Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective alkyl–alkyl coupling by Ni-catalysed asymmetric cross-hydrodimerization of alkenes

Abstract

Saturated tertiary stereogenic carbon centres are common in small molecules and organic materials. Transition-metal-catalysed asymmetric alkyl–alkyl bond formation processes represent contemporary techniques for the straightforward and efficient construction of saturated tertiary stereogenic carbon centres. However, reaction modes for asymmetric alkyl–alkyl bond formation between sp3-hybridized carbon atoms, C(sp3)–C(sp3), are limited yet highly desirable. Here a mode for asymmetric alkyl–alkyl bond formation enabled by Ni-catalysed asymmetric alkyl–alkyl cross-coupling between alkenes has been developed to construct tertiary stereogenic carbon centres. Ni-catalysed asymmetric cross-hydrodimerization of N-acyl enamines and unactivated alkenes enables head-to-tail regioselectivity and excellent levels of chemo- and enantioselectivity. Notably, the reaction proceeds in the presence of both reducing and oxidizing reagents, rendering alkenes as the sole precursors to forge enantioselective alkyl–alkyl bonds. The exclusive head-to-tail cross-hydrodimerization of distinct alkenes opens the way to access saturated tertiary stereogenic carbon centres from alkenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Significance, reaction modes and rationale for metal-catalysed asymmetric C(sp3)–C(sp3) cross-coupling.
Fig. 2: Substrate scope.
Fig. 3: Synthetic application and mechanistic studies.
Fig. 4: Proposed mechanisms for the reaction.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2270526 (3a). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Carreira, E. M. & Yamamoto, H. Comprehensive Chirality (Elsevier, 2012).

  2. Anthonsen, T. Chiral Drugs: Chemistry and Biological Action (Wiley, 2011).

  3. Geist, E., Kirschning, A. & Schmidt, T. sp3sp3 coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    CAS  PubMed  Google Scholar 

  4. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  5. Baruah, B. & Deb, M. L. Alkylation of electron-deficient olefins through conjugate addition of organozinc reagents: an update. Eur. J. Org. Chem. 2021, 5756–5766 (2021).

    CAS  Google Scholar 

  6. Chen, Z. et al. Catalytic alkylation of unactivated C(sp3)–H bonds for C(sp3)–C(sp3) bond formation. Chem. Soc. Rev. 48, 4921–4942 (2019).

    CAS  PubMed  Google Scholar 

  7. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kranthikumar, R. Recent advances in C(sp3)–C(sp3) cross-coupling chemistry: a dominant performance of nickel catalysts. Organometallics 41, 667–679 (2022).

    CAS  Google Scholar 

  9. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Zultanski, S. L. & Fu, G. C. Catalytic asymmetric γ-alkylation of carbonyl compounds via stereoconvergent Suzuki cross-couplings. J. Am. Chem. Soc. 133, 15362–15364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilsily, A., Tramutola, F., Owston, N. A. & Fu, G. C. New directing groups for metal-catalyzed asymmetric carbon–carbon bond-forming processes: stereoconvergent alkyl–alkyl Suzuki cross-couplings of unactivated electrophiles. J. Am. Chem. Soc. 134, 5794–5797 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, J. et al. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265–1269 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huo, H. H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwarzwalder, G. M., Matier, C. D. & Fu, G. C. Enantioconvergent cross-couplings of alkyl electrophiles: the catalytic asymmetric synthesis of organosilanes. Angew. Chem. Int. Ed. 58, 3571–3574 (2019).

    CAS  Google Scholar 

  16. Tong, X., Schneck, F. & Fu, G. C. Catalytic enantioselective α-alkylation of amides by unactivated alkyl electrophiles. J. Am. Chem. Soc. 144, 14856–14863 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, X. et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 7, 11129 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, F., Zhang, Y., Xu, X. & Zhu, S. NiH-catalyzed remote asymmetric hydroalkylation of alkenes with racemic α-bromo amides. Angew. Chem. Int. Ed. 58, 1754–1758 (2019).

    CAS  Google Scholar 

  20. He, S.-J. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc. 142, 214–221 (2020).

    CAS  PubMed  Google Scholar 

  21. Yang, Z.-P. & Fu, G. C. Convergent catalytic asymmetric synthesis of esters of chiral dialkyl carbinols. J. Am. Chem. Soc. 142, 5870–5875 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, L., Xing, L.-L., Hu, W.-B. & Shu, W. Regio- and enantioselective Ni-catalyzed formal hydroalkylation, hydrobenzylation and hydropropargylation of acrylamides to α-tertiary amides. Angew. Chem. Int. Ed. 60, 1599–1604 (2021).

    CAS  Google Scholar 

  23. Bera, S., Mao, R. & Hu, X. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021).

    CAS  PubMed  Google Scholar 

  24. Qian, D., Bera, S. & Hu, X. Chiral alkyl amine synthesis via catalytic enantioselective hydroalkylation of enecarbamates. J. Am. Chem. Soc. 143, 1959–1967 (2021).

    CAS  PubMed  Google Scholar 

  25. Sun, S.-Z. et al. Enantioselective deaminative alkylation of amino acid derivatives with unactivated olefins. J. Am. Chem. Soc. 144, 1130–1137 (2022).

    CAS  PubMed  Google Scholar 

  26. Wang, J.-W. et al. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines. Nat. Commun. 12, 1313 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, F. & Zhu, S. Catalytic asymmetric hydroalkylation of α,β-unsaturated amides enabled by regio-reversed and enantiodifferentiating syn-hydronickellation. ACS Catal. 11, 8766–8773 (2021).

    CAS  Google Scholar 

  28. Yang, P.-F. et al. Regio- and enantioselective hydroalkylations of unactivated olefins enabled by nickel catalysis: reaction development and mechanistic insights. ACS Catal. 12, 5795–5805 (2022).

    CAS  Google Scholar 

  29. Huang, Q. et al. Nickel-hydride-catalyzed diastereo- and enantioselective hydroalkylation of cyclopropenes. Angew. Chem. Int. Ed. 61, e202210560 (2022).

    CAS  Google Scholar 

  30. Li, Y. et al. Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling. Nat. Catal. 4, 901–911 (2021).

    CAS  Google Scholar 

  31. Zhang, Z.-L. et al. Cobalt-catalyzed facial-selective hydroalkylation of cyclopropenes. Angew. Chem. Int. Ed. 62, e202306381 (2023).

    CAS  Google Scholar 

  32. Zhang, Z., Bera, S., Fan, C. & Hu, X. Streamlined alkylation via nickel-hydride-catalyzed hydrocarbonation of alkenes. J. Am. Chem. Soc. 144, 7015–7029 (2022).

    CAS  PubMed  Google Scholar 

  33. Yang, P.-F. & Shu, W. Asymmetric alkyl–alkyl cross-coupling enabled by earth-abundant metal-catalyzed hydroalkylations of olefins. Chem Catal. 3, 100508 (2023).

    CAS  Google Scholar 

  34. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Catalytic asymmetric reductive acyl cross-coupling: synthesis of enantioenriched acyclic α,α-disubstituted ketones. J. Am. Chem. Soc. 135, 7442–7445 (2013).

    CAS  PubMed  Google Scholar 

  35. Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling between vinyl and benzyl electrophiles. J. Am. Chem. Soc. 136, 14365–14368 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kadunce, N. T. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling between heteroaryl iodides and α-chloronitriles. J. Am. Chem. Soc. 137, 10480–10483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Poremba, K. E., Kadunce, N. T., Suzuki, N., Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling to access 1,1-diarylalkanes. J. Am. Chem. Soc. 139, 5684–5687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hofstra, L., Cherney, A. H., Ordner, C. M. & Reisman, S. E. Synthesis of enantioenriched allylic silanes via nickel-catalyzed reductive cross-coupling. J. Am. Chem. Soc. 140, 139–142 (2018).

    CAS  PubMed  Google Scholar 

  39. Guan, H., Zhang, Q., Walsh, P. J. & Mao, J. Nickel/photoredox-catalyzed asymmetric reductive cross-coupling of racemic α-chloro esters with aryl iodides. Angew. Chem. Int. Ed. 59, 5172–5177 (2020).

    CAS  Google Scholar 

  40. Kang, K. & Weix, D. J. Nickel-catalyzed C(sp3)–C(sp3) cross-electrophile coupling of in situ generated NHP esters with unactivated alkyl bromides. Org. Lett. 24, 2853–2857 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, D. et al. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat. Commun. 13, 7318 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, W.-T., Zhang, J.-X., Chen, B.-H. & Shu, W. Ligand-enabled Ni-catalysed enantioconvergent intermolecular alkyl–alkyl cross-coupling between distinct alkyl halides. Nat. Commun. 14, 2938 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, W.-T. & Shu, W. Enantioselective Csp3–Csp3 formation by nickel-catalyzed cross-electrophile enantioconvergent alkyl–alkyl coupling of unactivated alkyl halides. Sci. Adv. 9, eadg9898 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, K. S., Gurak, J. A. Jr & Engle, K. M. Catalytic, regioselective hydrocarbofunctionalization of unactivated alkenes with diverse C–H nucleophiles. J. Am. Chem. Soc. 138, 14705–14712 (2016).

    CAS  PubMed  Google Scholar 

  45. Yan, T. & Guironnet, D. Combination of olefin insertion polymerization and olefin metathesis to extend the topology and composition of polyolefins. Sci. China Chem. 63, 755–757 (2020).

    CAS  Google Scholar 

  46. Wang, S. et al. Enantioselective access to chiral aliphatic amines and alcohols via Ni-catalyzed hydroalkylations. Nat. Commun. 12, 2771 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, P.-F. & Shu, W. Orthogonal access to α-/β-branched/linear aliphatic amines by catalyst-tuned regiodivergent hydroalkylations. Angew. Chem. Int. Ed. 61, e202208018 (2022).

    CAS  Google Scholar 

  48. Cheng, L., Liu, J., Chen, Y. & Gong, H. Nickel-catalysed hydrodimerization of unactivated terminal alkenes. Nat. Synth. 2, 364–372 (2023).

    Google Scholar 

  49. Lo, J. C., Gui, J., Yabe, Y., Pan, C.-M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, Y. et al. Copper-catalyzed asymmetric conjugate addition of alkene-derived nucleophiles to alkenyl-substituted heteroarenes. ACS Catal. 12, 9611–9620 (2022).

    CAS  Google Scholar 

  52. Jang, W. J., Woo, J. & Yun, J. Asymmetric conjugate addition of chiral secondary borylalkyl copper species. Angew. Chem. Int. Ed. 60, 4614–4618 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (22171127, 21971101 and 22371115), the Guangdong Basic and Applied Basic Research Foundation (2022A1515011806), Department of Education of Guangdong Province (2022JGXM054), The Pearl River Talent Recruitment Program (2019QN01Y261), Shenzhen Science and Technology Innovation Committee (JCYJ20220530114606013 and JCYJ20230807093522044) and Guangdong Provincial Key Laboratory of Catalysis (no. 2020B121201002) is sincerely acknowledged. This research is supported by the SUSTech-NUS Joint Research Program. We acknowledge the assistance of the SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

W.S. conceived and directed the project. P.-F.Y. discovered and developed the reaction. P.-F.Y., H.-T.Z. and X.-Y.C. performed the experiments and collected the data. W.S. and P.-F.Y. analysed the data and wrote the paper with contributions from other authors.

Corresponding author

Correspondence to Wei Shu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Debabrata Maiti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details and Supplementary Sections I–XI, Figs. 1–9 and Tables 1–13.

Supplementary Data 1

Crystallographic data for compound 3a; CCDC reference 2270526.

Source data

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, PF., Zhao, HT., Chen, XY. et al. Enantioselective alkyl–alkyl coupling by Ni-catalysed asymmetric cross-hydrodimerization of alkenes. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00609-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing