Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C(sp3)–C(sp3) bond formation through nitrogen deletion of secondary amines using O-diphenylphosphinylhydroxylamine

Abstract

The nitrogen deletion of secondary amines has emerged as an effective strategy for direct molecular skeletal editing and carbon–carbon bond formation. However, current methods are often limited to acyclic bis(α-primary) amines and cyclic amines, which possess two stabilizing elements at the α-position of amine. Here we report the use of O-diphenylphosphinylhydroxylamine as a reagent for nitrogen deletion of secondary amines to form C(sp3)–C(sp3) bonds. This method overcomes substrate requirements of other methods and tolerates a range of secondary amine substrates. The process can be readily applied to multiple nitrogen deletion processes, is tolerant of both air and water, forms water-soluble byproducts and can be readily scaled to a hundred-gram scale. The versatility of the method is further showcased through the direct editing of natural products, pharmaceutical compounds, N-coordinated ligands, a three-dimensional amine cage and the synthesis of several bioactive compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: N-deletion of secondary amines.
Fig. 2: Optimization of reaction conditions and mechanistic studies.
Fig. 3: Substrate scope of N-deletion.
Fig. 4: Editing and synthesis of bioactive compounds.
Fig. 5: Editing functional N-heterocycles.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its supplementary information files.

References

  1. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peplow, M. An explosion of methods to insert, delete or swap single atoms in the cores of molecules could accelerate drug discovery. Nature 618, 21–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Cao, Z.-C. & Shi, Z.-J. Deoxygenation of ethers to form carbon–carbon bonds via nickel catalysis. J. Am. Chem. Soc. 139, 6546–6549 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma, D., Martin, B. S., Gallagher, K. S., Saito, T. & Dai, M. One-carbon insertion and polarity inversion enabled a pyrrole strategy to the total syntheses of pyridine-containing lycopodium alkaloids: complanadine A and lycodine. J. Am. Chem. Soc. 143, 16383–16387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 372, 175–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal editing of pyrimidines to pyrazoles by formal carbon deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, H. et al. Rhodium-catalyzed intramolecular nitrogen atom insertion into arene rings. J. Am. Chem. Soc. 145, 17570–17575 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Qin, H., Guo, T., Lin, K., Li, G. & Lu, H. Synthesis of dienes from pyrrolidines using skeletal modification. Nat. Commun. 14, 7307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, R. et al. Rhodium catalyzed tunable amide homologation through a hook-and-slide strategy. Science 382, 951–957 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Zippel, C., Seibert, J. & Bräse, S. Skeletal editing–nitrogen deletion of secondary amines by anomeric amide reagents. Angew. Chem. Int. Ed. 60, 19522–19524 (2021).

    Article  CAS  Google Scholar 

  18. Unsworth, W. P. & Avestro, A. J. Nitrogen deletion offers fresh strategy for organic synthesis. Nature 593, 203–204 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Ouyang, K., Hao, W., Zhang, W.-X. & Xi, Z. Transition-metal-catalyzed cleavage of C–N single bonds. Chem. Rev. 115, 12045–12090 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Q., Su, Y., Li, L. & Huang, H. Transition-metal catalysed C–N bond activation. Chem. Soc. Rev. 45, 1257–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Lemal, D. M. & Rave, T. W. Diazenes from Angeli’s salt. J. Am. Chem. Soc. 87, 393–394 (1965).

    Article  CAS  Google Scholar 

  22. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zou, X. D., Zou, J. Q., Yang, L. Z., Li, G. G. & Lu, H. J. Thermal rearrangement of sulfamoyl azides: reactivity and mechanistic study. J. Org. Chem. 82, 4677–4688 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Qin, H. T. et al. N-atom deletion in nitrogen heterocycles. Angew. Chem. Int. Ed. 60, 20678–20683 (2021).

    Article  CAS  Google Scholar 

  25. Hui, C. G., Brieger, L., Strohmann, C. & Antonchick, A. P. Stereoselective synthesis of cyclobutanes by contraction of pyrrolidines. J. Am. Chem. Soc. 143, 18864–18870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holovach, S. et al. C−C coupling through nitrogen deletion: application to library synthesis. Chem. Eur. J. 29, e202203470 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Wright, B. A. et al. Skeletal editing approach to bridge-functionalized bicyclo[1.1.1]pentanes from azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banks, T. M., Clay, S. F., Glover, S. A. & Schumacher, R. R. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator. Org. Biomol. Chem. 14, 3699–3714 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Glover, S. A. Anomeric amides—structure, properties and reactivity. Tetrahedron 54, 7229–7271 (1998).

    Article  CAS  Google Scholar 

  30. Zeng, X. Q., Beckers, H., Bernhardt, E. & Willner, H. Synthesis and characterization of sulfuryl diazide, O2S(N3)2. Inorg. Chem. 50, 8679–8684 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Rieder, C. J. & Smith, M. V. An unexpected incident during the manufacture of O-(diphenylphosphinyl)hydroxylamine. Org. Process Res. Dev. 25, 2308–2314 (2021).

    Article  CAS  Google Scholar 

  32. Jat, J. L. et al. Direct stereospecific synthesis of unprotected N-H and N-Me aziridines from olefins. Science 343, 61–65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jinan, D., Mondal, P. P., Nair, A. V. & Sahoo, B. O-protected NH-free hydroxylamines: emerging electrophilic aminating reagents for organic synthesis. Chem. Commun. 57, 13495–13505 (2021).

    Article  CAS  Google Scholar 

  34. Khatib, A. A. & Sisler, H. H. Synthesis of dialkyltriazanium chlorides through chloramination reactions of dialkylamines. Inorg. Chem. 29, 3158–3161 (1990).

    Article  CAS  Google Scholar 

  35. Newcomb, M. in Encyclopedia of Radicals in Chemistry, Biology and Materials (eds Armido Studer & Chryssostomos Chatgilialoglu) Ch. 5 (Wiley, 2012).

  36. Herk, L., Feld, M. & Szwarc, M. Studies of ‘cage’ reactions. J. Am. Chem. Soc. 83, 2998–3005 (1961).

    Article  CAS  Google Scholar 

  37. Back, T. G. & Kerr, R. G. Oxidation of 1,1-disubstituted hydrazines with benzeneseleninic acid and selenium dioxide. Facile preparation of tetrazenes. Can. J. Chem. 60, 2711 (1982).

    Article  CAS  Google Scholar 

  38. Renault, A., Joucla, L. & Lacôte, E. Catalytic aerobic oxidation of hydrazines into 2-tetrazenes. Eur. J. Org. Chem. 14, e202200265 (2022).

    Article  Google Scholar 

  39. Masson-Makdissi, J. et al. Evidence for dearomatizing spirocyclization and dynamic effects in the nitrogen deletion of tetrahydroisoquinolines. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-wwhbn (2023).

    Article  Google Scholar 

  40. Berger, K. J. et al. Direct deamination of primary amines via isodiazene intermediates. J. Am. Chem. Soc. 143, 17366–17373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dherange, B. D. et al. Direct deaminative functionalization. J. Am. Chem. Soc. 145, 17–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Steiniger, K. A., Lamb, M. C. & Lambert, T. H. Cross-coupling of amines via photocatalytic denitrogenation of in situ generated diazenes. J. Am. Chem. Soc. 145, 11524–11529 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monreal-Corona, R., Solà, M., Pla-Quintana, A. & Poater, A. Stereoretentive formation of cyclobutanes from pyrrolidines: lessons learned from DFT studies of the reaction mechanism. J. Org. Chem. 88, 4619–4626 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Y., Cheng, S., Tian, Y., Zhang, Y. & Zhao, Y. Recent ring distortion reactions for diversifying complex natural products. Nat. Prod. Rep. 39, 1970–1992 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Hui, C., Craggs, L. & Antonchick, A. P. Ring contraction in synthesis of functionalized carbocycles. Chem. Soc. Rev. 51, 8652–8675 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Zalessky, I. et al. A modular strategy for the synthesis of macrocycles and medium-sized rings via cyclization/ring expansion cascade reactions. J. Am. Chem. Soc. 146, 5702–5711 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, C.-J. & Chen, L. Organic chemistry in water. Chem. Soc. Rev. 35, 68–82 (2006).

    Article  PubMed  Google Scholar 

  49. Hong, B. K., Luo, T. P. & Lei, X. G. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maskey, R. P., Kock, I., Helmke, E. & Laatsch, H. Isolation and structure determination of phenazostatin D, a new phenazine froma marine actinomycete isolate Pseudonocardia sp. B6273. Z. Naturforsch. B 58, 692–694 (2003).

    Article  CAS  Google Scholar 

  51. Hashimoto, T. & Maruoka, K. Recent advances of catalytic asymmetric 1,3-dipolar cycloadditions. Chem. Rev. 115, 5366–5412 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Hui, C. & Antonchick, A. P. Methodology-driven efficient synthesis of cytotoxic (±)-piperarborenine B. Green Synth. Catal. 3, 339–348 (2022).

    Article  CAS  Google Scholar 

  53. Na, H. & Mirica, L. M. Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand. Nat. Commun. 13, 1313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schick, T. H. G., Lauer, J. C., Rominger, F. & Mastalerz, M. Transformation of imine cages into hydrocarbon cages. Angew. Chem. Inter. Ed. 58, 1768–1773 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Natural Science Foundation of China, 22071100 (H.L.) and 22271148 (H.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.G., J.L. and H.L. designed the experiments. T.G., J.L., Z.C. and Z.W. performed the experiments and analysed the data. All authors participated in writing the manuscript. H.L. conceived and supervised the project.

Corresponding author

Correspondence to Hongjian Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–55, characterization data and additional experimental details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Li, J., Cui, Z. et al. C(sp3)–C(sp3) bond formation through nitrogen deletion of secondary amines using O-diphenylphosphinylhydroxylamine. Nat. Synth 3, 913–921 (2024). https://doi.org/10.1038/s44160-024-00559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00559-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing