Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymatic synthesis of organoselenium compounds via C‒Se bond formation mediated by sulfur carrier proteins

Abstract

Organoselenium compounds are rare in nature but play important physiological roles by exploiting the distinct features of selenium. However, the ability to explore these compounds and their implications has been hindered by the limited availability of (bio)synthetic tools for the generation of organoselenium molecules, particularly the lack of enzymatic strategies for C‒Se bond formation. Here we develop an enzymatic approach for C‒Se bond formation using sulfur carrier proteins to biosynthesize the isologous selenium counterparts of cysteine, thiamine and a chuangxinmycin derivative. Our results indicate that widespread sulfur-carrier-protein-based biosynthetic systems provide promiscuous and programmable machinery for the production of unnatural Se-containing compounds. We anticipate that the ‘element engineering’ strategy used in this study will provide new opportunities to develop biologically rare molecules or abiological-element-containing chemicals not found in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative selenium- and sulfur-containing natural products and the SCP-based selenium incorporation system inspired by nature.
Fig. 2: Selenylation of the SCPs.
Fig. 3: Biosynthetic pathways of the organosulfur compounds and their selenium analogues.
Fig. 4: HPLC and HPLC-HRMS analyses of selenium incorporation reactions.
Fig. 5: Recombination of the SCP-based selenium incorporation systems.

Similar content being viewed by others

Data availability

Experimental data supporting the conclusions of this study are available within the article and its Supplementary information. Protein sequences are retrieved from the NCBI protein database (https://www.ncbi.nlm.nih.gov/protein/) with the accession numbers in Supplementary Table 1.

References

  1. Wessjohann, L. A., Schneider, A., Abbas, M. & Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 388, 997–1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Clive, D. L. J. et al. Organic tellurium and selenium chemistry. Reduction of tellurides, delenides, and delenoacetals with triphenyltin hydride. J. Am. Chem. Soc. 102, 4438–4447 (1980).

    Article  CAS  Google Scholar 

  3. Mukherjee, A. J., Zade, S. S., Singh, H. B. & Sunoj, R. B. Organoselenium chemistry: role of intramolecular interactions. Chem. Rev. 110, 4357–4416 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chivers, T. & Laitinen, R. S. Tellurium: a maverick among the chalcogens. Chem. Soc. Rev. 44, 1725–1739 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Weekley, C. M. & Harris, H. H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 42, 8870–8894 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Birringer, M., Pilawa, S. & Flohe, L. Trends in selenium biochemistry. Nat. Prod. Rep. 19, 693–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hou, W. & Xu, H. Incorporating selenium into heterocycles and natural products—from chemical properties to pharmacological activities. J. Med. Chem. 65, 4436–4456 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Chuai, H. Y. et al. Small molecule selenium-containing compounds: recent development and therapeutic applications. Eur. J. Med. Chem. 223, 113621–113641 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Raffa, R. B. Diselenium, instead of disulfide, bonded analogs of conotoxins: novel synthesis and pharmacotherapeutic potential. Life Sci. 87, 451–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, Y., Wang, M. & Chen, Y. Reprogramming the biosynthesis of precursor peptide to create a selenazole-containing nosiheptide analogue. ACS Synth. Biol. 11, 85–91 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Hou, W. et al. Selenium as an emerging versatile player in heterocycles and natural products modification. Drug Discov. Today 27, 2268–2277 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Jin, Z. M. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Amporndanai, K. et al. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun. 12, 3061–3068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turanov, A. A. et al. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv. Nutr. 2, 122–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kayrouz, C. M., Huang, J., Hauser, N. & Seyedsayamdost, M. R. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610, 199–204 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Wittwer, A. J., Tsai, L., Ching, W. M. & Stadtman, T. C. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry 23, 4650–4655 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Schrauzer, G. N. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J. Nutr. 130, 1653–1656 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Sonawane, A. D. & Koketsu, M. Recent advances on C–Se bond-forming reactions at low and room temperature. Curr. Org. Chem. 23, 3206–3225 (2020).

    Article  Google Scholar 

  20. Rafique, J., Canto, R. F. S., Saba, S., Barbosa, F. A. R. & Braga, A. L. Recent advances in the synthesis of biologically relevant selenium-containing 5-membered heterocycles. Curr. Org. Chem. 20, 166–188 (2016).

    Article  CAS  Google Scholar 

  21. Beletskaya, I. P. & Ananikov, V. P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev. 111, 1596–1636 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Reich, H. J., Yelm, K. E. & Wollowitz, S. Kinetics, thermodynamics, and stereochemistry of the allyl sulfoxide sulfenate and selenoxide selenenate [2,3] sigmatropic rearrangements. J. Am. Chem. Soc. 105, 2503–2504 (1983).

    Article  CAS  Google Scholar 

  23. Collins, R. et al. Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. PLoS ONE 7, e30581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johansson, A. L., Collins, R., Arner, E. S. J., Brzezinski, P. & Hogbom, M. Biochemical discrimination between selenium and sulfur 2: mechanistic investigation of the selenium specificity of human selenocysteine lyase. PLoS ONE 7, e30528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, R. et al. Implications for an imidazol-2-yl carbene intermediate in the rhodanase-catalyzed C–S bond formation reaction of anaerobic ergothioneine biosynthesis. ACS Catal. 11, 3319–3334 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Leary, S. E., Jurgenson, C. T., Ealick, S. E. & Begley, T. P. O-Phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 47, 11606–11615 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Burns, K. E. et al. Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. J. Am. Chem. Soc. 127, 11602–11603 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dorrestein, P. C., Zhai, H. L., McLafferty, F. W. & Begley, T. P. The biosynthesis of the thiazole phosphate moiety of thiamin: the sulfur transfer mediated by the sulfur carrier protein ThiS. Chem. Biol. 11, 1373–1381 (2004).

    CAS  PubMed  Google Scholar 

  29. Jurgenson, C. T., Begley, T. P. & Ealick, S. E. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 78, 569–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasaki, E. et al. Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature 510, 427–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong, L. B. et al. Biosynthesis of thiocarboxylic acid-containing natural products. Nat. Commun. 9, 2362 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X. et al. Biosynthesis of chuangxinmycin featuring a deubiquitinase-like sulfurtransferase. Angew. Chem. Int. Ed. 60, 24418–24423 (2021).

    Article  CAS  Google Scholar 

  33. Jurgenson, C. T., Burns, K. E., Begley, T. P. & Ealick, S. E. Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis. Biochemistry 47, 10354–10364 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, E. & Liu, H. W. Mechanistic studies of the biosynthesis of 2-thiosugar: evidence for the formation of an enzyme-bound 2-Ketohexose intermediate in BexX-catalyzed reaction. J. Am. Chem. Soc. 132, 15544–15546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klayman, D. L. & Griffin, T. S. Reaction of selenium with sodium borohydride in protic solvents. A facile method for introduction of selenium into organic molecules. J. Am. Chem. Soc. 95, 197–200 (1973).

    Article  CAS  Google Scholar 

  36. Zhu, D. F., Zheng, W. R., Chang, H. F. & Xie, H. Y. A theoretical study on the pKa values of selenium compounds in aqueous solution. New J. Chem. 44, 8325–8336 (2020).

    Article  CAS  Google Scholar 

  37. Cipollone, R., Ascenzi, P. & Visca, P. Common themes and variations in the rhodanese superfamily. IUBMB Life 59, 51–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, L. P., Peng, Q. & Li, Y. D. Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano. Res. 1, 403–411 (2008).

    Article  CAS  Google Scholar 

  39. Cupp-Vickery, J. R., Urbina, H. & Vickery, L. E. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J. Mol. Biol. 330, 1049–1059 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Mihara, H., Kurihara, T., Yoshimura, T., Soda, K. & Esaki, N. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J. Biol. Chem. 272, 22417–22424 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Silva, I. R. et al. Formation of a ternary complex for selenocysteine biosynthesis in bacteria. J. Biol. Chem. 290, 29178–29188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mueller, E. G. Se-ing into selenocysteine biosynthesis. Nat. Chem. Biol. 5, 611–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Esaki, N. & Soda, K. Preparation of sulfur and selenium amino-acids with microbial pyridoxal-phosphate enzymes. Method. Enzymol. 143, 291–297 (1987).

    Article  CAS  Google Scholar 

  44. Lawhorn, B. G., Mehl, R. A. & Begley, T. P. Biosynthesis of the thiamin pyrimidine: the reconstitution of a remarkable rearrangement reaction. Org. Biomol. Chem. 2, 2538–2546 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, G., Bennett, E. M., Begley, T. P. & Ealick, S. E. Crystal structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase from Salmonella typhimurium at 2.3 Å resolution. Structure 10, 225–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Manzetti, S., Zhang, J. & van der Spoel, D. Thiamin function, metabolism, uptake, and transport. Biochemistry 53, 821–835 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, X. et al. Heterologous expression guides identification of the biosynthetic gene cluster of chuangxinmycin, an indole alkaloid antibiotic. J. Nat. Prod. 81, 1060–1064 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Fan, S. et al. Structural insights into the specific interaction between Geobacillus stearothermophilus tryptophanyl-tRNA synthetase and antimicrobial chuangxinmycin. J. Biol. Chem. 298, 101580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maupin-Furlow, J. A. Ubiquitin-like proteins and their roles in archaea. Trends Microbiol. 21, 31–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Iyer, L. M., Burroughs, A. M. & Aravind, L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol. 7, R60 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tanabe, T. S., Leimkuhler, S. & Dahl, C. The functional diversity of the prokaryotic sulfur carrier protein TusA. Adv. Microb. Physiol. 75, 233–277 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Taylor, S. V. et al. Chemical and enzymatic synthesis of 1-deoxy-D-xylulose-5-phosphate. J. Org. Chem. 63, 2375–2377 (1998).

    Article  CAS  Google Scholar 

  53. Meyer, O., Grosdemange-Billiard, C., Tritsch, D. & Rohmer, M. Synthesis and activity of two trifluorinated analogues of 1-deoxy-D-xylulose 5-phosphate. Tetrahedron Lett. 48, 711–714 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Qu, G. Lin, J. Zhu, Z. Li and H. Sui from the State Key Laboratory of Microbial Technology at Shandong University for their guidance and help in HPLC-MS and NMR spectroscopy analyses. This work was supported by National Key Research and Development Program of China (2022YFC2804500 to X.Z.), National Natural Science Foundation of China (32025001 to S.L., 22237004 to S.L., 32000039 to X.Z.) and Shandong Provincial Natural Science Foundation (ZR2023ZD50 to X.Z., ZR2019ZD20 to S.L.).

Author information

Authors and Affiliations

Authors

Contributions

S.L. designed this study and analysed the results. X.Z. synthesized the substrates, performed the bioassays and analysed the results. F.C., J.G., S.Z. and X.W. cloned the genes, constructed the protein expression vectors and purified the proteins. X.Z. and S.L. wrote and revised the paper.

Corresponding author

Correspondence to Shengying Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Extended data

Extended Data Fig. 1 Representative sulfur-containing natural products biosynthesized by SCP-involved pathways.

Additional organosulfur structures to Fig. 1.

Extended Data Fig. 2 Enzymatic mechanism of the sulfur incorporation process in cysteine biosynthesis.

Key nucleophilic attack reactions are indicated by orange arrows. The sulfur source for CysO sulfuration can be either HS (path i) or S2O32− (path ii).

Extended Data Fig. 3 Enzymatic mechanism of the sulfur incorporation process in thiamin biosynthesis.

Key nucleophilic attack reactions are indicated by orange arrows. The sulfur source for ThiS sulfuration can be either HS (path i) or L-Cys (path ii).

Extended Data Fig. 4 Enzymatic mechanism of the sulfur incorporation process in chuangxinmycin biosynthesis.

Key nucleophilic attack reactions are indicated by orange arrows. The sulfur source for Cxm4* sulfuration can be HS (path i), L-Cys (path ii) or S2O32− (path iii).

Extended Data Fig. 5 Sulfuration of the SCPs.

a, Schematic ATP-dependent sulfuration of CysO, ThiS, and Cxm4G (the matured form of Cxm4) by MoeZ, ThiF, and CxmM, respectively, with NaSH as the sulfur source. b, Deconvoluted HRESI-MS analysis of the sulfuration efficiency of CysO, ThiS, and Cxm4* under different pH conditions.

Extended Data Fig. 6 HRESI-MS/HPLC analysis of the recombined SCP-based selenium incorporation systems.

a, Deconvoluted HRESI-MS analyses of the selenylation efficiency of CysO (i), ThiS (ii) and Cxm4* (iii) by different activating enzymes. b, HPLC (i and iii) and HPLC-MS (ii) analysis of Se-Cys (i), Se-Thz (ii), and Se-Trp (iii) using different selenylated SCPs (that is, SCP-COSe-) as selenium donors. c, HPLC analysis of Se-Cys (i) and Se-Trp (ii) produced in the reprogrammed pathways.

Extended Data Fig. 7 Recombination in the SCP-based sulfur incorporation systems.

a, Recombination network of SCPs against different activating enzymes MoeZ, ThiF, and CxmM (i) and sulfurtransferases CysM, ThiG, and Cxm3 (ii). The left boxed histograms show the conversion ratios of SCPs (i). The right boxed histograms show the yields of organosulfur products in one-pot reactions (ii) of the three recombined pathways (the yield of Thz was not determined due to unavailability of authentic standard. ‘Positive’ indicates the product was detectable by LC-MS). The colour of each column represents the corresponding same coloured activating enzyme (i) or SCP (ii) supported reaction. b, Deconvoluted HRESI-MS analyses of the selenylation efficiency of CysO (i), ThiS (ii) and Cxm4* (iii) by different activating enzymes. c, HPLC (i and iii) and HPLC-MS (ii) analysis of the sulfur-transfer reactions of Cys (i), Thz (ii) and S-Trp (iii) by different sulfurtransferases.

Source Data

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–3, Schemes 1–5, Figs. 1–41 and References.

Reporting Summary

Source data

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cheng, F., Guo, J. et al. Enzymatic synthesis of organoselenium compounds via C‒Se bond formation mediated by sulfur carrier proteins. Nat. Synth 3, 477–487 (2024). https://doi.org/10.1038/s44160-023-00477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00477-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing