Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclolignan synthesis streamlined by enantioselective hydrogenation of tetrasubstituted olefins

A Publisher Correction to this article was published on 27 June 2024

This article has been updated

Abstract

Natural products have long been valuable sources of inspiration for drug discovery. Unfortunately, the inherent limitations of direct semisynthetic derivatizations have become clear, and the need to overcome these limitations is now particularly urgent because the most valuable natural products tend to be isolated in minute amounts; de novo synthesis with ideal modularity and diversity is therefore a critical goal in drug discovery research. Herein we report a powerful, general platform for cyclolignan synthesis that involves challenging rhodium-catalysed enantioselective hydrogenation of tetrasubstituted 1,2-dihydronaphthalene esters (>40 examples; up to 99% yield, >99% e.e.). This unique platform allows ready access to various types of cyclolignans, as exemplified by the expedient and mostly protecting-group-free synthesis of over thirty cyclolignans, including many that have not previously been synthesized, such as 6-methoxy podophyllotoxin, cleistantoxin, picrobursenin, austrobailignan-4, (+)-lirionol, (+)-gaultherin C, ovafolinin D, fimbricalyxoid A, and aglacins D, F–H (with three revised structures). We expect this work to inspire modular, de novo syntheses of other important classes of natural products and thus to rejuvenate the role of natural products in drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for de novo modular synthesis of cyclolignans.
Fig. 2: Scope of the rhodium-catalysed asymmetric hydrogenation of dihydronaphthalene α,β-unsaturated carboxylic acid esters.
Fig. 3: Total syntheses of podophyllotoxins.
Fig. 4: Synthesis of other types of cyclolignans via epimerization of 2p.
Fig. 5: Asymmetric total syntheses of various compounds from ent-2j′.
Fig. 6: Total syntheses of various compounds from 2j′.
Fig. 7: Total syntheses of compounds 84 and 85.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. CCDC 2261541 (2p), 2232313 (9), 2236506 (16), 2236638 [(±)-47], 2236477 (71), 2289443 (81), 2236507 (S9) and 2272028 (S24). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. All other relevant data generated and analysed during this study, including experimental, spectroscopic and crystallographic data, are included in this Article and its Supplementary Information.

Change history

References

  1. Vassão, D. G., Kim, K.-W., Davin, L. B. & Lewis, N. G. Lignans (neolignans) and allyl/propenyl phenols: biogenesis, structural biology, and biological/human health considerations. Comprehensive Natural Products II 1, 815–928 (2010).

  2. Bruno, B., Giulliano Delle, M., Domenico, M., Alberto, V. & Giovanni, Z. Aryltetralin lignans: chemistry, pharmacology and biotransformations. Curr. Med. Chem. 8, 1363–1381 (2001).

    Google Scholar 

  3. Shah, Z. et al. Podophyllotoxin: history, recent advances and future prospects. Biomolecules 11, 603–630 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, X., Che, Z. & Xu, H. Recent advances in the chemistry and biology of podophyllotoxins. Chem. Eur. J. 23, 4467–4526 (2017).

    CAS  PubMed  Google Scholar 

  5. Reynolds, R. G., Nguyen, H. Q. A., Reddel, J. C. T. & Thomson, R. J. Recent strategies and tactics for the enantioselective total syntheses of cyclolignan natural products. Nat. Prod. Rep. 39, 670–702 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang, X. & Hu, X. Advances in the synthesis of lignan natural products. Molecules 23, 3385 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Zhao, W. et al. Challenges and Potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat. Prod. Rep. 38, 470–488 (2021).

    CAS  PubMed  Google Scholar 

  8. Andrews, R. C., Teague, S. J. & Meyers, A. I. Asymmetric total synthesis of (–)-podophyllotoxin. J. Am. Chem. Soc. 110, 7854–7858 (1988).

    CAS  Google Scholar 

  9. Hajra, S., Garai, S. & Hazra, S. Catalytic enantioselective synthesis of (–)-podophyllotoxin. Org. Lett. 19, 6530–6533 (2017).

    CAS  PubMed  Google Scholar 

  10. Charest, M. G., Lerner, C. D., Brubaker, J. D., Siegel, D. R. & Myers, A. G. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308, 395–398 (2005).

    CAS  PubMed  Google Scholar 

  11. Seiple, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338–345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Q. et al. Synthetic group A streptogramin antibiotics that overcome Vat resistance. Nature 586, 145–150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 651, 189–194 (2018).

    Google Scholar 

  15. Murphy, S. K., Zeng, M. & Herzon, S. B. A modular and enantioselective synthesis of the pleuromutilin antibiotics. Science 356, 956–959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X. et al. A radical cascade enabling collective syntheses of natural products. Chem 2, 803–816 (2017).

    CAS  Google Scholar 

  17. Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Harwood, S. J. et al. Modular terpene synthesis enabled by mild electrochemical couplings. Science 375, 745–752 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scharf, M. J. & List, B. A catalytic asymmetric Pictet–Spengler platform as a biomimetic diversification strategy toward naturally occurring alkaloids. J. Am. Chem. Soc. 144, 15451–15456 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Goethe, O., DiBello, M. & Herzon, S. B. Total synthesis of structurally diverse pleuromutilin antibiotics. Nat. Chem. 14, 1270–1277 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddel, J. C. T., Lutz, K. E., Diagne, A. B. & Thomson, R. J. Stereocontrolled syntheses of tetralone and naphthyl-type lignans by a one-pot oxidative [3,3] rearrangement/Friedel–Crafts arylation. Angew. Chem. Int. Ed. 53, 1395–1398 (2014).

    CAS  Google Scholar 

  22. Ting, C. P. & Maimone, T. J. C–H Bond arylation in the synthesis of aryltetralin lignans: a short total synthesis of podophyllotoxin. Angew. Chem. Int. Ed. 53, 3115–3119 (2014).

    CAS  Google Scholar 

  23. Xiao, J., Cong, X.-W., Yang, G.-Z., Wang, Y.-W. & Peng, Y. Divergent asymmetric syntheses of podophyllotoxin and related family members via stereoselective reductive Ni-catalysis. Org. Lett. 20, 1651–1654 (2018).

    CAS  PubMed  Google Scholar 

  24. Li, J., Zhang, X. & Renata, H. Asymmetric chemoenzymatic synthesis of (–)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed. 58, 11657–11660 (2019).

    CAS  Google Scholar 

  25. Lazzarotto, M. et al. Chemoenzymatic total synthesis of deoxy-, epi-, and podophyllotoxin and a biocatalytic kinetic resolution of dibenzylbutyrolactones. Angew. Chem. Int. Ed. 58, 8226–8230 (2019).

    CAS  Google Scholar 

  26. Xiang, J.-C., Wang, Q. & Zhu, J. Radical-cation cascade to aryltetralin cyclic ether lignans under visible-light photoredox catalysis. Angew. Chem. Int. Ed. 59, 21195–21202 (2020).

    CAS  Google Scholar 

  27. Xu, M., Hou, M., He, H. & Gao, S. Asymmetric total synthesis of aglacins A, B, and E. Angew. Chem. Int. Ed. 60, 16655–16660 (2021).

    CAS  Google Scholar 

  28. Cao, M.-Y. et al. Optically active flavaglines-inspired molecules by a palladium-catalyzed decarboxylative dearomative asymmetric allylic alkylation. J. Am. Chem. Soc. 142, 12039–12045 (2020).

    CAS  PubMed  Google Scholar 

  29. Sun, A. W., Lackner, S. & Stoltz, B. M. Modularity: adding new dimensions to total synthesis. Trends Chem. 1, 630–643 (2019).

    CAS  Google Scholar 

  30. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).

  31. Hendrickson, J. B. Systematic synthesis design. IV. Numerical codification of construction reactions. J. Am. Chem. Soc. 97, 5784–5800 (1975).

    CAS  Google Scholar 

  32. Wender, P. A. Toward the ideal synthesis and transformative therapies: the roles of step economy and function oriented synthesis. Tetrahedron 69, 7529–7550 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peters, D. S. et al. Ideality in context: motivations for total synthesis. Acc. Chem. Res. 54, 605–617 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao, M.-Y., Ma, B.-J., Gu, Q.-X., Fu, B. & Lu, H.-H. Concise enantioselective total synthesis of daphenylline enabled by an intramolecular oxidative dearomatization. J. Am. Chem. Soc. 144, 5750–5755 (2022).

    CAS  PubMed  Google Scholar 

  35. Kraft, S., Ryan, K. & Kargbo, R. B. Recent advances in asymmetric hydrogenation of tetrasubstituted olefins. J. Am. Chem. Soc. 139, 11630–11641 (2017).

    CAS  PubMed  Google Scholar 

  36. Margarita, C. & Andersson, P. G. Evolution and prospects of the asymmetric hydrogenation of unfunctionalized olefins. J. Am. Chem. Soc. 139, 1346–1356 (2017).

    CAS  PubMed  Google Scholar 

  37. Bigler, R. et al. Asymmetric hydrogenation of unfunctionalized tetrasubstituted acyclic olefins. Angew. Chem. Int. Ed. 59, 2844–2849 (2019).

    Google Scholar 

  38. Biosca, M. et al. Extending the substrate scope in the hydrogenation of unfunctionalized tetrasubstituted olefins with Ir-P stereogenic aminophosphine–oxazoline catalysts. Org. Lett. 21, 807–811 (2019).

    CAS  PubMed  Google Scholar 

  39. Zhang, J.-H. et al. Highly enantio- and diastereoselective hydrogenation of cyclic tetrasubstituted β-enamido phosphorus derivatives. Angew. Chem. Int. Ed. 62, e202305315 (2023).

    CAS  Google Scholar 

  40. Faiges, J. et al. Unlocking the asymmetric hydrogenation of tetrasubstituted acyclic enones. Angew. Chem. Int. Ed. 62, e202305315 (2023).

    Google Scholar 

  41. Zhao, Q.-K. et al. Asymmetric hydrogenation of β-aryl alkylidene malonate esters: installing an ester group significantly increases the efficiency. Org. Lett. 23, 1675–1680 (2021).

    CAS  PubMed  Google Scholar 

  42. Molinaro, C. et al. A practical synthesis of renin inhibitor MK-1597 (ACT-178882) via catalytic enantioselective hydrogenation and epimerization of piperidine intermediate. J. Org. Chem. 76, 1062–1071 (2011).

    CAS  PubMed  Google Scholar 

  43. Campeau, L.-C. et al. Convergent kilo-scale synthesis of a potent renin inhibitor for the treatment of hypertension. Org. Process Res. Dev. 15, 1138–1148 (2011).

    CAS  Google Scholar 

  44. Christensen, M. et al. Enantioselective synthesis of α-methyl-β-cyclopropyldihydrocinnamates. J. Org. Chem. 81, 824–830 (2016).

    CAS  PubMed  Google Scholar 

  45. Kerdphon, S. et al. Diastereo- and enantioselective synthesis of structurally diverse succinate, butyrolactone, and trifluoromethyl derivatives by iridium-catalyzed hydrogenation of tetrasubstituted olefins. ACS Catal. 9, 6169–6176 (2019).

    CAS  Google Scholar 

  46. Liu, Y.-T. et al. Asymmetric hydrogenation of tetrasubstituted cyclic enones to chiral cycloalkanols with three contiguous stereocenters. Org. Lett. 19, 3231–3234 (2017).

    CAS  PubMed  Google Scholar 

  47. Zhao, Q.-K. et al. Catalytic asymmetric hydrogenation of 3‑ethoxycarbonyl quinolin-2-ones and coumarins. Org. Lett. 23, 3593–3598 (2021).

    CAS  PubMed  Google Scholar 

  48. Zhu, Z.-H., Ding, Y.-X., Wu, B. & Zhou, Y.-G. Biomimetic asymmetric reduction of tetrasubstituted olefin 2,3-disubstituted inden-1-ones with chiral and regenerable NAD(P)H model CYNAM. Org. Lett. 23, 7166–7170 (2021).

    CAS  PubMed  Google Scholar 

  49. Yin, C., Pan, Y., Zhang, X. & Yin, Q. Catalytic asymmetric hydrogenation of tetrasubstituted unsaturated lactams: an efficient approach to enantioenriched 3,4-disubstituted piperidines. Org. Lett. 24, 675–680 (2022).

    CAS  PubMed  Google Scholar 

  50. Li, C. et al. Stereoelectronic effects in ligand design: enantioselective rhodium catalyzed hydrogenation of aliphatic cyclic tetrasubstituted enamides and concise synthesis of (R)-tofacitinib. Angew. Chem. Int. Ed. 58, 13573–13583 (2019).

    CAS  Google Scholar 

  51. Song, S., Zhu, S.-F., Li, Y. & Zhou, Q.-L. Iridium-catalyzed enantioselective hydrogenation of α,β-unsaturated carboxylic acids with tetrasubstituted olefins. Org. Lett. 15, 3722–3725 (2013).

    CAS  PubMed  Google Scholar 

  52. Du, X. et al. Enantioselective hydrogenation of tetrasubstituted α,β-unsaturated carboxylic acids enabled by cobalt(II) catalysis: scope and mechanistic insights. Angew. Chem. Int. Ed. 60, 11384–11390 (2021).

    CAS  Google Scholar 

  53. Chen, G.-Q. et al. Highly enantioselective hydrogenation of tetra- and tri-substituted α,β-unsaturated carboxylic acids with oxa-spiro diphosphine ligands. CCS Chem. 2, 468–477 (2020).

    CAS  Google Scholar 

  54. Zhang, M. et al. Asymmetric hydrogenation of all-carbon tetrasubstituted α-acylpyrazole-β-alkyl cycloalkenes. Org. Chem. Front. 10, 5070–5075 (2023).

    CAS  Google Scholar 

  55. Troutman, M. V., Appella, D. H. & Buchwald, S. L. Asymmetric hydrogenation of unfunctionalized tetrasubstituted olefins with a cationic zirconocene catalyst. J. Am. Chem. Soc. 121, 4916–4917 (1999).

    CAS  Google Scholar 

  56. Schrems, M. G., Neumann, E. & Pfaltz, A. Iridium-catalyzed asymmetric hydrogenation of unfunctionalized tetrasubstituted olefins. Angew. Chem. Int. Ed. 46, 8274–8276 (2007).

    CAS  Google Scholar 

  57. Zhang, Z., Zhu, G., Jiang, Q., Xiao, D. & Zhang, X. Highly enantioselective hydrogenation of cyclic enamides catalyzed by a Rh-PennPhos catalyst. J. Org. Chem. 64, 1774–1775 (1999).

    CAS  PubMed  Google Scholar 

  58. Dobbs, D. A. et al. Industrial synthesis of (+)-cis-methyl dihydrojasmonate by enantioselective catalytic hydrogenation; identification of the precatalyst [Ru((−)-Me-DuPHOS)(H)(η6-1,3,5-cyclooctatriene)](BF4). Angew. Chem. Int. Ed. 39, 1992–1995 (2000).

  59. Zhang, Z. et al. Total synthesis and stereochemical assignment of delavatine A: Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution through Pd-catalyzed triflamide-directed C–H olefination. J. Am. Chem. Soc. 139, 5558–5567 (2017).

    CAS  PubMed  Google Scholar 

  60. MacNeil, P. A., Roberts, N. K. & Bosnich, B. Asymmetric synthesis. Asymmetric catalytic hydrogenation using chiral chelating six-membered ring diphosphines. J. Am. Chem. Soc. 103, 2273–2280 (1981).

    CAS  Google Scholar 

  61. Bakos, J., Toth, I. & Marko, L. Use of heterogeneous asymmetric hydrogenation for the preparation of a chiral phosphinite and its application as a ligand in homogeneous asymmetric hydrogenation. J. Org. Chem. 46, 5427–5428 (1981).

    CAS  Google Scholar 

  62. Yamada, M., Kato, T., Ikemoto, T. & Yamano, M. Rhodium-catalyzed highly enantioselective hydrogenation of a tetrasubstituted enamine. Org. Process Res. Dev. 25, 1074–1079 (2021).

    CAS  Google Scholar 

  63. Lubov, D. P., Talsi, E. P. & Bryliakov, K. P. Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russ. Chem. Rev. 89, 587–628 (2020).

    CAS  Google Scholar 

  64. Forsey, S. P., Rajapaksa, D., Taylor, N. J. & Rodrigo, R. Comprehensive synthetic route to eight diastereomeric podophyllum lignans. J. Org. Chem. 54, 4280–4290 (1989).

    CAS  Google Scholar 

  65. Kuo, Y.-H. & Yu, M.-T. A new lignan, formosalactone, from the bark of Juniperus formosana Hay. var. concolor Hay. Heterocycles 36, 529–535 (1993).

    CAS  Google Scholar 

  66. Ito, J., Sakuma, D. & Nishii, Y. First total synthesis of (+)-podophyllic aldehydes. Chem. Lett. 44, 297–299 (2015).

    CAS  Google Scholar 

  67. Weeratunga, G., Rajapaksa, D. & Rodrigo, R. The synthesis and relative configuration of (±)-lirionol. J. Org. Chem. 50, 5902–5905 (1985).

    CAS  Google Scholar 

  68. Wang, B.-G., Ebel, R., Wang, C.-Y., Wray, V. & Peter, P. New methoxylated aryltetrahydronaphthalene lignans and a norlignan from Aglaia cordata. Tetrahedron Lett. 43, 5783–5787 (2002).

    CAS  Google Scholar 

  69. Wang, B.-G. et al. Aglacins A-D: first representatives of a new class of aryltetralin cyclic ether lignans from Aglaia cordata. J. Nat. Prod. 64, 1521–1526 (2001).

    CAS  PubMed  Google Scholar 

  70. Paolillo, J. M., Duke, A. D., Gogarnoiu, E. S., Wise, D. E. & Parasram, M. Anaerobic hydroxylation of C(sp3)–H bonds enabled by the synergistic nature of photoexcited nitroarenes. J. Am. Chem. Soc. 145, 2794–2799 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, L.-P. et al. Total synthesis of the alleged structure of (+)-fimbricalyxoid A. Org. Lett. 24, 3477–3481 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant no. 22271236) and the Natural Science Foundation of Zhejiang Province (grant no. LXZ22B020001) for support of this research. We sincerely thank T. J. Schmidt (University of Münster) and Y. S. Yun (Tokyo University of Pharmacy and Life Sciences) for kindly providing us with their original NMR spectra for 6-methoxypodophyllotoxin-7-O-n-hexanoate and ovafonin D, respectively. We acknowledge R. Shenvi (Scripps Research) for helpful discussions; J. Liu from the Chemistry Instrumentation Center at Zhejiang University for X-ray crystallographic analysis; and the Instrumentation and Service Centre for Molecular Sciences, and the Instrumentation and Service Centre for Physical Science at Westlake University, for help with other data analyses.

Author information

Authors and Affiliations

Authors

Contributions

H.-H.L. conceived the project, guided the studies, and wrote the manuscript. Z.P. developed the asymmetric hydrogenation and completed the synthesis of podophyllotoxins and related cyclolignans. W.-X.X. completed the syntheses of lirionol, aglacins, gaultherin C, ovafolinin D and fimbricalyxoid A. Q.-X.G., Y.Z. and L.-H.Z. helped with the preparation of some intermediates. F.L. provided further X-ray crystallographic analysis and justifications. All of the authors contributed to the analysis and interpretation of the results.

Corresponding author

Correspondence to Hai-Hua Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–25 and experimental details.

Supplementary Data 1

X-ray crystallographic data for compound 2p (CCDC 2261541).

Supplementary Data 2

X-ray crystallographic data for compound 9 (CCDC 2232313).

Supplementary Data 3

X-ray crystallographic data for compound 16 (CCDC 2236506).

Supplementary Data 4

X-ray crystallographic data for compound 47 (CCDC 2236638).

Supplementary Data 5

X-ray crystallographic data for compound 71 (CCDC 2236477).

Supplementary Data 6

X-ray crystallographic data for compound 81 (CCDC 2289443).

Supplementary Data 7

X-ray crystallographic data for compound S9 (CCDC 2236507).

Supplementary Data 8

X-ray crystallographic data for compound S24 (CCDC 2272028).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WX., Peng, Z., Gu, QX. et al. Cyclolignan synthesis streamlined by enantioselective hydrogenation of tetrasubstituted olefins. Nat. Synth 3, 986–997 (2024). https://doi.org/10.1038/s44160-024-00564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00564-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing