Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation of a pentadienyl-type radical featuring a central secondary carbon


Stable tertiary R3C· carbon radicals have been known since Gomberg’s pioneering discovery of the triphenylmethyl radical more than a century ago. In stark contrast, secondary R2CH· and primary RCH2· carbon radicals are elusive species only observed spectroscopically. Herein, we describe the isolation of a crystalline pentadienyl-type radical, featuring a central secondary carbon, prepared by single-electron reduction of a bis(imino)carbene conjugate acid. The key to its stability is the presence of two N-heterocyclic imine substituents, which impart both steric protection and electronic stabilization. Density functional theory calculations confirm that the central secondary carbon atom is the principal spin carrier. Accordingly, electron paramagnetic resonance spectroscopy reveals that the hydrogen atom attached to the central carbon atom exhibits an exceptionally large hyperfine coupling constant (>10 G), which we believe is the largest recorded for an isolated organic radical. In the presence of an H· donor, hydrogen atom abstraction occurs exclusively at the central carbon to form a methylene unit. Furthermore, this radical can participate in a radical–radical cross-coupling reaction with [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], providing an example of cross-coupling between two stable organic radicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbon radicals.
Fig. 2: Electrochemical studies.
Fig. 3: Synthesis and characterization of radical 1H∙.
Fig. 4: EPR and DFT studies of radical 1H∙.
Fig. 5: Syntheses and solid-state structures of 1H-TEMPO and 1H2.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2245614 (1H+[TfO]), 2267005 (1H), 2267006 (1H2) and 2312276 (1H-TEMPO). Copies of the data can be obtained free of charge via


  1. Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Article  Google Scholar 

  2. Chen, Z. X., Li, Y. & Huang, F. Persistent and stable organic radicals: design, synthesis, and applications. Chem 7, 288–332 (2021).

    Article  CAS  Google Scholar 

  3. Fessenden, R. W. & Schuler, R. H. Electron spin resonance studies of transient alkyl radicals. J. Chem. Phys. 39, 2147–2195 (1963).

    Article  CAS  Google Scholar 

  4. Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds (CRC, 2002).

  5. Stubbe, J. & Nocera, D. G. Radicals in biology: your life is in their hands. J. Am. Chem. Soc. 143, 13463–13472 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S‑adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H. & Lee, E. Ambiphilic singlet carbenes: electron donors and acceptors. Bull. Korean Chem. Soc. 43, 1328–1341 (2022).

    Article  CAS  Google Scholar 

  11. Kushvaha, S. K., Mishra, A., Roesky, H. W. & Mondal, K. C. Recent advances in the domain of cyclic (alkyl)(amino) carbenes. Chem. Asian J. 17, e202101301 (2022).

    Article  Google Scholar 

  12. Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    Article  CAS  Google Scholar 

  13. Kim, Y. & Lee, E. Stable organic radicals derived from N-heterocyclic carbenes. Chem. Eur. J. 24, 19110–19121 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Kundu, S., Sinhababu, S., Chandrasekhar, V. & Roesky, H. W. Stable cyclic (alkyl)(amino)carbene (cAAC) radicals with main group substituents. Chem. Sci. 10, 4727–4741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin, C. D., Soleilhavoup, M. & Bertrand, G. Carbene-stabilized main group radicals and radical ions. Chem. Sci. 4, 3020–3030 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Gorodetsky, B., Ramnial, T., Branda N. R. & Clyburne, J. A. C. Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid. Chem. Commun. (2004).

  17. Das, A., Ahmed, J., Rajendran, N. M., Adhikari, D. & Mandal, S. K. A bottleable imidazole-based radical as a single electron transfer reagent. J. Org. Chem. 86, 1246–1252 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Aldeco-Perez, E. et al. Isolation of a C-5-deprotonated imidazolium, a crystalline “abnormal” N-heterocyclic carbene. Science 326, 556–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sau, S. C., Hota, P. K., Mandal, S. K., Soleilhavoup, M. & Bertrand, G. Stable abnormal N-heterocyclic carbenes and their applications. Chem. Soc. Rev. 249, 1233–1252 (2020).

    Article  Google Scholar 

  20. Loh, Y. K., Melaimi, M., Munz, D. & Bertrand, G. An air-stable “masked” bis(imino)carbene: a carbon-based dual ambiphile. J. Am. Chem. Soc. 145, 2064–2069 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Loh, Y. K., Melaimi, M., Gembicky, M., Munz, D. & Bertrand, G. A crystalline doubly oxidized carbene. Nature 623, 66–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Ochiai, T., Franz, D. & Inoue, S. Applications of N-heterocyclic imines in main group chemistry. Chem. Soc. Rev. 45, 6327–6344 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Goettel, J. T., Gao, H., Dotzauer, S. & Braunschweig, H. MeCAAC=N: a cyclic (alkyl)(amino)carbene imino ligand. Chem. Eur. J. 26, 1136–1143 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Huynh, S. et al. Cyclic alkyl(amino)iminates (CAAIs) as strong 2σ,4π-electron donor ligands for the stabilisation of boranes and diboranes(4): a synthetic and computational study. Dalton Trans. 52, 3869–3876 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Mahoney, J. K. et al. Air-persistent monomeric (amino)(carboxy) radicals derived from cyclic (alkyl)(amino) carbenes. J. Am. Chem. Soc. 137, 7519–7525 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Styra, S. et al. Crystalline cyclic (alkyl)(amino)carbene-tetrafluoropyridyl radical. Chem. Eur. J. 21, 8441–8446 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Mahoney, J. K., Jazzar, R., Royal, G., Martin, D. & Bertrand, G. The advantages of cyclic over acyclic carbenes to access isolable capto-dative C-centered radicals. Chem. Eur. J. 23, 6206–6212 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Hansmann, M. M., Melaimi, M. & Bertrand, G. Crystalline monomeric allenyl/propargyl radical. J. Am. Chem. Soc. 139, 15620–15623 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Regnier, V. et al. What are the radical intermediates in oxidative N‑heterocyclic carbene organocatalysis? J. Am. Chem. Soc. 141, 1109–1117 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Murphy, J. A. Discovery and development of organic super-electron-donors. J. Org. Chem. 79, 3731–3746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doni, E. & Murphy, J. A. Evolution of neutral organic super-electrondonors and their applications. Chem. Commun. 50, 6073–6087 (2014).

    Article  CAS  Google Scholar 

  32. Dalton, D. R. & Liebman, S. A. Electron spin resonance studies on neutral aromatic hydrocarbon radicals. J. Am. Chem. Soc. 91, 1194–1199 (1969).

    Article  CAS  Google Scholar 

  33. Mohos, B., Tüdös, F. & Jókay, L. ESR investigation of the triphenylmethyl radical. Phys. Lett. A 24, 311–312 (1967).

    Article  Google Scholar 

  34. Welle, F. M., Beckhaus, H.-D. & Rüchardt, C. Thermochemical stability of alpha-amino-alpha-carbonylmethyl radicals and their resonance as measured by ESR. J. Org. Chem. 62, 552–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Griller, D., Ingold, K. U. & Walton, J. C. Two conformations of the pentadienyl radical. J. Am. Chem. Soc. 101, 758–759 (1979).

    Article  CAS  Google Scholar 

  36. Breitwieser, K., Bahmann, H., Weiss, R. & Munz, D. Gauging radical stabilization with carbenes. Angew. Chem. Int. Ed. 61, e202206390 (2022).

    Article  CAS  Google Scholar 

  37. Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Jeffrey, J. L., Petronijević, F. R. & MacMillan, D. W. C. Selective radical–radical cross-couplings: design of a formal β‑Mannich reaction. J. Am. Chem. Soc. 137, 8404–8407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Q., Dawson, G. & Diao, T. Experimental electrochemical potentials of nickel complexes. Synlett 32, 1606–1620 (2021).

    Article  CAS  Google Scholar 

  40. Azevedo, F., Freire, C. & de Castro, B. Reductive electrochemical study of Ni(II) complexes with N2O2 Schiff base complexes and spectroscopic characterization of the reduced species. Reactivity towards CO. Polyhedron 21, 1695–1705 (2002).

    Article  CAS  Google Scholar 

Download references


This work was supported by the NSF (grant no. CHE-2246948). Y.K.L. thanks A*STAR for the award of a postdoctoral fellowship. We gratefully acknowledge the scientific support and high-performance computing resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The hardware is funded by the German Research Foundation (DFG). EPR work was funded by NSF MRI grant no. CHE 2019066.

Author information

Authors and Affiliations



Y.K.L. conceived and performed the synthetic experiments. L.G. carried out the UV–Vis analysis and additional synthetic experiments during revision. M.M. performed the EPR and electrochemical studies. M.M. and M.G. performed the X-ray crystallographic analyses. D.M. performed the computational work. G.B. supervised the project. The manuscript was written by Y.K.L., M.M. and G.B.

Corresponding authors

Correspondence to Ying Kai Loh or Guy Bertrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–27 and Tables 1–10.

Supplementary Data 1

Crystallographic data for compound 1H+[TfO]; CCDC 2245614.

Supplementary Data 2

Crystallographic data for compound 1H·; CCDC 2267005.

Supplementary Data 3

Crystallographic data for compound 1H2; CCDC 2267006.

Supplementary Data 4

Crystallographic data for compound 1H-TEMPO; CCDC 2312276.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, Y.K., Gojiashvili, L., Melaimi, M. et al. Isolation of a pentadienyl-type radical featuring a central secondary carbon. Nat. Synth 3, 727–731 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing