Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoenzymatic total synthesis of alchivemycin A

Abstract

Alchivemycin A belongs to a unique class of polyketide natural products isolated from plant-derived actinomycete Streptomyces. It shows potent antibacterial activity and anti-tumour activity. However, its inherent structural complexity and high oxidation state, especially the 2H-tetrahydro-4,6-dioxo-1,2-oxazine (TDO) ring system, present synthetic challenges. Here we report the total synthesis of alchivemycin A using a chemoenzymatic approach that combines de novo skeleton construction and late-stage enzymatic oxidation reactions. The convergent synthesis of the highly functionalized unnatural tetramic acid-bearing intermediate is achieved by boron-alkyl Suzuki−Miyaura cross-coupling, macrolactamization and Lacey–Dieckmann condensation reactions. Efficient enzymatic epoxidations using the redox enzymes AvmO3 and AvmO2 allow rapid access to the desired diepoxide product regio- and stereoselectively. Subsequently, a flavin adenine dinucleotide-dependent enzyme AvmO1 variant optimized via rational protein engineering, AvmO1-Y282R, was used to convert the tetramic acid ring into the TDO ring through a Baeyer–Villiger-type transformation, completing the chemoenzymatic synthesis of alchivemycin A. This work paves the way to further explore the biological functions of alchivemycin A and highlights the utility of chemoenzymatic strategies to tackle synthetic challenges in complex molecule synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and structural analysis of alchivemycin A (1).
Fig. 2: Retrosynthetic analysis.
Fig. 3: Synthesis of the side-chain fragment 12.
Fig. 4: Convergent synthesis of the tetramic acid-bearing unnatural enzymatic substrate 8.
Fig. 5: Late-stage enzymatic synthesis of alchivemycin A (1).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Naghavi, M. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  2. Levy, S. B. & Marshell, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Igarashi, Y. et al. Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org. Lett. 12, 3402–3405 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, K., Wu, F. & Lei, X. Function-oriented natural product synthesis. Chin. J. Chem. 39, 838–854 (2021).

    Article  CAS  Google Scholar 

  5. Ma, K., Liao, D., Yang, S., Li, X. & Lei, X. Studies towards the synthesis of the functionalized C3–C14 decalin fragment of alchivemycin A. Org. Chem. Front. 3, 251–258 (2016).

    Article  CAS  Google Scholar 

  6. Dong, H., Hu, D., Hong, B., Wang, J. & Lei, X. Total synthesis of diverse tetramic acid bearing cis-decalin natural products. Angew. Chem. Int. Ed. 62, e202301872 (2023).

    Article  CAS  Google Scholar 

  7. Yang, S., Liao, D., Tian, X. & Lei, X. Access to the 2H‑tetrahydro-4,6-dioxo-1,2-oxazine ring system from nitrone via a tandem nucleophilic addition and transesterification reaction. Org. Lett. 18, 376–379 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Liao, D., Yang, S., Ma, K., Wang, X. & Lei, X. Stereoselective synthesis of the C16–C25 fragment of alchivemycins A and B. Tetrahedron Lett. 74, 153156 (2021).

    Article  CAS  Google Scholar 

  9. Stout, C. & Renata, H. Reinvigorating the chiral pool: chemoenzymatic approaches to complex peptides and terpenoids. Acc. Chem. Res. 54, 1143–1156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakrabarty, S., Romero, E., Pyser, J., Yazarians, J. & Narayan, A. R. H. Chemoenzymatic total synthesis of natural products. Acc. Chem. Res. 54, 1374–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zetzsche, L. E., Chakrabarty, S. & Narayan, A. R. H. The transformative power of biocatalysis in convergent synthesis. J. Am. Chem. Soc. 144, 5214–5225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stout, C., Wasfy, N., Chen, F. & Renata, H. Charting the evolution of chemoenzymatic strategies in the syntheses of complex natural products. J. Am. Chem. Soc. 145, 18161–18181 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, H. et al. Redox modifications in the biosynthesis of alchivemycin A enable the formation of its key pharmacophore. J. Am. Chem. Soc. 143, 4751–4757 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, H. et al. AvmM catalyses macrocyclization through dehydration/Michael-type addition in alchivemycin A biosynthesis. Nat. Commun. 13, 4499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, Y., In, Y., Ishida, T., Onaka, H. & Igarashi, Y. Biosynthetic origin of alchivemycin A, a new polyketide from Streptomyces and absolute configuration of alchivemycin B. Org. Lett. 15, 3514–3517 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Komaki, H. et al. Draft genome sequence of Streptomyces sp. TP-A0867, an alchivemycin producer. Stand. Genomic Sci. 11, 85 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, F. & Renata, H. A chiral-pool-based strategy to access trans-syn-fused drimane meroterpenoids: chemoenzymatic total syntheses of polysin, N-acetyl-polyveoline and the chrodrimanins. J. Am. Chem. Soc. 143, 18280–18286 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Li, J., Chen, F. & Renata, H. Concise chemoenzymatic synthesis of gedunin. J. Am. Chem. Soc. 144, 19238–19242 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Li, F., Deng, H. & Renata, H. Remote B-ring oxidation of sclareol with an engineered P450 facilitates divergent access to complex terpenoids. J. Am. Chem. Soc. 144, 7616–7621 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. ZwickIII, C. R., Sosa, M. B. & Renata, H. Modular chemoenzymatic synthesis of GE81112 B1 and related analogues enables elucidation of its key pharmacophores. J. Am. Chem. Soc. 143, 1673–1679 (2021).

    Article  CAS  Google Scholar 

  21. Yang, J., Singh, B., Cohen, G. & Ting, C. P. Chemoenzymatic synthesis of 13-oxoverruculogen. J. Am. Chem. Soc. 145, 19189–19194 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Li, J., Li, F., King-Smith, E. & Renata, H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat. Chem. 12, 173–179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dockrey, S. A. B., Lukowski, A. L., Becker, M. R. & Narayan, R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018).

    Article  Google Scholar 

  24. Song, F. et al. Chemoenzymatic synthesis of C14-functionalized steroids. Nat. Synth. 2, 729–739 (2023).

    Article  Google Scholar 

  25. Li, F., Deng, H. & Renata, H. Chemoenzymatic approaches for exploring structure–activity relationship studies of bioactive natural products. Nat. Synth. 2, 708–718 (2023).

    Article  Google Scholar 

  26. Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pyser, J. B. et al. Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J. Am. Chem. Soc. 141, 18551–18559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanifuji, R. et al. Chemo-enzymatic total syntheses of jorunnamycin A, saframycin A, and N‑Fmoc saframycin Y3. J. Am. Chem. Soc. 140, 10705–10709 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Kelly, S. P. et al. Data science-driven analysis of substrate-permissive diketopiperazine reverse prenyltransferase NotF: applications in protein engineering and cascade biocatalytic synthesis of (−)-eurotiumin A. J. Am. Chem. Soc. 144, 19326–19336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, K. et al. Controlled oxidation of remote sp3 C–H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J. Am. Chem. Soc. 134, 18695–18704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, H. J. et al. Chemoenzymatic synthesis of spinosyn A. Angew. Chem. Int. Ed. 53, 13553–13557 (2014).

    Article  CAS  Google Scholar 

  32. Forneris, C. C. & Seyedsayamdost, M. R. In vitro reconstitution of OxyC activity enables total chemoenzymatic syntheses of vancomycin aglycone variants. Angew. Chem. Int. Ed. 57, 8048–8052 (2018).

    Article  CAS  Google Scholar 

  33. Li, J., Zhang, X. & Renata, H. Asymmetric chemoenzymatic synthesis of (−)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed. 58, 11657–11660 (2019).

    Article  CAS  Google Scholar 

  34. Lazzarotto, M. et al. Chemoenzymatic total synthesis of deoxy-, epi-, and podophyllotoxin and a biocatalytic kinetic resolution of dibenzylbutyrolactones. Angew. Chem. Int. Ed. 58, 8226–8230 (2019).

    Article  CAS  Google Scholar 

  35. Chen, K.-Y., Wang, H.-Q., Yuan, Y., Mou, S.-B. & Xiang, Z. Chemoenzymatic synthesis of cylindrocyclophanes A and F and merocyclophanes A and D. Angew. Chem. Int. Ed. 62, e202307602 (2023).

    Article  CAS  Google Scholar 

  36. Gao, L. et al. FAD-dependent enzyme-catalysed intermolecular [4+2] cycloaddition in natural product biosynthesis. Nat. Chem. 12, 620–628 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Meguro, Y., Ogura, Y., Enomoto, M. & Kuwahara, S. Synthesis of the N-acyl amycolose moiety of amycolamicin and its methyl glycosides. J. Org. Chem. 84, 7474–7479 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. White, J., Quaranta, L. & Wang, G. Studies on the synthesis of (−)-gymnodimine. Subunit synthesis and coupling. J. Org. Chem. 72, 1717–1728 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Royles, B. Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem. Rev. 95, 1981–2001 (1995).

    Article  CAS  Google Scholar 

  40. Koyama, N. et al. Spylidone, a novel inhibitor of lipid droplet accumulation in mouse macrophages produced by Phoma sp. FKI-1840. J. Antibiot. 58, 338–345 (2005).

    Article  CAS  Google Scholar 

  41. Capra, J. A. & Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 23, 1875–1882 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Sternke, M., Tripp, K. W. & Barrick, D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc. Natl Acad. Sci. USA 116, 11275–11284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, J. et al. Enzymatic degradation of deoxynivalenol with the engineered detoxification enzyme Fhb7. JACS Au 4, 619–634 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, B. J., Kan, C. N. E., Luo, C. & Kazlauskas, R. J. in Methods in Enzymology Vol. 643 (ed. Tawfik, D. S.) 129–148 (Academic Press, 2020).

  45. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koskiniemi, H. et al. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. J. Mol. Bio. 372, 633–648 (2007).

    Article  CAS  Google Scholar 

  47. Fürst, M. J. L. J., Gran-Scheuch, A., Aalbers, F. S. & Fraaije, M. W. Baeyer–Villiger monooxygenases: tunable oxidative biocatalysts. ACS Catal. 9, 11207–11241 (2019).

    Article  Google Scholar 

  48. Crozier-Reabe, K. & Moran, G. R. Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases. Int. J. Mol. Sci. 13, 15601–15639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eppink, M. H. M., Schreuder, H. A. & van Berkel, W. J. H. Interdomain binding of NADPH in p-hydroxybenzoate hydroxylase as suggested by kinetic, crystallographic and modeling studies of histidine 162 and arginine 269 variants. J. Biol. Chem. 273, 21031–21039 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Lipshutz, B. H. et al. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem. 76, 4379–4391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kincaid, J. R. A. et al. Introducing Savie: a biodegradable surfactant enabling chemo- and biocatalysis and related reactions in recyclable water. J. Am. Chem. Soc. 145, 4266–4278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cortes-Clerget, M. et al. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nat. Commun. 10, 2169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Akporji, N., Singhania, V., Dussart-Gautheret, J., Gallou, F. & Lipshutz, B. H. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chem. Commun. 57, 11847–11850 (2021).

    Article  CAS  Google Scholar 

  54. Singhania, V. et al. Lipase-catalyzed esterification in water enabled by nanomicelles. Applications to 1-pot multi-step sequences. Chem. Sci. 13, 1440–1445 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Chenault, H. K. & Whitesides, G. M. Regeneration of nicotinamide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 14, 147–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, Q. et al. Identification of the AMA synthase from the aspergillomarasmine A biosynthesis and evaluation of its biocatalytic potential. ACS Catal. 10, 6291–6298 (2020).

    Article  CAS  Google Scholar 

  58. Gao, L. et al. Enzymatic control of endo- and exo-stereoselective Diels–Alder reactions with broad substrate scope. Nat. Catal. 4, 1059–1069 (2021).

    Article  CAS  Google Scholar 

  59. Wang, J. et al. Diversity-oriented synthesis of cyclohexenes by combining enzymatic intermolecular Diels–Alder reactions and decarboxylative functionalizations. Chem Catal. 3, 100451 (2023).

    Article  CAS  Google Scholar 

  60. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Article  Google Scholar 

  62. Porter, J. L., Rusli, R. A. & Ollis, D. L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17, 197–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Bharel, S. et al. Enzymatic synthesis of artemisinin from natural and synthetic precursors. J. Nat. Prod. 61, 633–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Tyagi, V. et al. Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14-functionalized parthenolide analogs. Bioorg. Med. Chem. 24, 3876–3886 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alwaseem, H. et al. Comprehensive structure–activity profiling of micheliolide and its targeted proteome in leukemia cells via probe-guided late-stage C–H functionalization. ACS Cent. Sci. 7, 841–857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the NMR facility of the National Center for Protein Sciences at Peking University and X. Niu for assistance in the NMR analysis. We thank X. Zhang, H. Fu and L. Wang of the Analytical Instrumentation Center at Peking University for assistance in the NMR analysis. We thank J. Zhou and X. He of the Analytical Instrumentation Center at Peking University for help with the HRMS analysis. This work was supported by the National Key Research and Development Plan (grant no. 2022YFC3401500 to X.L.), the National Natural Science Foundation of China (grant nos. 22193073 and 92253305 to X.L.) and the Beijing National Laboratory for Molecular Sciences (grant no. BNLMS-CXX-202106 to X.L.). A special research grant for biocatalyst development from Novartis Pharma is acknowledged. X.L. is supported by the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

X.L. conceived the research plan and initiated and supervised the project. X.L., H.D. and N.G. designed the experiments, analysed the data and prepared the paper with input from all other authors. H.D. conducted the chemical synthesis with the help of D.H., B.H. and D.L. N.G. and H.D. performed the biological assays and completed the enzymatic reactions with the help of H.M.G., H.J.Z. and Z.Y.Y.

Corresponding author

Correspondence to Xiaoguang Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Rudi Fasan, Hiroki Oguri and Hans Renata for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Table 1, experimental procedures and characterization data.

Source data

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Guo, N., Hu, D. et al. Chemoenzymatic total synthesis of alchivemycin A. Nat. Synth 3, 1124–1133 (2024). https://doi.org/10.1038/s44160-024-00577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00577-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing