Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of hollow platelet polymer particles by spontaneous precision fragmentation

Abstract

The creation of anisotropic core–shell nanoparticles using the living crystallization-driven self-assembly method results in colloidally stable solid particles. The fragmentation or degradation of crystallization-driven self-assembly nanomaterials is currently accessible only when intensive external stimuli are exerted. Controlling the stability of the crystalized core material may also allow structural evolution and fragmentation to be achieved. Here we report that two-dimensional (2D) platelets containing less stable domains specifically fragment upon ageing, providing a simple method to create hollow platelet polymer particles in one step. Mechanistic studies reveal that a high concentration of low-molecular-weight homopolymer in 2D platelet that crystallizes at low temperatures results in less stable domains, which fragment upon ageing. To illustrate the utility of spontaneous fragmentation, spatially selective fragmentation of 2D segmented platelets is used to prepare 2D hollow platelets that are usually inaccessible from a thermodynamic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seeded growth of PBA polymer blend from 1D PCL core-forming seeds.
Fig. 2: Effect of mass ratios of homopolymer/BCP on the fragmentation process of 2D PBA platelets.
Fig. 3: Fragmentation of 2D PCL platelets prepared by seeded growth from 1D PBA core-forming seeds using a broad ĐM PCL homopolymer.
Fig. 4: Effect of low-MWt PBA fraction on the structural changes of 2D PBA platelets heteroepitaxially grown from 1D PDMA137-b-PCL56-b-PDMA137 seeds.
Fig. 5: Composition distribution among 2D PCL platelets prepared by seeded heteroepitaxial growth.
Fig. 6: Selective fragmentation of segmented platelets.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Pearce, A. K., Wilks, T. R., Arno, M. C. & O’Reilly, R. K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat. Rev. Chem 5, 21–45 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. MacFarlane, L., Zhao, C., Cai, J., Qiu, H. & Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 12, 4661–4682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacFarlane, L. R. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater 6, 7–26 (2021).

    Article  CAS  Google Scholar 

  4. Chen, W. Y. et al. ‘Chemically shielded’ poly(ethylene oxide) single crystal growth and construction of channel-wire arrays with chemical and geometric recognitions on a submicrometer scale. Macromolecules 37, 5292–5299 (2004).

    Article  CAS  Google Scholar 

  5. Teng, F., Xiang, B., Liu, L., Varlas, S. & Tong, Z. Precise control of two-dimensional hexagonal platelets via scalable, one-pot assembly pathways using block copolymers with crystalline side chains. J. Am. Chem. Soc. 145, 28049–28060 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Han, L. et al. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nat. Commun. 9, 865 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang, S., Kang, S. Y. & Choi, T. L. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat. Commun. 12, 2602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ganda, S. & Stenzel, M. H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 101, 101195 (2020).

    Article  CAS  Google Scholar 

  9. He, W.-N. & Xu, J.-T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 37, 1350–1400 (2012).

    Article  CAS  Google Scholar 

  10. Van Horn, R. M. et al. Solution crystallization behavior of crystalline−crystalline diblock copolymers of poly(ethylene oxide)-block-poly(ε-caprolactone). Macromolecules 43, 6113–6119 (2010).

    Article  Google Scholar 

  11. Su, Y. et al. Hydrogen-bond-regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-caprolactone) block copolymers. Macromolecules 55, 1067–1076 (2022).

    Article  CAS  Google Scholar 

  12. Kang, L. et al. Modulating the molecular geometry and solution self-assembly of amphiphilic polypeptoid block copolymers by side chain branching pattern. J. Am. Chem. Soc. 143, 5890–5902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, Y. et al. Supramolecular nanosheets assembled from poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) diblock copolymer containing crystallizable hydrophobic polypeptoid: crystallization driven assembly transition from filaments to nanosheets. Macromolecules 52, 1546–1556 (2019).

    Article  CAS  Google Scholar 

  14. Song, S. et al. Solvent effects leading to a variety of different 2D structures in the self-assembly of a crystalline-coil block copolymer with an amphiphilic corona-forming block. Chem. Sci. 11, 4631–4643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, S. & Choi, T. L. Rapid formation and real-time observation of micron-sized conjugated nanofibers with tunable lengths and widths in 20 minutes by living crystallization-driven self-assembly. Chem. Sci. 11, 8416–8424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmelz, J., Schedl, A. E., Steinlein, C., Manners, I. & Schmalz, H. Length control and block-type architectures in worm-like micelles with polyethylene cores. J. Am. Chem. Soc. 134, 14217–14225 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Kwon, Y. & Kim, K. T. Crystallization-driven self-assembly of block copolymers having monodisperse poly(lactic acid)s with defined stereochemical sequences. Macromolecules 54, 10487–10498 (2021).

    Article  CAS  Google Scholar 

  18. Tao, D. et al. Monodisperse fiber-like micelles of controlled length and composition with an oligo(p-phenylenevinylene) core via ‘living’ crystallization-driven self-assembly. J. Am. Chem. Soc. 139, 7136–7139 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Patra, S. K. et al. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J. Am. Chem. Soc. 133, 8842–8845 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Boott, C. E. et al. Probing the growth kinetics for the formation of uniform 1D block copolymer nanoparticles by living crystallization-driven self-assembly. ACS Nano 12, 8920–8933 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Finnegan, J. R. et al. Gradient crystallization-driven self-assembly: cylindrical micelles with ‘patchy’ segmented coronas via the coassembly of linear and brush block copolymers. J. Am. Chem. Soc. 136, 13835–13844 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Nie, J., Tao, D., Huang, X., Lu, G. & Feng, C. Uniform nanowires containing a heterogeneous π-conjugated core of controlled length, composition and morphology. Chem. Eur. J. 27, 8479–8483 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y. et al. Dendritic micelles with controlled branching and sensor applications. J. Am. Chem. Soc. 143, 5805–5814 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Nazemi, A. et al. Uniform ‘patchy’ platelets by seeded heteroepitaxial growth of crystallizable polymer blends in two dimensions. J. Am. Chem. Soc. 139, 4409–4417 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Gädt, T., Ieong, N. S., Cambridge, G., Winnik, M. A. & Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 8, 144–150 (2009).

    Article  PubMed  Google Scholar 

  28. Nie, J. et al. Co-self-seeding: a facile approach to generate heterogeneous π-conjugated fiber-like comicelles with tunable length, composition and morphology. Eur. Polym. J. 197, 112384 (2023).

    Article  CAS  Google Scholar 

  29. Shaikh, H. et al. Solid-state donor–acceptor coaxial heterojunction nanowires via living crystallization-driven self-assembly. J. Am. Chem. Soc. 142, 13469–13480 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Tong, Z. et al. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nat. Chem. 15, 824–831 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, L. et al. Understanding the seeded heteroepitaxial growth of crystallizable polymers: the role of crystallization thermodynamics. ACS Nano 17, 24141–24153 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Arno, M. C. et al. Precision epitaxy for aqueous 1D and 2D poly(epsilon-caprolactone) assemblies. J. Am. Chem. Soc. 139, 16980–16985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finnegan, J. R., Davis, T. P. & Kempe, K. Heat-induced living crystallization-driven self-assembly: the effect of temperature and polymer composition on the assembly and disassembly of poly(2-oxazoline) nanorods. Macromolecules 55, 3650–3660 (2022).

    Article  CAS  Google Scholar 

  34. Ma, C. et al. Fragmentation of fiber-like micelles with a π-conjugated crystalline oligo(p-phenylenevinylene) core and a photocleavable corona in water: a matter of density of corona-forming chains. Macromolecules 53, 8631–8641 (2020).

    Article  CAS  Google Scholar 

  35. Xiong, H. et al. Scrolled polymer single crystals driven by unbalanced surface stresses: rational design and experimental evidence. Macromolecules 44, 7758–7766 (2011).

    Article  CAS  Google Scholar 

  36. Wang, X. et al. Specific disassembly of lamellar crystalline micelles of block copolymer into cylinders. Macromolecules 51, 2138–2144 (2018).

    Article  CAS  Google Scholar 

  37. Fan, B. et al. Regulated fragmentation of crystalline micelles of block copolymer via monoamine-induced corona swelling. Macromolecules 51, 7637–7648 (2018).

    Article  CAS  Google Scholar 

  38. Yang, J. et al. Hydrogen-bonding-mediated fragmentation and reversible self-assembly of crystalline micelles of block copolymer. Macromolecules 49, 367–372 (2016).

    Article  CAS  Google Scholar 

  39. Luo, H. et al. Disassembly of crystalline platelets of an amphiphilic triblock copolymer mediated by varying pH and organic diacids. Macromol. Chem. Phys. 220, 1900187 (2019).

    Article  Google Scholar 

  40. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. He, X. et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of poly(l-lactide) homopolymers with charged termini. J. Am. Chem. Soc. 139, 9221–9228 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, Y. & Pan, P. Crystallization of biodegradable and biobased polyesters: polymorphism, cocrystallization, and structure-property relationship. Prog. Polym. Sci. 109, 101291 (2020).

    Article  CAS  Google Scholar 

  43. Wittmann, J. C. & Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 15, 909–948 (1990).

    Article  CAS  Google Scholar 

  44. Wang, M., Tashiro, K. & Ozaki, Y. Reinvestigation of the β-to-α crystal phase transition of poly(butylene adipate) by the time-resolved X-ray scattering and FTIR spectral measurements in the temperature-jump process. Macromolecules 50, 3883–3889 (2017).

    Article  CAS  Google Scholar 

  45. Li, Z. et al. Glyco-platelets with controlled morphologies via crystallization-driven self-assembly and their shape-dependent interplay with macrophages. ACS Macro. Lett. 8, 596–602 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X., Chen, G., Liu, L., Zhu, L. & Tong, Z. Precise control of two-dimensional platelet micelles from biodegradable poly(p-dioxanone) block copolymers by crystallization-driven self-assembly. Macromolecules 55, 8250–8261 (2022).

    Article  CAS  Google Scholar 

  47. Cheng, Z. D. S. Phase Transitions in Polymers: The Role of Metastable States (Elsevier, 2008).

Download references

Acknowledgements

Z.T. thanks the National Natural Science Foundation of China (22273087) and the Fundamental Research Funds of Zhejiang Sci-Tech University (23212098-Y) for financial support. L.L. thanks the Excellent Doctoral Candidate Degree Thesis Cultivation Funds of Zhejiang Sci-Tech University for financial support (LW-YP2024004). L.L., L.Z., S.C., S.W. and Z.T. thank the Zhejiang Sci-Tech University for support. C.T.J.F., A.P.D. and R.K.O. thank the University of Birmingham for support. R.-Y.W. thanks the Xi’an Jiaotong University for support. The authors also thank J.-T. Xu for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Z.T. conceived the project. L.L. performed the experiments. S.C. prepared the polyester homopolymer samples. L.L. and Z.T. analysed the data with input from all other authors. Z.T. prepared the original manuscript with input from L.L., C.T.J.F., L.Z., R.-Y.W., S.W., A.P.D. and R.K.O. Z.T., C.T.J.F, A.P.D. and R.K.O. have substantially revised the manuscript. The project was supervised by Z.T.

Corresponding author

Correspondence to Zaizai Tong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Sylvia Ganda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Schemes 1 and 2, Figs. 1–28, discussion and Tables 1–3.

Source data

Source Data Fig. 1

WAXD and AFM data.

Source Data Fig. 5

GPC data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ferguson, C.T.J., Zhu, L. et al. Synthesis of hollow platelet polymer particles by spontaneous precision fragmentation. Nat. Synth 3, 903–912 (2024). https://doi.org/10.1038/s44160-024-00554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00554-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing