Abstract
The synthesis of binary nanocrystal superlattices (BNSLs) enables the targeted integration of orthogonal physical properties, such as photoluminescence and magnetism, into a single superstructure, unlocking a vast design space for multifunctional materials. However, the formation mechanism of BNSLs remains poorly understood, restricting the prediction of the structure and properties of superlattices. Here we use a combination of in situ scattering and molecular simulation to elucidate the self-assembly of two common BNSLs (AlB2 and NaZn13) through emulsion templating. Our self-assembly experiments reveal that no intermediate structures precede the formation of the final binary phases, indicating that their formation proceeds through classical nucleation. Using simulations, we find that, despite the formation of AlB2 and NaZn13 typically being attributed to entropy, their self-assembly is most consistent with the nanocrystals possessing short-range interparticle attraction, which we find can accelerate nucleation kinetics in BNSLs. We also find homogeneous, classical nucleation in simulations, corroborating our experiments. These results establish a robust correspondence between experiment and theory, paving the way towards prediction of BNSLs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information files. Source data for the figures in the main text are available in the Supplementary Information.
Code availability
The source code for HOOMD-blue is available at https://github.com/glotzerlab/hoomd-blue. The source code for freud is available at https://github.com/glotzerlab/freud. The source code for signac is available at https://github.com/glotzerlab/signac. Source data for the figures in the main text are available in the Supplementary Information. Sample codes are available in the Supplementary Information.
Change history
24 November 2023
A Correction to this paper has been published: https://doi.org/10.1038/s44160-023-00460-x
References
Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).
Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019).
Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2, 247–250 (2008).
Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).
Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86 (2005).
Zhao, Q. et al. Enhanced carrier transport in strongly coupled, epitaxially fused CdSe nanocrystal solids. Nano Lett. 21, 3318–3324 (2021).
Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).
Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).
Lan, X. et al. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 19, 323–329 (2020).
Mueller, N. S. et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature 583, 780–784 (2020).
Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).
Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 6, 115–121 (2007).
Chen, J. et al. Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. Nano Lett. 10, 5103–5108 (2010).
Chen, J. et al. Bistable magnetoresistance switching in exchange-coupled CoFe2O4–Fe3O4 binary nanocrystal superlattices by self-assembly and thermal annealing. ACS Nano 7, 1478–1486 (2013).
Dong, A., Chen, J., Ye, X., Kikkawa, J. M. & Murray, C. B. Enhanced thermal stability and magnetic properties in NaCl-type FePt–MnO binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 13296–13299 (2011).
Kang, Y. et al. Design of Pt–Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 135, 42–45 (2013).
Kang, Y. et al. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc. 135, 1499–1505 (2013).
Zhang, M. et al. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nat. Nanotechnol. 12, 228–232 (2017).
Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).
Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011).
Redl, F. X., Cho, K. S., Murray, C. B. & O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003).
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).
Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998).
Heil, C. M. & Jayaraman, A. Computational reverse-engineering analysis for scattering experiments of assembled binary mixture of nanoparticles. ACS Materials Au 1, 140–156 (2021).
Bommineni, P. K., Klement, M. & Engel, M. Spontaneous crystallization in systems of binary hard sphere colloids. Phys. Rev. Lett. 124, 218003 (2020).
Wang, D. et al. Binary icosahedral clusters of hard spheres in spherical confinement. Nat. Phys. 17, 128–134 (2021).
Coli, G. M. & Dijkstra, M. An artificial neural network reveals the nucleation mechanism of a binary colloidal AB13 crystal. ACS Nano 15, 4335–4346 (2021).
Marino, E., Kodger, T. E., Wegdam, G. H. & Schall, P. Revealing driving forces in quantum dot supercrystal assembly. Adv. Mater. 30, 1803433 (2018).
Montanarella, F. et al. Crystallization of nanocrystals in spherical confinement probed by in situ X-ray scattering. Nano Lett. 18, 3675–3681 (2018).
Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).
Geuchies, J. J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).
Abécassis, B., Testard, F. & Spalla, O. Gold nanoparticle superlattice crystallization probed in situ. Phys. Rev. Lett. 100, 115504 (2008).
Narayanan, S., Wang, J. & Lin, X.-M. Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys. Rev. Lett. 93, 135503 (2004).
Connolly, S., Fullam, S., Korgel, B. & Fitzmaurice, D. Time-resolved small-angle X-ray scattering studies of nanocrystal superlattice self-assembly. J. Am. Chem. Soc. 120, 2969–2970 (1998).
Yu, Y., Yu, D., Sadigh, B. & Orme, C. A. Space- and time-resolved small angle X-ray scattering to probe assembly of silver nanocrystal superlattices. Nat. Commun. 9, 4211 (2018).
Wu, L. et al. High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 548, 197–201 (2017).
Gong, J. et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat. Commun. 8, 14038 (2017).
Lin, H. et al. Clathrate colloidal crystals. Science 355, 931 (2017).
Yue, K. et al. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proc. Natl Acad. Sci. USA 113, 14195–14200 (2016).
Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204 (2011).
Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274 (2006).
Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).
Wang, T. et al. Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012).
Lu, C., Akey, A. J., Dahlman, C. J., Zhang, D. & Herman, I. P. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. J. Am. Chem. Soc. 134, 18732–18738 (2012).
Rosen, D. J., Yang, S., Marino, E., Jiang, Z. & Murray, C. B. In situ EXAFS-based nanothermometry of heterodimer nanocrystals under induction heating. J. Phys. Chem.C 126, 3623–3634 (2022).
Rosen, D. J. et al. Microwave heating of nanocrystals for rapid, low-aggregation intermetallic phase transformations. ACS Mater. Lett. 4, 823–830 (2022).
Yang, S. et al. Self-assembly of atomically aligned nanoparticle superlattices from Pt–Fe3O4 heterodimer nanoparticles. J. Am. Chem. Soc. 145, 6280–6288 (2023).
Gabbani, A. et al. Magnetoplasmonics beyond metals: ultrahigh sensing performance in transparent conductive oxide nanocrystals. Nano Lett. 22, 9036–9044 (2022).
Velev Orlin, D., Lenhoff Abraham, M. & Kaler Eric, W. A class of microstructured particles through colloidal crystallization. Science 287, 2240–2243 (2000).
Wang, P.-p, Qiao, Q., Zhu, Y. & Ouyang, M. Colloidal binary supracrystals with tunable structural lattices. J. Am. Chem. Soc. 140, 9095–9098 (2018).
Kister, T., Mravlak, M., Schilling, T. & Kraus, T. Pressure-controlled formation of crystalline, Janus, and core–shell supraparticles. Nanoscale 8, 13377–13384 (2016).
Abelson, A. et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 19, 49–55 (2020).
Marino, E. et al. Monodisperse nanocrystal superparticles through a source–sink emulsion system. Chem. Mater. 34, 2779–2789 (2022).
Lacava, J., Born, P. & Kraus, T. Nanoparticle clusters with Lennard–Jones geometries. Nano Lett. 12, 3279–3282 (2012).
de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 14, 56–60 (2015).
Wintzheimer, S. et al. Supraparticles: functionality from uniform structural motifs. ACS Nano 12, 5093–5120 (2018).
Marino, E. et al. Favoring the growth of high-quality, three-dimensional supercrystals of nanocrystals. J. Phys. Chem. C 124, 11256–11264 (2020).
Marino, E. et al. Simultaneous photonic and excitonic coupling in spherical quantum dot supercrystals. ACS Nano 14, 13806–13815 (2020).
Savo, R. et al. Broadband Mie driven random quasi-phase-matching. Nat. Photonics 14, 740–747 (2020).
Montanarella, F. et al. Lasing supraparticles self-assembled from nanocrystals. ACS Nano 12, 12788–12794 (2018).
Tang, Y. et al. Highly stable perovskite supercrystals via oil-in-oil templating. Nano Lett. 20, 5997–6004 (2020).
Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939).
Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).
Yang, Z., Wei, J. & Pileni, M.-P. Metal–metal binary nanoparticle superlattices: a case study of mixing Co and Ag nanoparticles. Chem. Mater. 27, 2152–2157 (2015).
Murray, M. J. & Sanders, J. V. Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philos. Mag. A 42, 721–740 (1980).
Chen, Z. & O’Brien, S. Structure direction of II−VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2, 1219–1229 (2008).
Eldridge, M. D., Madden, P. A. & Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993).
LaCour, R. A., Moore, T. C. & Glotzer, S. C. Tuning stoichiometry to promote formation of binary colloidal superlattices. Phys. Rev. Lett. 128, 188001 (2022).
Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).
Schapotschnikow, P., Pool, R. & Vlugt, T. J. H. Molecular simulations of interacting nanocrystals. Nano Lett. 8, 2930–2934 (2008).
Liepold, C., Smith, A., Lin, B., de Pablo, J. & Rice, S. A. Pair and many-body interactions between ligated Au nanoparticles. J. Chem. Phys. 150, 044904 (2019).
Baran, Ł. & Sokołowski, S. Effective interactions between a pair of particles modified with tethered chains. J. Chem. Phys. 147, 044903 (2017).
Munaò, G., Correa, A., Pizzirusso, A. & Milano, G. On the calculation of the potential of mean force between atomistic nanoparticles. Eur. Phys. J. E 41, 38 (2018).
Kaushik, A. P. & Clancy, P. Solvent-driven symmetry of self-assembled nanocrystal superlattices—a computational study. J. Comput. Chem. 34, 523–532 (2013).
Kister, T., Monego, D., Mulvaney, P., Widmer-Cooper, A. & Kraus, T. Colloidal stability of apolar nanoparticles: the role of particle size and ligand shell structure. ACS Nano 12, 5969–5977 (2018).
Mie, G. Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. (Berlin) 316, 657–697 (1903).
Noro, M. G. & Frenkel, D. Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113, 2941–2944 (2000).
Coropceanu, I., Boles, M. A. & Talapin, D. V. Systematic mapping of binary nanocrystal superlattices: the role of topology in phase selection. J. Am. Chem. Soc. 141, 5728–5740 (2019).
Shevchenko, E. V., Talapin, D. V., Murray, C. B. & O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 128, 3620–3637 (2006).
Yang, Z., Wei, J., Bonville, P. & Pileni, M.-P. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices. J. Am. Chem. Soc. 137, 4487–4493 (2015).
Evers, W. H. et al. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010).
Boles, M. A. & Talapin, D. V. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).
Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).
Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502 (2011).
ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).
Xu, L., Buldyrev, S. V., Stanley, H. E. & Franzese, G. Homogeneous crystal nucleation near a metastable fluid-fluid phase transition. Phys. Rev. Lett. 109, 095702 (2012).
Wedekind, J., Xu, L., Buldyrev, S. V., Stanley, H. E., Reguera, D. & Franzese, G. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition. Sci. Rep. 5, 11260 (2015).
Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971).
Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005).
ten Wolde, P. R., Ruiz‐Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).
Zimmermann, N. E. R., Vorselaars, B., Quigley, D. & Peters, B. Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 137, 13352–13361 (2015).
Gebauer, D., Völkel, A. & Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2015).
Shevchenko, E. V., Talapin, D. V., O’Brien, S. & Murray, C. B. Polymorphism in AB13 nanoparticle superlattices: an example of semiconductor–metal metamaterials. J. Am. Chem. Soc. 127, 8741–8747 (2005).
Ye, X., Chen, J. & Murray, C. B. Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 2613–2620 (2011).
Chen, J., Ye, X. & Murray, C. B. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices. ACS Nano 4, 2374–2381 (2010).
Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).
Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).
Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).
Marino, E., Bharti, H., Xu, J., Kagan, C. R. & Murray, C. B. Nanocrystal superparticles with whispering-gallery modes tunable through chemical and optical triggers. Nano Lett. 22, 4765–4773 (2022).
Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).
Neuhaus, S. J., Marino, E., Murray, C. B. & Kagan, C. R. Frequency stabilization and optically tunable lasing in colloidal quantum dot superparticles. Nano Lett. 23, 645–651 (2023).
Vanmaekelbergh, D. et al. Shape-dependent multiexciton emission and whispering gallery modes in supraparticles of cdse/multishell quantum dots. ACS Nano 9, 3942–3950 (2015).
Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).
Bozyigit, D. et al. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531, 618–622 (2016).
Voznyy, O. et al. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 13, 11122–11128 (2019).
Guntern, Y. T. et al. Synthetic tunability of colloidal covalent organic framework/nanocrystal hybrids. Chem. Mater. 33, 2646–2654 (2021).
Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).
Ye, X., Fei, J., Diroll, B. T., Paik, T. & Murray, C. B. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation–anion codoping. J. Am. Chem. Soc. 136, 11680–11686 (2014).
Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).
Bressler, I., Kohlbrecher, J. & Thunemann, A. F. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 48, 1587–1598 (2015).
Langford, J. I. & Wilson, A. J. C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978).
Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).
Noya, E. G., Conde, M. M. & Vega, C. Computing the free energy of molecular solids by the Einstein molecule approach: ices XIII and XIV, hard-dumbbells and a patchy model of proteins. J. Chem. Phys. 129, 104704 (2008).
Frenkel, D. & Ladd, A. J. C. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, 3188–3193 (1984).
Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).
Phillips, C. L., Anderson, J. A. & Glotzer, S. C. Pseudo-random number generation for Brownian dynamics and dissipative particle dynamics simulations on GPU devices. J. Comput. Phys. 230, 7191–7201 (2011).
Barker, J. A. & Henderson, D. What is ‘liquid’? Understanding the states of matter. Rev. Mod. Phys. 48, 587–671 (1976).
Ramasubramani, V. et al. freud: a software suite for high throughput analysis of particle simulation data. Comput. Phys. Commun. 254, 107275 (2020).
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—theopen visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).
Adorf, C. S., Dodd, P. M., Ramasubramani, V. & Glotzer, S. C. Simple data and workflow management with the signac framework. Comput. Mater. Sci. 146, 220–229 (2018).
Ramasubramani, V., Adorf, C., Dodd, P., Dice, B. & Glotzer, S. signac: A Python framework for data and workflow management. In Proceedings of the 17th Python in Science Conference. 152–159 (2018).
Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).
Acknowledgements
The authors acknowledge primary support from the National Science Foundation under grant DMR-2019444. E.M., S.Y., and C.B.M. (sample preparation and characterization) and R.A.L. and S.C.G. (theory, modeling & simulation) acknowledge support from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497 for sample preparation and characterization. E.M. is grateful to the National Recovery and Resilience Plan (NRRP) PNR 2021-2022 (CUP B79J21038330001) for funding his position at Unipa. E.M. acknowledges the Fondo Finalizzato Alla Ricerca Di Ateneo (FFR) 2022-2023 of Unipa for funding. A.W.K. and C.R.K. acknowledge support from the Semiconductor Research Corporation (SRC) under the Nanomanufacturing Materials and Processes (NMP) trust via Task 2797.001. D.J.R. acknowledges support from the VIEST fellowship. T.C.M. supported by a grant from the Simons Foundation (256297, SCG). G.G. acknowledges Solvay for financial support. C.B.M. acknowledges the Richard Perry University Professorship at the University of Pennsylvania. Support for the Dual Source and Environmental X-ray Scattering Facility at the University of Pennsylvania was provided by the Laboratory for Research on the Structure of Matter which is funded in part by NSF MRSEC 1720530. This research used resources of the Center for Functional Nanomaterials and the National Synchrotron Light Source II, which are US DOE Office of Science Facilities, at Brookhaven National Laboratory under contract number DESC0012704. Computational work used resources from the Extreme Science and Engineering Discovery Environment (XSEDE)123, which is supported by National Science Foundation grant number ACI-1548562; XSEDE award DMR 140129. Additional computational resources and services were supported by Advanced Research Computing at the University of Michigan, Ann Arbor.
Author information
Authors and Affiliations
Contributions
E.M. designed the experiment. E.M., S.W.v.D., A.W.K. and D.A. synthesized and characterized the NC building blocks. E.M., S.W.v.D., S.Y., D.J.R. and E.H.R.T. measured the in situ scattering. E.M. measured the ex situ scattering. E.M. analysed in situ and ex situ scattering results. E.H.R.T. provided local support at the beamline. E.M., G.G. and S.W.v.D. performed the electron microscopy studies. D.J.R. performed the magnetic measurements. R.A.L. and T.C.M. performed the simulations and analysed the results. T.E.K., S.C.G., C.R.K. and C.B.M. supervised the project. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Y. Charles Cao, Tobias Kraus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–25, text and references.
Supplementary Video 1
Time-dependent scattering pattern for the binary dispersion including larger Fe3O4 and smaller PbS nanocrystals at a stoichiometry of 1:2.
Supplementary Video 2
Time-dependent scattering pattern for the binary dispersion including larger FICO and smaller PbS nanocrystals at a stoichiometry of 1:2.
Supplementary Video 3
Time-dependent scattering pattern for the binary dispersion including larger FICO and smaller PbS nanocrystals at a stoichiometry of 1:13.
Supplementary code 1
Sample codes for molecular dynamics simulations.
Source data
Source Data Fig. 1
Source data for Fig. 1 of the main text.
Source Data Fig. 2
Source data for Fig. 2 of the main text.
Source Data Fig. 3
Source data for Fig. 3 of the main text.
Source Data Fig. 4
Source data for Fig. 4 of the main text.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Marino, E., LaCour, R.A., Moore, T.C. et al. Crystallization of binary nanocrystal superlattices and the relevance of short-range attraction. Nat. Synth 3, 111–122 (2024). https://doi.org/10.1038/s44160-023-00407-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44160-023-00407-2