Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interdiffusion-enhanced cation exchange for HgSe and HgCdSe nanocrystals with infrared bandgaps

Abstract

Colloidal semiconductor nanocrystals based on CdSe have been precisely optimized for photonic applications in the visible spectrum, with modern products exhibiting structural uniformity, near 100% quantum yield and linewidths narrower than 100 meV. Here we report homogeneous nanocrystals with tunable bandgaps in the infrared spectrum based on HgSe and HgxCd1−xSe alloys deriving from CdSe precursors. We find that Ag+ catalyses cation interdiffusion to reduce the CdSe–HgSe alloying temperature from 250 °C to 80 °C. Together with ligands that modulate surface cation exchange rates, interdiffusion-enhanced Hg2+ exchange of diverse CdSe nanocrystals proceeds homogeneously and completely. The products retain the size, shape and uniformity of the parent nanocrystals but exhibit enhanced absorption. After passivation with heteroepitaxial CdZnS shells, photoluminescence wavelengths are tunable in the shortwave infrared by composition without changing size, with 80–91% quantum yield and linewidths near 100 meV. These materials may find applications in infrared photonic devices and infrared bioimaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IE-CE of CdSe NCs with Hg2+.
Fig. 2: Photophysical and structural characterization of binary HgSe NCs derived from IE-CE of CdSe NCs.
Fig. 3: Dependence of photophysical properties on Hg2+ exchange mechanism in CdSe NCs.
Fig. 4: Interdiffusion-enhanced alloying of core–shell CdSe–HgSe NCs.
Fig. 5: IE-CE on cores with different crystal structure, shape and composition.
Fig. 6: Characterization of core–shell HgSe–CdZnS and HgxCd1−xSe–CdZnS NCs deriving from IE-CE.

Similar content being viewed by others

Data availability

All relevant data are provided within this paper and Supplementary Information.

References

  1. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  PubMed  Google Scholar 

  2. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  3. Kim, J. Y., Voznyy, O., Zhitomirsky, D. & Sargent, E. H. 25th Anniversary Article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv. Mater. 25, 4986–5010 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Jang, E. & Jang, H. Review: quantum dot light-emitting diodes. Chem. Rev. 123, 4663–4692 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Park, J., Jayaraman, A., Schrader, A. W., Hwang, G. W. & Han, H.-S. Controllable modulation of precursor reactivity using chemical additives for systematic synthesis of high-quality quantum dots. Nat. Commun. 11, 5748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vasilopoulou, M. et al. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photonics 15, 656–669 (2021).

    Article  CAS  Google Scholar 

  8. Yang, Y., Jiang, Q. & Zhang, F. Nanocrystals for deep-tissue in vivo luminescence imaging in the near-infrared region. Chem. Rev. 124, 554–628 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Franke, D. et al. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 7, 12749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Janke, E. M. et al. Origin of broad emission spectra in InP quantum dots: contributions from structural and electronic disorder. J. Am. Chem. Soc. 140, 15791–15803 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348, 1226–1230 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Campos, M. P. et al. A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit. J. Am. Chem. Soc. 139, 2296–2305 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Peng, X. et al. In situ TEM study of the degradation of PbSe nanocrystals in air. Chem. Mater. 31, 190–199 (2019).

    Article  CAS  Google Scholar 

  14. Beygi, H., Sajjadi, S. A., Babakhani, A., Young, J. F. & van Veggel, F. C. J. M. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Appl. Surf. Sci. 457, 1–10 (2018).

    Article  CAS  Google Scholar 

  15. Gréboval, C. et al. Mercury chalcogenide quantum dots: material perspective for device integration. Chem. Rev. 121, 3627–3700 (2021).

    Article  PubMed  Google Scholar 

  16. Lu, H., Carroll, G. M., Neale, N. R. & Beard, M. C. Infrared quantum dots: progress, challenges, and opportunities. ACS Nano 13, 939–953 (2019).

    CAS  PubMed  Google Scholar 

  17. Deng, Z., Jeong, K. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kamath, A., Melnychuk, C. & Guyot-Sionnest, P. Toward bright mid-infrared emitters: thick-shell n-type HgSe/CdS nanocrystals. J. Am. Chem. Soc. 143, 19567–19575 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamath, A., Schaller, R. D. & Guyot-Sionnest, P. Bright fluorophores in the second near-infrared window: HgSe/CdSe quantum dots. J. Am. Chem. Soc. 145, 10809–10816 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Madejczyk, P., Manyk, T. & Rutkowski, J. Research on electro-optical characteristics of infrared detectors with HgCdTe operating at room temperature. Sensors 23, 1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, A. M. & Nie, S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc. 133, 24–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Groeneveld, E. et al. Tailoring ZnSe–CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals. ACS Nano 7, 7913–7930 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Koscher, B. A., Bronstein, N. D., Olshansky, J. H., Bekenstein, Y. & Alivisatos, A. P. Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 138, 12065–12068 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, F., Abboud, K. A. & Zeng, C. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange. Nat. Synth. 2, 949–959 (2023).

    Article  Google Scholar 

  26. Dutt, M. & Sharma, B. in Diffusion in Semiconductors (ed. Beke, D. L.) 1–63 (Springer, 1998).

  27. Izquierdo, E. et al. Strongly confined HgTe 2D nanoplatelets as narrow near-infrared emitters. J. Am. Chem. Soc. 138, 10496–10501 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Shen, G. & Guyot-Sionnest, P. HgTe/CdTe and HgSe/CdX (X = S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. 31, 286–293 (2019).

    Article  CAS  Google Scholar 

  29. Sarkar, S. et al. Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy. J. Am. Chem. Soc. 142, 3449–3462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, D. et al. Major electronic transition shift from bandgap to localized surface plasmon resonance in CdxHg1−xSe alloy nanocrystals. Chem. Mater. 29, 8548–8554 (2017).

    Article  CAS  Google Scholar 

  31. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Moreels, I. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).

    Article  CAS  Google Scholar 

  33. Massiot, I., Cattoni, A. & Collin, S. Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959–972 (2020).

    Article  Google Scholar 

  34. Smith, A. M., Lane, L. A. & Nie, S. Mapping the spatial distribution of charge carriers in quantum-confined heterostructures. Nat. Commun. 5, 4506 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Izquierdo, E. et al. Coupled HgSe colloidal quantum wells through a tunable barrier: a strategy to uncouple optical and transport band gap. Chem. Mater. 30, 4065–4072 (2018).

    Article  CAS  Google Scholar 

  36. Lee, G. et al. Design and synthesis of CdHgSe/HgS/CdZnS core/multi-shell quantum dots exhibiting high-quantum-yield tissue-penetrating shortwave infrared luminescence. Small 19, 2301161 (2023).

    Article  CAS  Google Scholar 

  37. Sayevich, V. et al. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nat. Nanotechnol. 16, 673–679 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Cui, J. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton–phonon coupling and the optimization of spectral linewidths. Nano Lett. 16, 289–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen, H. A. et al. Design rules for obtaining narrow luminescence from semiconductors made in solution. Chem. Rev. 123, 7890–7952 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Gupta, A. et al. Diffusion-limited kinetics of isovalent cation exchange in III–V nanocrystals dispersed in molten salt reaction media. Nano Lett. 22, 6545–6552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sahu, A. et al. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 12, 2587–2594 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Ott, F. D., Spiegel, L. L., Norris, D. J. & Erwin, S. C. Microscopic theory of cation exchange in CdSe nanocrystals. Phys. Rev. Lett. 113, 156803 (2014).

    Article  PubMed  Google Scholar 

  43. Kompch, A. et al. Localization of Ag dopant atoms in CdSe nanocrystals by reverse Monte Carlo analysis of EXAFS spectra. J. Phys. Chem. C 119, 18762–18772 (2015).

    Article  CAS  Google Scholar 

  44. Casavola, M. et al. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry. Chem. Mater. 24, 294–302 (2012).

    Article  CAS  Google Scholar 

  45. Cahen, D. & Lubomirsky, I. Percolation-controlled semiconductor doping. Chem. Mater. 10, 2596–2598 (1998).

    Article  CAS  Google Scholar 

  46. Yang, L. et al. One-pot synthesis of monodisperse colloidal copper-doped CdSe nanocrystals mediated by ligand–copper interactions. Chem. Mater. 28, 7375–7384 (2016).

    Article  CAS  Google Scholar 

  47. Lyubomirsky, I., Lyakhovitskaya, V., Triboulet, R. & Cahen, D. Substitutional-interstitial silver diffusion and drift in bulk (cadmium,mercury) telluride: results and mechanistic implications. J. Electron. Mater. 26, 97–105 (1997).

    Article  CAS  Google Scholar 

  48. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Dumett Torres, D., Banerjee, P., Pamidighantam, S. & Jain, P. K. A non-natural wurtzite polymorph of HgSe: a potential 3D topological insulator. Chem. Mater. 29, 6356–6366 (2017).

    Article  CAS  Google Scholar 

  50. Dabard, C. et al. Optimized cation exchange for mercury chalcogenide 2D nanoplatelets and its application for alloys. Chem. Mater. 33, 9252–9261 (2021).

    Article  CAS  Google Scholar 

  51. Yadav, R. et al. Narrow near-infrared emission from InP QDs synthesized with indium(I) halides and aminophosphine. J. Am. Chem. Soc. 145, 5970–5981 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Dennis, A. M. et al. Suppressed blinking and Auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett. 12, 5545–5551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saeboe, A. M. et al. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 21, 3271–3279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Srivastava, V., Dunietz, E., Kamysbayev, V., Anderson, J. S. & Talapin, D. V. Monodisperse InAs quantum dots from aminoarsine precursors: understanding the role of reducing agent. Chem. Mater. 30, 3623–3627 (2018).

    Article  CAS  Google Scholar 

  55. Srivastava, V., Janke, E. M., Diroll, B. T., Schaller, R. D. & Talapin, D. V. Facile, economic and size-tunable synthesis of metal arsenide nanocrystals. Chem. Mater. 28, 6797–6802 (2016).

    Article  CAS  Google Scholar 

  56. Ginterseder, M. et al. Scalable synthesis of InAs quantum dots mediated through indium redox chemistry. J. Am. Chem. Soc. 142, 4088–4092 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, W., Chang, A. Y., Schaller, R. D. & Talapin, D. V. Colloidal InSb nanocrystals. J. Am. Chem. Soc. 134, 20258–20261 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Busatto, S. et al. Luminescent colloidal InSb quantum dots from in situ generated single-source precursor. ACS Nano 14, 13146–13160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F. & Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8, 6363–6371 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Pietryga, J. M. et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 4879–4885 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kovalenko, M. V., Schaller, R. D., Jarzab, D., Loi, M. A. & Talapin, D. V. Inorganically functionalized PbS–CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 134, 2457–2460 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Kovalenko, M. V. et al. Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange-mediated nucleation. Angew. Chem. 120, 3071–3075 (2008).

    Article  Google Scholar 

  63. Yu, W. W., Falkner, J. C., Shih, B. S. & Colvin, V. L. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004).

    Article  CAS  Google Scholar 

  64. Abel, K. A., Qiao, H., Young, J. F. & van Veggel, F. C. J. M. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 1, 2334–2338 (2010).

    Article  CAS  Google Scholar 

  65. Murphy, J. E. et al. PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Protesescu, L., Zünd, T., Bodnarchuk, M. I. & Kovalenko, M. V. Air-stable, near- to mid-infrared emitting solids of PbTe/CdTe core–shell colloidal quantum dots. ChemPhysChem 17, 670–674 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Sung, Y., Lee, W., Lee, E., Ko, Y. H. & Kim, S. Ion-pair ligand-assisted surface stoichiometry control of Ag2S nanocrystals. Chem. Mater. 34, 9945–9954 (2022).

    Article  CAS  Google Scholar 

  68. He, H. et al. Ultrasmall Pb:Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window. Small 14, 1703296 (2018).

    Article  Google Scholar 

  69. Zhu, C.-N. et al. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 5, 1186–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Ding, Q. et al. Enantiomeric NIR-II emitting rare-earth-doped Ag2Se nanoparticles with differentiated in vivo imaging efficiencies. Angew. Chem. 134, e202210370 (2022).

    Article  Google Scholar 

  71. Wheeler, L. M. et al. Silyl radical abstraction in the functionalization of plasma-synthesized silicon nanocrystals. Chem. Mater. 27, 6869–6878 (2015).

    Article  CAS  Google Scholar 

  72. Cassette, E. et al. Synthesis and characterization of near-infrared Cu–In–Se/ZnS core/shell quantum dots for in vivo imaging. Chem. Mater. 22, 6117–6124 (2010).

    Article  CAS  Google Scholar 

  73. Li, Y. et al. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 16, 8076–8094 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Mews, A., Eychmueller, A., Giersig, M., Schooss, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934–941 (1994).

    Article  CAS  Google Scholar 

  75. Kovalenko, M. V. et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J. Am. Chem. Soc. 128, 3516–3517 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Kershaw, S. V., Yiu, W. K., Sergeev, A. & Rogach, A. L. Development of synthetic methods to grow long-wavelength infrared-emitting HgTe quantum dots in dimethylformamide. Chem. Mater. 32, 3930–3943 (2020).

    Article  CAS  Google Scholar 

  77. Cho, W. et al. Direct synthesis of six-monolayer (1.9 nm) thick zinc-blende CdSe nanoplatelets emitting at 585 nm. Chem. Mater. 30, 6957–6960 (2018).

    Article  CAS  Google Scholar 

  78. Haus, J. W., Zhou, H. S., Honma, I. & Komiyama, H. Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B 47, 1359–1365 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Institutes of Health (R01CA227699, R01GM131272, R01EB032249 and R01EB032725 to A.M.S.) and the National Science Foundation (2232681 to A.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

W.L. and A.M.S. conceived and designed the experiments, characterizations and modelling, and contributed to the theory. W.L. performed all chemical syntheses and optical characterizations. A.M.S. modelled the band structure using EMA. W.L. and A.M.S. wrote the paper.

Corresponding author

Correspondence to Andrew M. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Peter Reiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–7, Figs. 1–23, Note and References.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Smith, A.M. Interdiffusion-enhanced cation exchange for HgSe and HgCdSe nanocrystals with infrared bandgaps. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00597-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing