Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ formation of reactive (di)gallenes for bond activation

Abstract

Access to reactive low-valent main-group complexes capable of bond activation commonly requires multistep syntheses, limiting options for electronic or steric fine-tuning. Here we present a one-pot synthesis of highly reactive Ga(I) complex cations for the activation of strong bonds that works analogously to the in situ generation of active transition-metal catalysts. Commercially available phosphines, selected by computational screening, react with the easily accessible salt [Ga(PhF)2-3]+[Al(ORF)4] (PhF = C6H5F; RF = C(CF3)3) to form ambiphilic gallene cations in situ. Their dimerization tendency is reduced or even inhibited by variation of the electronic and steric properties of the chiral or achiral ligands. As an example, the reactivity of the in situ formed gallene [Ga(dipf)]+ (dipf = 1,1-bis(diisopropylphosphino)ferrocene) was studied. The cation reversibly dimerizes to the respective digallene in solution. Carbon–carbon multiple bonds in acyclic alkynes and alkenes undergo [2π + 2π] cycloadditions with the digallene [{Ga(dipf)}2]2+. The resulting digallacyclobutanes form reversibly at room temperature, yielding an equilibrium between the Ga(I) and Ga(II) species. Importantly, gallene [Ga(dipf)]+ inserts into H–Ga, H–Si and H–B bonds. Finally, reactivities of the dicationic digallene and cationic gallene are analysed by density functional theory and compared to neutral Al(I) and Ga(I) ambiphiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of ambiphilic main-group metal complexes.
Fig. 2: Screening of bisphosphines.
Fig. 3: Structures of the gallium complexes in solid state and in solution.
Fig. 4: Analysis of digallene bonding.
Fig. 5: Overview on reactivity of [{Ga(dipf)}x]x+ (x = 1–2).
Fig. 6: DFT analysis of H–B bond insertion.

Similar content being viewed by others

Data availability

All data needed to evaluate the presented work are included in the article and/or the Supplementary Information. The X-ray crystallographic coordinates for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2306731 (1), 2306758 (2), 2306761 (3), 2306764 (4), 2306760 (5), 2306762 (6), 2306759 (7), 2306767 (9anti), 2306773 (9sym), 2306768 (12), 2306772 (13), 2306770 (14), 2307660 (17), 2306771 (18), 2308493 (19), 2306769 (20). These data can be obtained free of charge from the CCDX via www.ccdc.cam.ac.uk/data_request/cif. DFT structures, energies and orbitals are available free of charge via https://doi.org/10.6084/m9.figshare.25067939.

References

  1. van Leeuwen, P. W. N. M. Homogeneous catalysis. Understanding the art. (Kluwer, 2004).

    Book  Google Scholar 

  2. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Weetman, C. & Inoue, S. The road travelled: after main‐group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    Article  CAS  Google Scholar 

  4. Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Lam, J., Szkop, K. M., Mosaferi, E. & Stephan, D. W. FLP catalysis: main group hydrogenations of organic unsaturated substrates. Chem. Soc. Rev. 48, 3592–3612 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Stephan, D. W. Frustrated Lewis pairs. J. Am. Chem. Soc. 137, 10018–10032 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Sugahara, T., Guo, J.-D., Sasamori, T., Nagase, S. & Tokitoh, N. Regioselective cyclotrimerization of terminal alkynes using a digermyne. Angew. Chem. Int. Ed. 57, 3499–3503 (2018).

    Article  CAS  Google Scholar 

  9. Planas, O., Wang, F., Leutzsch, M. & Cornella, J. Fluorination of arylboronic esters enabled by bismuth redox catalysis. Science 367, 313–317 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  11. Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316, 439–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  13. Mizuhata, Y., Sasamori, T. & Tokitoh, N. Stable heavier carbene analogues. Chem. Rev. 109, 3479–3511 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Asay, M., Jones, C. & Driess, M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Weetman, C. Main group multiple bonds for bond activations and catalysis. Chem. Eur. J. 27, 1941–1954 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Hanusch, F., Groll, L. & Inoue, S. Recent advances of group 14 dimetallenes and dimetallynes in bond activation and catalysis. Chem. Sci. 12, 2001–2015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

    Article  CAS  Google Scholar 

  18. Zhong, M., Sinhababu, S. & Roesky, H. W. The unique β-diketiminate ligand in aluminum(I) and gallium(I) chemistry. Dalton Trans. 49, 1351–1364 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Barnett, B. R. et al. in Inorganic Syntheses, Vol. 37 (ed. Power, P. P.) 85–122 (Wiley, 2018).

  20. Gour, K., Bisai, M. K. & Sen, S. S. The hypersilyl substituent in heavier low‐valent group 14 chemistry. Eur. J. Inorg. Chem. 2022, e202200071 (2022).

    Article  CAS  Google Scholar 

  21. Chakrabarti, A., Konishi, H., Yamaguchi, M., Schneider, U. & Kobayashi, S. Indium(I)-catalyzed asymmetric allylation, crotylation, and α-chloroallylation of hydrazones with rare constitutional and high configurational selectivities. Angew. Chem. Int. Ed. 49, 1838–1841 (2010).

    Article  CAS  Google Scholar 

  22. Qin, B. & Schneider, U. Catalytic use of elemental gallium for carbon–carbon bond formation. J. Am. Chem. Soc. 138, 13119–13122 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Slattery, J. M., Higelin, A., Bayer, T. & Krossing, I. A simple route to univalent gallium salts of weakly coordinating anions. Angew. Chem. Int. Ed. 49, 3228–3231 (2010).

    Article  CAS  Google Scholar 

  24. Li, Z. et al. Catalytic use of low-valent cationic gallium(I) complexes as π-acids. Adv. Synth. Catal. 360, 544–549 (2018).

    Article  CAS  Google Scholar 

  25. Lichtenthaler, M. R. et al. Univalent gallium salts of weakly coordinating anions: effective initiators/catalysts for the synthesis of highly reactive polyisobutylene. Organometallics 32, 6725–6735 (2013).

    Article  CAS  Google Scholar 

  26. Lichtenthaler, M. R. et al. Univalent gallium complexes of simple and ansa-arene ligands: effects on the polymerization of isobutylene. Chem. Eur. J. 21, 157–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Schorpp, M., Tamim, R. & Krossing, I. Oxidative addition, reduction and reductive coupling: the versatile reactivity of subvalent gallium cations. Dalton Trans. 50, 15103–15110 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Dabringhaus, P., Heizmann, T. & Krossing, I. Activation of the GaI cation for bond activation: from oxidative additions into C–Cl and H–P bonds to reversible insertion into P4. Chem. Eur. J. 29, e202302212 (2023).

  29. Barthélemy, A., Scherer, H., Daub, M., Bugnet, A. & Krossing, I. Structures, bonding analyses and reactivity of a dicationic digallene and diindene mimicking trans-bent ditetrylenes. Angew. Chem. Int. Ed. 62, e202311648 (2023).

    Article  Google Scholar 

  30. Hardman, N. J., Eichler, B. E. & Power, P. P. Synthesis and characterization of the monomer Ga{(NDippCMe)2CH} (Dipp = C6H3Pri2-2,6): a low valent gallium(I) carbene analogue. Chem. Commun., 1991–1992 (2000).

  31. Helling, C., Ganesamoorthy, C., Wölper, C. & Schulz, S. Geminal C–Cl and Si–Cl bond activation of chloromethanes and chlorosilanes by gallanediyl LGa. Dalton Trans. 51, 2050–2058 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Prabusankar, G., Doddi, A., Gemel, C., Winter, M. & Fischer, R. A. P–P bond activation of P4 tetrahedron by group 13 carbenoid and its bis molybdenum pentacarbonyl adduct. Inorg. Chem. 49, 7976–7980 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Seifert, A., Scheid, D., Linti, G. & Zessin, T. Oxidative addition reactions of element–hydrogen bonds with different polarities to a gallium(I) compound. Chem. Eur. J. 15, 12114–12120 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, X., Hinz, A., Kucher, H., Gamer, M. T. & Roesky, P. W. Stereoselective activation of small molecules by a stable chiral silene. Chem. Eur. J. 28, e202201963 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Piel, I., Dickschat, J. V., Pape, T., Hahn, F. E. & Glorius, F. A planar chiral 2.2paracyclophane derived N-heterocyclic stannylene. Dalton Trans. 41, 13788–13790 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Deak, N. et al. A non-symmetric sulfur-based O,C,O-chelating pincer ligand leading to chiral germylene and stannylene. Dalton Trans. 48, 2399–2406 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Bilbrey, J. A., Kazez, A. H., Locklin, J. & Allen, W. D. Exact ligand cone angles. J. Comput. Chem. 34, 1189–1197 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Barthélemy, A., Scherer, H., Weller, H. & Krossing, I. How long are GaGa double bonds and Ga–Ga single bonds in dicationic gallium dimers? Chem. Commun. 59, 1353–1356 (2023).

    Article  Google Scholar 

  40. Dabringhaus, P., Willrett, J. & Krossing, I. Synthesis of a low-valent Al4+ cluster cation salt. Nat. Chem. 14, 1151–1157 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Dabringhaus, P. & Krossing, I. From mixed group 13 cations [M(AlCp*)3]+ (M = Ga/In/Tl) to an Al4+ cluster. Chem. Sci. 13, 12078–12086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Glootz, K., Kratzert, D. & Krossing, I. Synthesis and structural characterization of gallium(I) and indium(I) cations coordinated by pentamethylethylenediamine. Z. Anorg. Allg. Chem. 646, 523–525 (2020).

    Article  CAS  Google Scholar 

  43. Schorpp, M. & Krossing, I. Stack by stack: from the free cyclopentadienylgermanium cation via heterobimetallic main-group sandwiches to main-group sandwich coordination polymers. Chem. Eur. J. 26, 14109–14117 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Arp, H., Baumgartner, J., Marschner, C. & Müller, T. A cyclic disilylated stannylene: synthesis, dimerization, and adduct formation. J. Am. Chem. Soc. 133, 5632–5635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He, X. et al. Reduction of a tetraaryldigallane to afford a radical anion with Ga–Ga multiple bonding character. Angew. Chem. Int. Ed. 32, 717–719 (1993).

    Article  Google Scholar 

  46. Su, J., Li, X.-W., Crittendon, R. C. & Robinson, G. H. How short is a -GaGa- triple bond? Synthesis and molecular structure of Na2[Mes*2C6H3-GaGa-C6H3 Mes*2] (Mes* = 2,4,6-i-Pr3C6H2): the first gallyne.J. Am. Chem. Soc. 119, 5471–5472 (1997).

    Article  CAS  Google Scholar 

  47. Malrieu, J. P. & Trinquier, G. Trans-bending at double bonds. Occurrence and extent. J. Am. Chem. Soc. 111, 5916–5921 (1989).

    Article  CAS  Google Scholar 

  48. Silva Lopez, C. & R. de Lera, A. Bond ellipticity as a measure of electron delocalization in structure and reactivity. COC 15, 3576–3593 (2011).

    Article  Google Scholar 

  49. Liptrot, D. J. & Power, P. P. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat. Rev. Chem. 1, 0004 (2017).

    Article  Google Scholar 

  50. Arp, H., Baumgartner, J., Marschner, C., Zark, P. & Müller, T. Dispersion energy enforced dimerization of a cyclic disilylated plumbylene. J. Am. Chem. Soc. 134, 6409–6415 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bag, P., Porzelt, A., Altmann, P. J. & Inoue, S. A stable neutral compound with an aluminum–aluminum double bond. J. Am. Chem. Soc. 139, 14384–14387 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, Y., Ellis, B. D., Wang, X., Fettinger, J. C. & Power, P. P. Reversible reactions of ethylene with distannynes under ambient conditions. Science 325, 1668–1670 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Sugahara, T., Guo, J.-D., Sasamori, T., Nagase, S. & Tokitoh, N. Reversible addition of terminal alkenes to digermynes. Chem. Commun. 54, 519–522 (2018).

    Article  CAS  Google Scholar 

  54. Hadlington, T. J. et al. Reactivity of amido-digermynes, LGeGeL (L = bulky amide), toward olefins and related molecules: facile reduction, C–H activation, and reversible cycloaddition of unsaturated substrates. Organometallics 34, 3175–3185 (2015).

    Article  CAS  Google Scholar 

  55. Caputo, C. A., Guo, J.-D., Nagase, S., Fettinger, J. C. & Power, P. P. Reversible and irreversible higher-order cycloaddition reactions of polyolefins with a multiple-bonded heavier group 13 alkene analogue: contrasting the behavior of systems with ππ, ππ*, and πn+ frontier molecular orbital symmetry. J. Am. Chem. Soc. 134, 7155–7164 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Caputo, C. A., Zhu, Z., Brown, Z. D., Fettinger, J. C. & Power, P. P. Activation of olefins with low-valent gallium compounds under ambient conditions. Chem. Commun. 47, 7506–7508 (2011).

    Article  CAS  Google Scholar 

  57. Herappe-Mejía, E. et al. Synthesis of substituted β-diketiminate gallium hydrides via oxidative addition of H–O bonds. Dalton Trans. 44, 16894–16902 (2015).

    Article  PubMed  Google Scholar 

  58. Chu, T., Korobkov, I. & Nikonov, G. I. Oxidative addition of σ bonds to an Al(I) center. J. Am. Chem. Soc. 136, 9195–9202 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Bakewell, C., Hobson, K. & Carmalt, C. J. Exploring equilibria between aluminium(I) and aluminium(III): the formation of dihydroalanes, masked dialumenes and aluminium(I) species. Angew. Chem. Int. Ed. 61, e202205901 (2022).

    Article  CAS  Google Scholar 

  60. Zhang, X. & Cao, Z. Insight into the reaction mechanisms for oxidative addition of strong σ bonds to an Al(I) center. Dalton Trans. 45, 10355–10365 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  62. Roesky, H. W. & Kennepohl, D. K. Experiments in Green and Sustainable Chemistry (Wiley-VCH, 2009).

    Google Scholar 

  63. Martens, A. et al. Facile and systematic access to the least-coordinating WCA (RFO)3Al-F-Al(ORF)3 and its more Lewis-basic brother F-Al(ORF)3 (RF = C(CF3)3). Chem. Sci. 9, 7058–7068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cosier, J. & Glazer, A. M. A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Crystallogr. 19, 105–107 (1986).

    Article  CAS  Google Scholar 

  65. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Kratzert, D., Holstein, J. J. & Krossing, I. DSR: enhanced modelling and refinement of disordered structures with SHELXL. J. Appl. Crystallogr. 48, 933–938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Daniel Kratzert, can be found under https://www.xs3.uni-freiburg.de/research/finalcif

  68. Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [{HC(CMeNAr)2}Al] (Ar = 2,6–iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

    Article  CAS  Google Scholar 

  69. Protchenko, A. V. et al. A stable two-coordinate acyclic silylene. J. Am. Chem. Soc. 134, 6500–6503 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Peng, Y. et al. Reaction of hydrogen or ammonia with unsaturated germanium or tin molecules under ambient conditions: oxidative addition versus arene elimination. J. Am. Chem. Soc. 131, 16272–16282 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Phillips, A. D., Wright, R. J., Olmstead, M. M. & Power, P. P. Synthesis and characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-Pr2): a tin analogue of an alkyne. J. Am. Chem. Soc. 124, 5930–5931 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Hardman, N. J., Wright, R. J., Phillips, A. D. & Power, P. P. Synthesis and characterization of the neutral ‘digallene’ Ar′GaGaAr′ and its reduction to Na2Ar′GaGaAr′ (Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-iPr2C6H3). Angew. Chem. Int. Ed. 41, 2842–2844 (2002).

    Article  CAS  Google Scholar 

  73. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (DFG) for the funding of project KR2046/35-1 and 35-2 (I.K.) as well as the Albert-Ludwigs-University Freiburg for supporting the work. Furthermore, we thank B. Butschke for help with the scXRD structure solution. Furthermore, the authors acknowledge support by the state of Baden-Württemberg through bwHPC and the DFG through grant number INST 40/575-1 FUGG (I.K., JUSTUS 2 cluster).

Author information

Authors and Affiliations

Authors

Contributions

P.D. planned and conducted the experiments upon discussion with I.K. H.S. ran the NMR experiments. P.D. and H.S. analysed the NMR data. P.D. conducted the ultraviolet–visible, scXRD and infrared analyses and the DFT analysis, and analysed and discussed the data with I.K. P.D. and I.K. wrote the paper.

Corresponding authors

Correspondence to Philipp Dabringhaus or Ingo Krossing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Christophe Bour and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental data, NMR spectra, infrared spectra, ultraviolet–visible spectra and DFT data.

Supplementary Data 1

Cif files of the molecular structures

Source data

Source Data Fig. 3

Raw data for ultraviolet–visible spectra.

Source Data Fig. 5

Raw data for Van’t Hoff NMR analysis of the cycloaddition of styrene to 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabringhaus, P., Scherer, H. & Krossing, I. In situ formation of reactive (di)gallenes for bond activation. Nat. Synth 3, 732–743 (2024). https://doi.org/10.1038/s44160-024-00521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00521-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing