Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A triple tandem reaction for the upcycling of products from poorly selective CO2 photoreduction systems

Abstract

Low-selective CO2 photoreduction systems are often overlooked in research, because the resulting mixed products are difficult to use in further reactions. In particular, the reutilization of gaseous hybrid products (such as CO and H2), which are often mixed with incompletely converted CO2, is difficult. Here we design and construct two highly active cluster-based catalysts, Ni5W10 and Ni6W10, which can be utilized in an efficient triple tandem reaction composed of low-selective CO2 photoreduction, alkyne semi-hydrogenation and carbonylation reactions. The triple tandem system can sequentially convert the H2 and CO mixture into high-value olefins and carbonyls, with an atomic utilization efficiency of up to 94%. In situ one-pot coupling of low-selective CO2 photoreduction with alkyne semi-hydrogenation promotes the overall photoconversion efficiency (up to 1,425.0 μmol g−1 h−1), CO selectivity (from 50.8% to 80.0%) and alkyne-to-olefin transformation (conversion >86.0%, selectivity ~100.0%). Subsequently, the purified CO can be converted to different types of carbonylated product (CO conversion between 51% and 99%).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of triple tandem.
Fig. 2: Assembly of cluster-based crystal structures.
Fig. 3: One-pot coupling of the semi-hydrogenation of alkynes and photocatalytic CO2RR.
Fig. 4: Mechanism of hydrogenation reaction at different catalytic sites.
Fig. 5: Mechanistic analysis for triple tandem reaction.
Fig. 6: Triple tandem reactions to convert CO2 reduction products.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its supplementary information files. The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2215238 (Ni5W10) and 2215237 (Ni6W10). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Jiao, X. et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 49, 6592–6604 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Yamazaki, Y., Miyaji, M. & Ishitani, O. Utilization of low-concentration CO2 with molecular catalysts assisted by CO2-capturing ability of catalysts, additives, or reaction media. J. Am. Chem. Soc. 144, 6640–6660 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  CAS  Google Scholar 

  4. Guo, Z. et al. Selectivity control of CO versus HCOO production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2, 801–808 (2019).

    Article  CAS  Google Scholar 

  5. Takeda, H., Cometto, C., Ishitani, O. & Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 7, 70–88 (2017).

    Article  CAS  Google Scholar 

  6. Wang, Y. et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 11, 3043 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, H. et al. Atomically dispersed indium–copper dual-metal active sites promoting C–C coupling for CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. 61, e202208904 (2022).

  8. Jia, G. et al. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Adv. Funct. Mater. 32, 2206817 (2022).

  9. Fu, J., Jiang, K., Qiu, X., Yu, J. & Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020).

    Article  CAS  Google Scholar 

  10. Bai, S. et al. VO4-modified layered double hydroxides nanosheets for highly selective photocatalytic CO2 reduction to C1 products. Small. 18, 2203787 (2022)

  11. Nakada, A. et al. Effects of interfacial electron transfer in metal complex–semiconductor hybrid photocatalysts on Z-scheme CO2 reduction under visible light. ACS Catal. 8, 9744–9754 (2018).

    Article  CAS  Google Scholar 

  12. Zhang, H. et al. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 143, 2173–2177 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Pan, Y.-X. et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 139, 4123–4129 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Xia, Y.-S. et al. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 13, 2964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo, Y.-H., Dong, L.-Z., Liu, J., Li, S.-L. & Lan, Y.-Q. From molecular metal complex to metal–organic framework: the CO2 reduction photocatalysts with clear and tunable structure. Coord. Chem. Rev. 390, 86–126 (2019).

    Article  CAS  Google Scholar 

  16. Stefanoiu, D., Culita, J. & Stanasila, O. N. HYRON—an installation to produce high purity hydrogen and soft iron powder from cellulose waste. Materials 12, 1538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, K.-J. et al. Efficient CO2 removal for ultra-pure CO production by two hybrid ultramicroporous materials. Angew. Chem. Int. Ed. 57, 3332–3336 (2018).

    Article  CAS  Google Scholar 

  18. Islamoglu, T. et al. Metal–organic frameworks against toxic chemicals. Chem. Rev. 120, 8130–8160 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Zhong, H. et al. Publisher correction: synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal–organic frameworks. Nat. Commun. 11, 1721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, J.-S. et al. Widely controllable syngas production by a dye-sensitized TiO2 hybrid system with ReI and CoIII catalysts under visible-light irradiation. Angew. Chem. Int. Ed. 56, 976–980 (2017).

    Article  CAS  Google Scholar 

  21. Li, L. et al. Steering catalytic activity and selectivity of CO2 photoreduction to syngas with hydroxy-rich Cu2S@ROH-NiCo2O3 double-shelled nanoboxes. Angew. Chem. Int. Ed. 61, e202205839 (2022).

    Article  CAS  Google Scholar 

  22. Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Li, C. et al. Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials. Energy Environ. Sci. 12, 923–928 (2019).

    Article  CAS  Google Scholar 

  24. Kang, J. et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11, 827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pedersen, S. K. et al. Main element chemistry enables gas-cylinder-free hydroformylations. Nat. Catal. 3, 843–850 (2020).

    Article  CAS  Google Scholar 

  26. Xin, Z. K. et al. Reductive carbon–carbon coupling on metal sites regulates photocatalytic CO2 reduction in water using ZnSe quantum dots. Angew. Chem. Int. Ed. 61, e202207222 (2022).

    Article  CAS  Google Scholar 

  27. Arcudi, F., Ðorđević, L., Schweitzer, N., Stupp, S. I. & Weiss, E. A. Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source. Nat. Chem. 14, 1007–1012 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Li, M. et al. PdPt alloy nanocatalysts supported on TiO2: maneuvering metal–hydrogen interactions for light-driven and water-donating selective alkyne semihydrogenation. Small 13, 1604173 (2017).

    Article  Google Scholar 

  29. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Brennführer, A., Neumann, H. & Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed. 48, 4114–4133 (2009).

    Article  Google Scholar 

  31. Bai, Y.-L., Tao, J., Huang, R.-B. & Zheng, L.-S. The designed assembly of augmented diamond networks from predetermined pentanuclear tetrahedral units. Angew. Chem. Int. Ed. 47, 5344–5347 (2008).

    Article  CAS  Google Scholar 

  32. Zhang, L. et al. Molecular oxidation–reduction junctions for artificial photosynthetic overall reaction. Proc. Natl Acad. Sci. USA 119, e2210550119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laudadio, G. et al. C(sp3)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science 369, 92–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, H. et al. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges. J. Am. Chem. Soc. 134, 4918–4924 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Yamase, T., Takabayashi, N. & Kaji, M. Solution photochemistry of tetrakis(tetrabutylammonium) decatungstate(VI) and catalytic hydrogen evolution from alcohols. J. Chem. Soc. Dalton Trans. 793–799 (1984).

  36. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

  37. Wang, P. et al. Improving photosensitization for photochemical CO2-to-CO conversion. Natl Sci. Rev. 7, 1459–1467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, J.-W. et al. Facile electron delivery from graphene template to ultrathin metal–organic layers for boosting CO2 photoreduction. Nat. Commun. 12, 813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Pellegrin, Y. & Odobel, F. Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 20, 283–295 (2017).

    Article  CAS  Google Scholar 

  41. Kusy, R. & Grela, K. Ligand-free (Z)-selective transfer semihydrogenation of alkynes catalyzed by in situ generated oxidizable copper nanoparticles. Green Chem. 23, 5494–5502 (2021).

    Article  CAS  Google Scholar 

  42. Huang, Z., Wang, Y., Leng, X. & Huang, Z. An amine-assisted ionic monohydride mechanism enables selective alkyne cis-semihydrogenation with ethanol: from elementary steps to catalysis. J. Am. Chem. Soc. 143, 4824–4836 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Albani, D. et al. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 9, 2634 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    Article  CAS  Google Scholar 

  45. Jean, L., Lee, C. F., Hodder, P., Hawkins, N. & Vaux, D. J. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide. Sci. Rep. 6, 32124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, J., Chen, W., He, F., Song, W. & Cao, C. Electronic oxide–support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst. J. Am. Chem. Soc. 145, 1803–1810 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Kominami, H. et al. Copper-modified titanium dioxide: a simple photocatalyst for the chemoselective and diastereoselective hydrogenation of alkynes to alkenes under additive-free conditions. ChemCatChem. 8, 2019–2022 (2016).

    Article  CAS  Google Scholar 

  48. Zhao, E. et al. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source. Angew. Chem. Int. Ed. 61, e202207410 (2022).

    Article  CAS  Google Scholar 

  49. Zhu, K. et al. Unraveling the role of interfacial water structure in electrochemical semihydrogenation of alkynes. ACS Catal. 12, 4840–4847 (2022).

    Article  CAS  Google Scholar 

  50. He, Q. et al. Electrochemical hydrogen evolution at the interface of monolayer VS2 and water from first-principles calculations. ACS Appl. Mater. Interfaces 11, 2944–2949 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, X. et al. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem. 4, 1080–1091 (2018).

    Article  CAS  Google Scholar 

  52. Nielsen, D. U., Hu, X.-M., Daasbjerg, K. & Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018).

    Article  CAS  Google Scholar 

  53. Sang, R. et al. A practical concept for catalytic carbonylations using carbon dioxide. Nat. Commun. 13, 4432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, Y. et al. Electrochemical palladium-catalyzed oxidative sonogashira carbonylation of arylhydrazines and alkynes to ynones. J. Am. Chem. Soc. 143, 12460–12466 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Hermange, P. et al. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. J. Am. Chem. Soc. 133, 6061–6071 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 22225109 to Y.-Q.L., 22271104 to J.L., 22201082 to L.Z. and 92061101 to J.L.); the Excellent Youth Foundation of Jiangsu Scientific Committee (BK20211593 to J.L.); and the GuangDong Basic and Applied Basic Research Foundation (No. 2021A1515110429 to L.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-S.X., L.Z. and J.-N.L. contributed equally to this work. Y.-Q.L., J.L. and Y.-S.X. conceived and designed the idea. L.Z. and Y.-S.X. synthesized the Ni cluster-based catalysts. Y.-S.X. and X.-H.Z. conducted the characterizations and designed the tandem catalytic reaction experiments. Y.-S.X., L.Z. and L.-Z.D. assisted with dealing with the data of SCXRD. Y.-Q.L., J.L., J.-N.L. and Y.-S.X. discussed the result and prepared the manuscript. All the authors reviewed and contributed to this paper.

Corresponding authors

Correspondence to Jiang Liu or Ya-Qian Lan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–61, Tables 1–12 and Notes 1–31, and NMR spectra.

Supplementary Data 1

Crystallographic data for Ni5W10, CCDC 2215238.

Supplementary Data 2

Crystallographic data for Ni6W10, CCDC 2215237.

Supplementary Data 3

DFT modelling of adsorption of different alkyne substrates on Ni6W10 for Supplementary Fig. 56.

Source data

Source Data Fig. 3

One-pot tandem reaction data.

Source Data Table 1

Semi-hydrogenation reaction data.

Source Data Fig. 4

Computational calculations.

Source Data Fig. 6

Triple tandem reaction data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, YS., Zhang, L., Lu, JN. et al. A triple tandem reaction for the upcycling of products from poorly selective CO2 photoreduction systems. Nat. Synth 3, 406–418 (2024). https://doi.org/10.1038/s44160-023-00458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00458-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing