Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystallization of binary nanocrystal superlattices and the relevance of short-range attraction

An Author Correction to this article was published on 24 November 2023

This article has been updated

Abstract

The synthesis of binary nanocrystal superlattices (BNSLs) enables the targeted integration of orthogonal physical properties, such as photoluminescence and magnetism, into a single superstructure, unlocking a vast design space for multifunctional materials. However, the formation mechanism of BNSLs remains poorly understood, restricting the prediction of the structure and properties of superlattices. Here we use a combination of in situ scattering and molecular simulation to elucidate the self-assembly of two common BNSLs (AlB2 and NaZn13) through emulsion templating. Our self-assembly experiments reveal that no intermediate structures precede the formation of the final binary phases, indicating that their formation proceeds through classical nucleation. Using simulations, we find that, despite the formation of AlB2 and NaZn13 typically being attributed to entropy, their self-assembly is most consistent with the nanocrystals possessing short-range interparticle attraction, which we find can accelerate nucleation kinetics in BNSLs. We also find homogeneous, classical nucleation in simulations, corroborating our experiments. These results establish a robust correspondence between experiment and theory, paving the way towards prediction of BNSLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of colloidal AlB2 BNSLs.
Fig. 2: Formation of colloidal NaZn13 BNSLs.
Fig. 3: The influence of attractive forces in binary mixtures.
Fig. 4: The self-assembly of AlB2 and NaZn13 in spherical droplets.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information files. Source data for the figures in the main text are available in the Supplementary Information.

Code availability

The source code for HOOMD-blue is available at https://github.com/glotzerlab/hoomd-blue. The source code for freud is available at https://github.com/glotzerlab/freud. The source code for signac is available at https://github.com/glotzerlab/signac. Source data for the figures in the main text are available in the Supplementary Information. Sample codes are available in the Supplementary Information.

Change history

References

  1. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019).

    Article  CAS  Google Scholar 

  3. Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2, 247–250 (2008).

    Article  CAS  Google Scholar 

  4. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, Q. et al. Enhanced carrier transport in strongly coupled, epitaxially fused CdSe nanocrystal solids. Nano Lett. 21, 3318–3324 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Lan, X. et al. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 19, 323–329 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Mueller, N. S. et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature 583, 780–784 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 6, 115–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J. et al. Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. Nano Lett. 10, 5103–5108 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J. et al. Bistable magnetoresistance switching in exchange-coupled CoFe2O4–Fe3O4 binary nanocrystal superlattices by self-assembly and thermal annealing. ACS Nano 7, 1478–1486 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Dong, A., Chen, J., Ye, X., Kikkawa, J. M. & Murray, C. B. Enhanced thermal stability and magnetic properties in NaCl-type FePt–MnO binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 13296–13299 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Kang, Y. et al. Design of Pt–Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 135, 42–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kang, Y. et al. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc. 135, 1499–1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, M. et al. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nat. Nanotechnol. 12, 228–232 (2017).

    Article  PubMed  Google Scholar 

  19. Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Redl, F. X., Cho, K. S., Murray, C. B. & O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998).

    Article  CAS  Google Scholar 

  24. Heil, C. M. & Jayaraman, A. Computational reverse-engineering analysis for scattering experiments of assembled binary mixture of nanoparticles. ACS Materials Au 1, 140–156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bommineni, P. K., Klement, M. & Engel, M. Spontaneous crystallization in systems of binary hard sphere colloids. Phys. Rev. Lett. 124, 218003 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D. et al. Binary icosahedral clusters of hard spheres in spherical confinement. Nat. Phys. 17, 128–134 (2021).

    Article  CAS  Google Scholar 

  27. Coli, G. M. & Dijkstra, M. An artificial neural network reveals the nucleation mechanism of a binary colloidal AB13 crystal. ACS Nano 15, 4335–4346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marino, E., Kodger, T. E., Wegdam, G. H. & Schall, P. Revealing driving forces in quantum dot supercrystal assembly. Adv. Mater. 30, 1803433 (2018).

    Article  Google Scholar 

  29. Montanarella, F. et al. Crystallization of nanocrystals in spherical confinement probed by in situ X-ray scattering. Nano Lett. 18, 3675–3681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Geuchies, J. J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Abécassis, B., Testard, F. & Spalla, O. Gold nanoparticle superlattice crystallization probed in situ. Phys. Rev. Lett. 100, 115504 (2008).

    Article  PubMed  Google Scholar 

  33. Narayanan, S., Wang, J. & Lin, X.-M. Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys. Rev. Lett. 93, 135503 (2004).

    Article  PubMed  Google Scholar 

  34. Connolly, S., Fullam, S., Korgel, B. & Fitzmaurice, D. Time-resolved small-angle X-ray scattering studies of nanocrystal superlattice self-assembly. J. Am. Chem. Soc. 120, 2969–2970 (1998).

    Article  CAS  Google Scholar 

  35. Yu, Y., Yu, D., Sadigh, B. & Orme, C. A. Space- and time-resolved small angle X-ray scattering to probe assembly of silver nanocrystal superlattices. Nat. Commun. 9, 4211 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu, L. et al. High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 548, 197–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Gong, J. et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat. Commun. 8, 14038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, H. et al. Clathrate colloidal crystals. Science 355, 931 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Yue, K. et al. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proc. Natl Acad. Sci. USA 113, 14195–14200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, T. et al. Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, C., Akey, A. J., Dahlman, C. J., Zhang, D. & Herman, I. P. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. J. Am. Chem. Soc. 134, 18732–18738 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Rosen, D. J., Yang, S., Marino, E., Jiang, Z. & Murray, C. B. In situ EXAFS-based nanothermometry of heterodimer nanocrystals under induction heating. J. Phys. Chem.C 126, 3623–3634 (2022).

    Article  CAS  Google Scholar 

  46. Rosen, D. J. et al. Microwave heating of nanocrystals for rapid, low-aggregation intermetallic phase transformations. ACS Mater. Lett. 4, 823–830 (2022).

    Article  CAS  Google Scholar 

  47. Yang, S. et al. Self-assembly of atomically aligned nanoparticle superlattices from Pt–Fe3O4 heterodimer nanoparticles. J. Am. Chem. Soc. 145, 6280–6288 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Gabbani, A. et al. Magnetoplasmonics beyond metals: ultrahigh sensing performance in transparent conductive oxide nanocrystals. Nano Lett. 22, 9036–9044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Velev Orlin, D., Lenhoff Abraham, M. & Kaler Eric, W. A class of microstructured particles through colloidal crystallization. Science 287, 2240–2243 (2000).

    Article  Google Scholar 

  50. Wang, P.-p, Qiao, Q., Zhu, Y. & Ouyang, M. Colloidal binary supracrystals with tunable structural lattices. J. Am. Chem. Soc. 140, 9095–9098 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Kister, T., Mravlak, M., Schilling, T. & Kraus, T. Pressure-controlled formation of crystalline, Janus, and core–shell supraparticles. Nanoscale 8, 13377–13384 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Abelson, A. et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 19, 49–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Marino, E. et al. Monodisperse nanocrystal superparticles through a source–sink emulsion system. Chem. Mater. 34, 2779–2789 (2022).

    Article  CAS  Google Scholar 

  54. Lacava, J., Born, P. & Kraus, T. Nanoparticle clusters with Lennard–Jones geometries. Nano Lett. 12, 3279–3282 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 14, 56–60 (2015).

    Article  PubMed  Google Scholar 

  56. Wintzheimer, S. et al. Supraparticles: functionality from uniform structural motifs. ACS Nano 12, 5093–5120 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Marino, E. et al. Favoring the growth of high-quality, three-dimensional supercrystals of nanocrystals. J. Phys. Chem. C 124, 11256–11264 (2020).

    Article  CAS  Google Scholar 

  58. Marino, E. et al. Simultaneous photonic and excitonic coupling in spherical quantum dot supercrystals. ACS Nano 14, 13806–13815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Savo, R. et al. Broadband Mie driven random quasi-phase-matching. Nat. Photonics 14, 740–747 (2020).

    Article  CAS  Google Scholar 

  60. Montanarella, F. et al. Lasing supraparticles self-assembled from nanocrystals. ACS Nano 12, 12788–12794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang, Y. et al. Highly stable perovskite supercrystals via oil-in-oil templating. Nano Lett. 20, 5997–6004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939).

    Article  CAS  Google Scholar 

  63. Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, Z., Wei, J. & Pileni, M.-P. Metal–metal binary nanoparticle superlattices: a case study of mixing Co and Ag nanoparticles. Chem. Mater. 27, 2152–2157 (2015).

    Article  CAS  Google Scholar 

  65. Murray, M. J. & Sanders, J. V. Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philos. Mag. A 42, 721–740 (1980).

    Article  CAS  Google Scholar 

  66. Chen, Z. & O’Brien, S. Structure direction of II−VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2, 1219–1229 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Eldridge, M. D., Madden, P. A. & Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993).

    Article  CAS  Google Scholar 

  68. LaCour, R. A., Moore, T. C. & Glotzer, S. C. Tuning stoichiometry to promote formation of binary colloidal superlattices. Phys. Rev. Lett. 128, 188001 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Schapotschnikow, P., Pool, R. & Vlugt, T. J. H. Molecular simulations of interacting nanocrystals. Nano Lett. 8, 2930–2934 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Liepold, C., Smith, A., Lin, B., de Pablo, J. & Rice, S. A. Pair and many-body interactions between ligated Au nanoparticles. J. Chem. Phys. 150, 044904 (2019).

    Article  PubMed  Google Scholar 

  72. Baran, Ł. & Sokołowski, S. Effective interactions between a pair of particles modified with tethered chains. J. Chem. Phys. 147, 044903 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Munaò, G., Correa, A., Pizzirusso, A. & Milano, G. On the calculation of the potential of mean force between atomistic nanoparticles. Eur. Phys. J. E 41, 38 (2018).

    Article  PubMed  Google Scholar 

  74. Kaushik, A. P. & Clancy, P. Solvent-driven symmetry of self-assembled nanocrystal superlattices—a computational study. J. Comput. Chem. 34, 523–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Kister, T., Monego, D., Mulvaney, P., Widmer-Cooper, A. & Kraus, T. Colloidal stability of apolar nanoparticles: the role of particle size and ligand shell structure. ACS Nano 12, 5969–5977 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Mie, G. Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. (Berlin) 316, 657–697 (1903).

    Article  Google Scholar 

  77. Noro, M. G. & Frenkel, D. Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113, 2941–2944 (2000).

    Article  CAS  Google Scholar 

  78. Coropceanu, I., Boles, M. A. & Talapin, D. V. Systematic mapping of binary nanocrystal superlattices: the role of topology in phase selection. J. Am. Chem. Soc. 141, 5728–5740 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Shevchenko, E. V., Talapin, D. V., Murray, C. B. & O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 128, 3620–3637 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, Z., Wei, J., Bonville, P. & Pileni, M.-P. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices. J. Am. Chem. Soc. 137, 4487–4493 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Evers, W. H. et al. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Boles, M. A. & Talapin, D. V. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  84. Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502 (2011).

    Article  PubMed  Google Scholar 

  85. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, L., Buldyrev, S. V., Stanley, H. E. & Franzese, G. Homogeneous crystal nucleation near a metastable fluid-fluid phase transition. Phys. Rev. Lett. 109, 095702 (2012).

    Article  PubMed  Google Scholar 

  87. Wedekind, J., Xu, L., Buldyrev, S. V., Stanley, H. E., Reguera, D. & Franzese, G. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition. Sci. Rep. 5, 11260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971).

    Article  CAS  Google Scholar 

  89. Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005).

    Article  PubMed  Google Scholar 

  90. ten Wolde, P. R., Ruiz‐Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    Article  CAS  Google Scholar 

  91. Zimmermann, N. E. R., Vorselaars, B., Quigley, D. & Peters, B. Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 137, 13352–13361 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Gebauer, D., Völkel, A. & Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2015).

  94. Shevchenko, E. V., Talapin, D. V., O’Brien, S. & Murray, C. B. Polymorphism in AB13 nanoparticle superlattices: an example of semiconductor–metal metamaterials. J. Am. Chem. Soc. 127, 8741–8747 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Ye, X., Chen, J. & Murray, C. B. Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 2613–2620 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, J., Ye, X. & Murray, C. B. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices. ACS Nano 4, 2374–2381 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Marino, E., Bharti, H., Xu, J., Kagan, C. R. & Murray, C. B. Nanocrystal superparticles with whispering-gallery modes tunable through chemical and optical triggers. Nano Lett. 22, 4765–4773 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Neuhaus, S. J., Marino, E., Murray, C. B. & Kagan, C. R. Frequency stabilization and optically tunable lasing in colloidal quantum dot superparticles. Nano Lett. 23, 645–651 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Vanmaekelbergh, D. et al. Shape-dependent multiexciton emission and whispering gallery modes in supraparticles of cdse/multishell quantum dots. ACS Nano 9, 3942–3950 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Bozyigit, D. et al. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531, 618–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Voznyy, O. et al. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 13, 11122–11128 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Guntern, Y. T. et al. Synthetic tunability of colloidal covalent organic framework/nanocrystal hybrids. Chem. Mater. 33, 2646–2654 (2021).

    Article  CAS  Google Scholar 

  108. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ye, X., Fei, J., Diroll, B. T., Paik, T. & Murray, C. B. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation–anion codoping. J. Am. Chem. Soc. 136, 11680–11686 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Bressler, I., Kohlbrecher, J. & Thunemann, A. F. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 48, 1587–1598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Langford, J. I. & Wilson, A. J. C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978).

    Article  CAS  Google Scholar 

  113. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).

    Article  CAS  Google Scholar 

  114. Noya, E. G., Conde, M. M. & Vega, C. Computing the free energy of molecular solids by the Einstein molecule approach: ices XIII and XIV, hard-dumbbells and a patchy model of proteins. J. Chem. Phys. 129, 104704 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Frenkel, D. & Ladd, A. J. C. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, 3188–3193 (1984).

    Article  CAS  Google Scholar 

  116. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article  CAS  Google Scholar 

  117. Phillips, C. L., Anderson, J. A. & Glotzer, S. C. Pseudo-random number generation for Brownian dynamics and dissipative particle dynamics simulations on GPU devices. J. Comput. Phys. 230, 7191–7201 (2011).

    Article  CAS  Google Scholar 

  118. Barker, J. A. & Henderson, D. What is ‘liquid’? Understanding the states of matter. Rev. Mod. Phys. 48, 587–671 (1976).

    Article  CAS  Google Scholar 

  119. Ramasubramani, V. et al. freud: a software suite for high throughput analysis of particle simulation data. Comput. Phys. Commun. 254, 107275 (2020).

    Article  CAS  Google Scholar 

  120. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—theopen visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

  121. Adorf, C. S., Dodd, P. M., Ramasubramani, V. & Glotzer, S. C. Simple data and workflow management with the signac framework. Comput. Mater. Sci. 146, 220–229 (2018).

    Article  Google Scholar 

  122. Ramasubramani, V., Adorf, C., Dodd, P., Dice, B. & Glotzer, S. signac: A Python framework for data and workflow management. In Proceedings of the 17th Python in Science Conference. 152–159 (2018).

  123. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge primary support from the National Science Foundation under grant DMR-2019444. E.M., S.Y., and C.B.M. (sample preparation and characterization) and R.A.L. and S.C.G. (theory, modeling & simulation) acknowledge support from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497 for sample preparation and characterization. E.M. is grateful to the National Recovery and Resilience Plan (NRRP) PNR 2021-2022 (CUP B79J21038330001) for funding his position at Unipa. E.M. acknowledges the Fondo Finalizzato Alla Ricerca Di Ateneo (FFR) 2022-2023 of Unipa for funding. A.W.K. and C.R.K. acknowledge support from the Semiconductor Research Corporation (SRC) under the Nanomanufacturing Materials and Processes (NMP) trust via Task 2797.001. D.J.R. acknowledges support from the VIEST fellowship. T.C.M. supported by a grant from the Simons Foundation (256297, SCG). G.G. acknowledges Solvay for financial support. C.B.M. acknowledges the Richard Perry University Professorship at the University of Pennsylvania. Support for the Dual Source and Environmental X-ray Scattering Facility at the University of Pennsylvania was provided by the Laboratory for Research on the Structure of Matter which is funded in part by NSF MRSEC 1720530. This research used resources of the Center for Functional Nanomaterials and the National Synchrotron Light Source II, which are US DOE Office of Science Facilities, at Brookhaven National Laboratory under contract number DESC0012704. Computational work used resources from the Extreme Science and Engineering Discovery Environment (XSEDE)123, which is supported by National Science Foundation grant number ACI-1548562; XSEDE award DMR 140129. Additional computational resources and services were supported by Advanced Research Computing at the University of Michigan, Ann Arbor.

Author information

Authors and Affiliations

Authors

Contributions

E.M. designed the experiment. E.M., S.W.v.D., A.W.K. and D.A. synthesized and characterized the NC building blocks. E.M., S.W.v.D., S.Y., D.J.R. and E.H.R.T. measured the in situ scattering. E.M. measured the ex situ scattering. E.M. analysed in situ and ex situ scattering results. E.H.R.T. provided local support at the beamline. E.M., G.G. and S.W.v.D. performed the electron microscopy studies. D.J.R. performed the magnetic measurements. R.A.L. and T.C.M. performed the simulations and analysed the results. T.E.K., S.C.G., C.R.K. and C.B.M. supervised the project. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Sharon C. Glotzer or Christopher B. Murray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Y. Charles Cao, Tobias Kraus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, text and references.

Supplementary Video 1

Time-dependent scattering pattern for the binary dispersion including larger Fe3O4 and smaller PbS nanocrystals at a stoichiometry of 1:2.

Supplementary Video 2

Time-dependent scattering pattern for the binary dispersion including larger FICO and smaller PbS nanocrystals at a stoichiometry of 1:2.

Supplementary Video 3

Time-dependent scattering pattern for the binary dispersion including larger FICO and smaller PbS nanocrystals at a stoichiometry of 1:13.

Supplementary code 1

Sample codes for molecular dynamics simulations.

Source data

Source Data Fig. 1

Source data for Fig. 1 of the main text.

Source Data Fig. 2

Source data for Fig. 2 of the main text.

Source Data Fig. 3

Source data for Fig. 3 of the main text.

Source Data Fig. 4

Source data for Fig. 4 of the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marino, E., LaCour, R.A., Moore, T.C. et al. Crystallization of binary nanocrystal superlattices and the relevance of short-range attraction. Nat. Synth 3, 111–122 (2024). https://doi.org/10.1038/s44160-023-00407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00407-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing