Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Desolvation of metal complexes to construct metal–organic framework glasses

Abstract

Structural design is an important challenge in glassy materials, including metal–organic framework (MOF) glasses. The current approaches of thermal and mechanical vitrification are mainly limited to azolate and cyanide-based crystalline MOFs, as other MOF crystals usually decompose before melting or upon milling instead of forming stable glasses. Here we report a method for the preparation of MOF glasses by the ‘desolvation’ of solvated metal–ligand discrete complexes. MOF glasses with 12 different ligands of varying lengths, shapes, side and coordination groups (carboxylate, pyridyl and azolate) are synthesized. Hydrogen-bonded networks of the metal complexes pre-assemble metal–ligand arrays, which in turn guide the formation of glass during desolvation. Molecular-level structural transformation studies reveal the network-forming glass structures. The prepared glasses have structural diversity, with tunable pores (sizes and modifications) and good processability, and wide glass transition temperatures ranging from 120 °C to 280 °C. The synthesized glasses with larger ligands have higher crystallization temperatures, affording grain-boundary-free and transparent monoliths under heating without pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of ligands and metal complexes as precursors for MOF glasses.
Fig. 2: Desolvation of 1mc to form 1g.
Fig. 3: Structural transformation during desolvation and crystallization.
Fig. 4: Structural transformation of 11mc during heating.
Fig. 5: Gas-sorption properties.

Similar content being viewed by others

Data availability

Data supporting the findings of the study are available in the paper and its Supplementary Information. Source data are provided with this paper. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2236539 (1mc), 2236540 (1mc(Zn)), 2236541 (1mc(Mn)), 2236542 (1mc(Cd)), 2236543 (2mc), 2236544 (3mc), 2236545 (4mc), 2236546 (5mc), 2236547 (6mc), 2236548 (7mc), 2236549 (8mc), 2236550 (9mc), 2236551 (10mc), 2236552 (11mc), 2236553 (12mc), 2281239 (5c), 2281240 (6c) and 2281241 (11mc-MeOH). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

References

  1. Bennett, T. D. & Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018).

    Article  ADS  Google Scholar 

  2. Bennett, T. D. & Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, N. & Horike, S. Metal-organic network-forming glasses. Chem. Rev. 122, 4163–4203 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Bennett, T. D. et al. Hybrid glasses from strong and fragile metal–organic framework liquids. Nat. Commun. 6, 8079 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, Y., Lee, S.-Y., Becknell, N., Yaghi, O. M. & Angell, C. A. Nanoporous transparent MOF glasses with accessible internal surface. J. Am. Chem. Soc. 138, 10818–10821 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W. et al. Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility. Angew. Chem. Int. Ed. 55, 5195–5200 (2016).

    Article  CAS  Google Scholar 

  10. Madsen, R. S. K. et al. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 367, 1473–1476 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. To, T. et al. Fracture toughness of a metal–organic framework glass. Nat. Commun. 11, 2593 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Hou, J. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 374, 621–625 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Liu, M. et al. Network-forming liquids from metal-bis(acetamide) frameworks with low melting temperatures. J. Am. Chem. Soc. 143, 2801–2811 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Shaw, B. K. et al. Melting of hybrid organic–inorganic perovskites. Nat. Chem. 13, 778–785 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Yin, Z. et al. Synergistic stimulation of metal-organic frameworks for stable super-cooled liquid and quenched glass. J. Am. Chem. Soc. 144, 13021–13025 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, Z., Arramel, A., Bennett, T. D., Yue, Y. & Li, N. The deformation of short-range order leading to rearrangement of topological network structure in zeolitic imidazolate framework glasses. iScience 25, 104351 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Ali, M. A., Liu, X. & Qiu, J. A review on the vitrification of metal coordination compounds and their photonic applications. J. Non Cryst. Solids 597, 121936 (2022).

    Article  CAS  Google Scholar 

  18. Yang, S. J. & Park, C. R. Preparation of highly moisture-resistant black-colored metal organic frameworks. Adv. Mater. 24, 4010–4013 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Bennett, T. D. et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study. Phys. Chem. Chem. Phys. 18, 2192–2201 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Panda, T. et al. Mechanical alloying of metal-organic frameworks. Angew. Chem. Int. Ed. 56, 2413–2417 (2017).

    Article  CAS  ADS  Google Scholar 

  21. Beatty, A. M. Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes. Coord. Chem. Rev. 246, 131–143 (2003).

    Article  CAS  Google Scholar 

  22. Willart, J. F. & Descamps, M. Solid state amorphization of pharmaceuticals. Mol. Pharm. 5, 905–920 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Lo, S.-H. et al. Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nat. Chem. 12, 90–97 (2020).

    Article  PubMed  Google Scholar 

  24. McHugh, L. N. et al. Hydrolytic stability in hemilabile metal–organic frameworks. Nat. Chem. 10, 1096–1102 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Burtch, N. C. et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nat. Chem. 12, 186–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Hao, H.-Q., Peng, M.-X. & Chen, Z.-Y. Poly[bis(μ2-4-pyridinecarboxylato-k3N:O,O′)cobalt(II)]: a triply interpenetrated structure with diamonoid topology.Acta Crystallogr. E 63, m2605 (2007).

    Article  CAS  Google Scholar 

  27. Hadjiivanov, K. I. et al. Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem. Rev. 121, 1286–1424 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Andreeva, A. B. et al. Soft mode metal-linker dynamics in carboxylate MOFs evidenced by variable-temperature infrared spectroscopy. J. Am. Chem. Soc. 142, 19291–19299 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. He, Y.-C., Yang, J., Yang, G.-C., Kan, W.-Q. & Ma, J.-F. Solid-state single-crystal-to-single-crystal transformation from a 2D layer to a 3D framework mediated by lattice iodine release. Chem. Commun. 48, 7859–7861 (2012).

    Article  CAS  Google Scholar 

  30. Wei, Q., Nieuwenhuyzen, M., Meunier, F., Hardacre, C. & James, S. L. Guest sorption and desorption in the metal–organic framework [Co(INA)2] (INA =isonicotinate)—evidence of intermediate phases during desorption. Dalton Trans. 2004, 1807–1811 (2004).

    Article  Google Scholar 

  31. Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Pachfule, P., Garai, B. & Banerjee, R. Functionalization and isoreticulation in a series of metal-organic frameworks derived from pyridinecarboxylates. Inorg. Chem. 55, 7200–7205 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, H.-L., Li, M., Li, D., Zhang, J.-P. & Chen, X.-M. Thermal expansion behaviors of Mn(II)-pyridylbenzoate frameworks based on metal-carboxylate chains. Sci. China Chem. 57, 365–370 (2014).

    Article  CAS  Google Scholar 

  34. Elsaidi, S. K. et al. Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid nets. J. Am. Chem. Soc. 136, 5072–5077 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, T.-B. & Luck, R. L. Interlocking frameworks. A consequence of enlarging spacers from 4-pyridinecarboxylate to 4-(4-pyridyl)benzoate. Inorg. Chim. Acta 351, 345–355 (2003).

    Article  CAS  Google Scholar 

  36. Chen, Z. et al. Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal–organic frameworks (MOFs). Angew. Chem. Int. Ed. 59, 833–838 (2020).

    Article  CAS  ADS  Google Scholar 

  37. Hou, J. et al. Halogenated metal-organic framework glasses and liquids. J. Am. Chem. Soc. 142, 3880–3890 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Kwon, H.-Y., Ashley, D. C. & Jakubikova, E. Halogenation affects driving forces, reorganization energies and ‘rocking’ motions in strained [Fe(tpy)2]2+ complexes. Dalton Trans. 50, 14566–14575 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, Q.-H., Li, M., Yang, P. & Gu, Y. Effect of hydrogen bonds on structures and glass transition temperatures of maleimide-isobutene alternating copolymers: molecular dynamics simulation study. Macromol. Theory Simul. 22, 107–114 (2013).

    Article  CAS  Google Scholar 

  40. Liu, T., Luo, D., Xu, D., Zeng, H. & Lin, Z. An open-framework rutile-type magnesium isonicotinate and its structural analogue with an anatase topology. Dalton Trans. 42, 368–371 (2013).

    Article  PubMed  Google Scholar 

  41. Feng, W.-J., Zhou, G.-P., Zheng, X.-F., Liu, Y.-G. & Xu, Y. Poly[di-μ-nicotinato-cobalt(II)].Acta Crystallogr. E 62, m2033–m2035 (2006).

    Article  CAS  Google Scholar 

  42. Lin, J.-B. et al. Porous manganese(II) 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolate frameworks: rational self-assembly, supramolecular isomerism, solid-state transformation, and sorption properties. Inorg. Chem. 48, 6652–6660 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, C. et al. Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  44. Frentzel-Beyme, L., Kolodzeiski, P., Weiß, J.-B., Schneemann, A. & Henke, S. Quantification of gas-accessible microporosity in metal-organic framework glasses. Nat. Commun. 13, 7750 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Li, J. et al. Coordination polymer glasses with lava and healing ability for high-performance gas sieving. Angew. Chem. Int. Ed. 60, 21304–21309 (2021).

    Article  CAS  Google Scholar 

  46. Wang, Y. et al. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 59, 4365–4369 (2020).

    Article  CAS  Google Scholar 

  47. Kondo, A. et al. Double-step gas sorption of a two-dimensional metal-organic framework. J. Am. Chem. Soc. 129, 12362–12363 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Frentzel-Beyme, L., Kloß, M., Kolodzeiski, P., Pallach, R. & Henke, S. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption. J. Am. Chem. Soc. 141, 12362–12371 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Venkatram, S., McCollum, J., Stingelin, N. & Brettmann, B. A close look at polymer degree of crystallinity versus polymer crystalline quality. Polym. Int. https://doi.org/10.1002/pi.6508 (2023).

  50. Cui, K.-H. et al. Acentric and chiral four-connected metal-organic frameworks based on the racemic binaphthol-like chiral ligand of 4-(1-H(or methyl)-imidaozol-1-yl)benzoic acid. CrystEngComm 13, 3432–3437 (2011).

    Article  CAS  Google Scholar 

  51. Lin, J.-B., Zhang, J.-P. & Chen, X.-M. Nonclassical active site for enhanced gas sorption in porous coordination polymer. J. Am. Chem. Soc. 132, 6654–6656 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Japan Society of the Promotion of Science (JSPS) for a Grant-in-Aid for Scientific Research (B) (JP18H02032), Challenging Research (Exploratory) (JP19K22200) and Transformative Research Areas (A) ‘Supra-ceramics’ (JP22H05147) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, The Asahi Glass Foundation, and the NSRF via the Program Management Unit for Human Reseources & Institutional Development, Research and Innovation, Thailand (B40G660034). We acknowledge AichiSR BL11S2 (2020D6005) and SPring-8 BL14B2 beamlines for XAFS, the SPring-8 BL02B2 beamline for PXRD (2023A1748) and the AichiSR BL5S2 beamline for PDF (2021D3036).

Author information

Authors and Affiliations

Authors

Contributions

S.H. and Y.-S.W. designed the project. Y.-S.W. synthesized the metal complexes and prepared the glassy compounds. Y.-S.W. collected and analysed powder and carried out single-crystal X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, infrared spectroscopy, gas adsorption, synchrotron X-ray absorption and total scattering measurements. Z.F. helped with the analysis of synchrotron data. C.L. helped with the synthesis of metal complexes and powder X-ray diffraction measurements. S.H. and Y.-S.W. wrote the paper, and all authors contributed to revising the paper.

Corresponding authors

Correspondence to Yong-Sheng Wei or Satoshi Horike.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Lothar Wondraczek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–71, discussion and Tables 1–5.

Supplementary Video1

Monolith formation from 3mc under heating.

Supplementary Video 2

Monolith formation from 3mc(Cd) under heating.

Supplementary Data 1

Crystallographic data for 1mc, CCDC 2236539.

Supplementary Data 2

Crystallographic data for 1mc(Zn), CCDC 2236540.

Supplementary Data 3

Crystallographic data for 1mc(Mn), CCDC 2236541.

Supplementary Data 4

Crystallographic data for 1mc(Cd), CCDC 2236542.

Supplementary Data 5

Crystallographic data for 2mc, CCDC 2236543.

Supplementary Data 6

Crystallographic data for 3mc, CCDC 2236544.

Supplementary Data 7

Crystallographic data for 4mc, CCDC 2236545

Supplementary Data 8

Crystallographic data for 5mc, CCDC 2236546.

Supplementary Data 9

Crystallographic data for 6mc, CCDC 2236547.

Supplementary Data 10

Crystallographic data for 7mc, CCDC 2236548.

Supplementary Data 11

Crystallographic data for 8mc, CCDC 2236549.

Supplementary Data 12

Crystallographic data for 9mc, CCDC 2236550.

Supplementary Data 13

Crystallographic data for 10mc, CCDC 2236551.

Supplementary Data 14

Crystallographic data for 11mc, CCDC 2236552.

Supplementary Data 15

Crystallographic data for 12mc, CCDC 2236553.

Supplementary Data 16

Crystallographic data for 5c, CCDC 2281239.

Supplementary Data 17

Crystallographic data for 6c, CCDC 2281240.

Supplementary Data 18

Crystallographic data for 11mc-MeOH, CCDC 2281241.

Source data

Source Data Fig. 2

TG-DTA, VT-PXRD, VT-FTIR, PDF data for 1mc under heating; DSC and EXAFS data for 1g.

Source Data Fig. 4

EXAFS data for 11g and VT-FTIR data for 11mc under heating.

Source Data Fig. 5

Gas adsorption data in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, YS., Fan, Z., Luo, C. et al. Desolvation of metal complexes to construct metal–organic framework glasses. Nat. Synth 3, 214–223 (2024). https://doi.org/10.1038/s44160-023-00412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00412-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing