, P. & Suero, M. G. Catalytic cleavage of C(sp2)–C(sp2) bonds with Rh-carbynoids. J. Am. Chem. Soc. 141, 15509–15514 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, L., Sarró, P., Teo, W. J., Llop, J. & Suero, M. G. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem. Sci. 13, 4327–4333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tu, H.-F., Jeandin, A. & Suero, M. G. Catalytic synthesis of cyclopropenium cations with Rh-carbynoids. J. Am. Chem. Soc. 144, 16737–16743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Z., Herraiz, A. G., del Hoyo, A. M. & Suero, M. G. Generating carbyne equivalents with photoredox catalysis. Nature 554, 86–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, L., Wang, Z., Armstrong, M. & Suero, M. G. β-Diazocarbonyl compounds: synthesis and their Rh(II)-catalyzed 1,3 C–H insertions. Angew. Chem. Int. Ed. 60, 6177–6184 (2021).

    Article  CAS  Google Scholar 

  13. Li, X., Golz, C. & Alcarazo, M. α-Diazo sulfonium triflates: synthesis, structure, and application to the synthesis of 1-(dialkylamino)-1,2,3-triazoles. Angew. Chem. Int. Ed. 60, 6943–6948 (2021).

    Article  CAS  Google Scholar 

  14. Dong, J. Y. et al. Visible light-induced [3 + 2] cyclization reactions of hydrazones with hypervalent iodine diazo reagents for the synthesis of 1-amino-1,2,3-triazoles. Adv. Synth. Catal. 363, 2133–2139 (2021).

    Article  CAS  Google Scholar 

  15. Su, Y. L., Dong, K., Zheng, H. & Doyle, M. P. Generation of diazomethyl radicals by hydrogen atom abstraction and their cycloaddition with alkenes. Angew. Chem. Int. Ed. 60, 18484–18488 (2021).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. Convergent synthesis of 1,4-dicarbonyl Z-alkenes through three-component coupling of alkynes, α-diazo sulfonium triflate, and water. J. Am. Chem. Soc. 144, 4952–4965 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Das, M., Vu, M. D., Zhang, Q. & Liu, X.-W. Metal-free visible light photoredox enables generation of carbyne equivalents via phosphonium ylide C–H activation. Chem. Sci. 10, 1687–1691 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Vu, M. D., Leng, W.-L., Hsu, H.-C. & Liu, X.-W. Alkene synthesis using phosphonium ylides as umpolung reagents. Asian J. Org. Chem. 8, 93–96 (2019).

    Article  Google Scholar 

  19. Matsumoto, A., Maeda, N. & Maruoka, K. Bidirectional elongation strategy using ambiphilic radical linchpin for modular access to 1,4-dicarbonyls via sequential photocatalysis. J. Am. Chem. Soc. 145, 20344–20354 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Wiles, R. J. & Molander, G. A. Photoredox-mediated net-neutral radical/polar crossover reactions. Isr. J. Chem. 60, 281–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma, S., Singh, J. & Sharma, A. Visible light assisted radical–polar/polar–radical crossover reactions in organic synthesis. Adv. Synth. Catal. 363, 3146–3169 (2021).

    Article  CAS  Google Scholar 

  22. Rammohan, A., Krinochkin, A. P., Khasanov, A. F., Kopchuk, D. S. & Zyryanov, G. V. Sustainable solvent-free Diels–Alder approaches in the development of constructive heterocycles and functionalized materials: a review. Top. Curr. Chem. 380, 43 (2022).

    Article  CAS  Google Scholar 

  23. Horibe, T. & Ishihara, K. Initiators for radical cation-induced [2 + 2]- and [4 + 2]-cycloadditions of electron-rich alkenes. Chem. Lett. 49, 107–113 (2020).

    Article  CAS  Google Scholar 

  24. Okada, Y. & Chiba, K. Redox-tag processes: Intramolecular electron transfer and its broad relationship to redox reactions in general. Chem. Rev. 118, 4592–4630 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Fontana, A. et al. Volvatellin, caulerpenyne-related product from the sacoglossan Volvatella sp. J. Nat. Prod. 62, 931–933 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lenz, C., Boeckler, F., Hübner, H. & Gmeiner, P. Fancy bioisosteres: synthesis, SAR, and pharmacological investigations of novel nonaromatic dopamine D3 receptor ligands. Bioorg. Med. Chem. 13, 4434–4442 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Durrant, J. D. & McCammon, J. A. Potential drug-like inhibitors of group 1 influenza neuraminidase identified through computer-aided drug design. Comput. Bio. Chem. 34, 97–105 (2010).

    Article  CAS  Google Scholar 

  28. Zhu, W. et al. A remarkable difference that one fluorine atom confers on the mechanisms of inactivation of human ornithine aminotransferase by two cyclohexene analogues of γ-aminobutyric acid. J. Am. Chem. Soc. 142, 4892–4903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, F., Xu, X., Yan, Y., Zhang, J. & Yang, Y. Asymmetric total synthesis of montanine-type amaryllidaceae alkaloids. Org. Chem. Front. 11, 668–672 (2024).

    Article  CAS  Google Scholar 

  30. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shang, T.-Y. et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55, 5408–5419 (2019).

    Article  CAS  Google Scholar 

  34. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  35. Neese, F. Software update: the ORCA program system—version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by JSPS KAKENHI grants JP23H04901 (T.O.), JP23H04907 (Green Catalysis Science, T.O.), JP23H00296 (T.O.), JP22K21346 (T.O.) and JP21H01930 (K.O.); and JST FOREST grant JPMJFR221L (K.O.). R.S. acknowledges a JSPS Research Fellowship for Young Scientists. F.D. acknowledges the Studienstiftung des Deutschen Volkes and M. van Gemmeren.

Author information

Authors and Affiliations

Authors

Contributions

K.O. and T.O. prepared the manuscript. R.S., T.A. and F.D. performed the experiments. F.D. conducted theoretical calculations. All authors contributed to study design, data analysis and manuscript editing.

Corresponding authors

Correspondence to Kohsuke Ohmatsu or Takashi Ooi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xuewei Liu, Boris Maryasin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Discussion, Tables 1–9, experimental and computational details and characterization data.

Supplementary Data 1

Crystallographic data for 2q, CCDC 2287406.

Supplementary Data 2

Cartesian coordinates of calculated compounds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Ando, T., Deufel, F. et al. Photocatalytic carbyne reactivity of phosphorus ylides for three-component formal cycloaddition reactions. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00612-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing