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Light-driven biosynthesis of volatile, 
unstable and photosensitive chemicals  
from CO2

Chaofeng Li1,2, Lijie Yin1, Jiawei Wang1,2, Haotian Zheng    1,2 & Jun Ni    1,2 

Directing CO2 conversion using photoautotrophic microbes offers a 
promising route to coupling carbon mitigation with petrochemical 
replacement. However, solar-based biomanufacturing is hampered by 
inefficient genetic manipulation, narrow product scope and light-induced 
decomposition. Here we report a spatiotemporally separated modular 
strategy to realize CO2-to-molecule conversion by sequentially linking 
carbon sequestration and cellular catalysis via stable mediator compounds. 
The carbon fixation rate of the sequestration module was improved by 
approximately 50% through metabolic network remodelling, while biphasic 
catalysis, multiple gene editing and high-throughput workflow were applied 
to the catalysis modules to produce olefins, cinnamaldehyde and curcumin. 
The catalytic efficiency was notably enhanced by up to 114-fold compared 
with the monoculture. This modular design approach enables the rapid 
development of sustainable biorefineries in a plug-and-play fashion, as 
evidenced by the production of various chemicals at the gram-per-litre level 
through scaled-up fermentation. This carbon-negative flexible platform 
notably widens the applicability of light-driven biosynthesis and may boost 
the bioindustry of CO2 reduction in a sustainable future.

The valorization of CO2 is vital for carbon neutrality and the circular 
economy, yet it remains a huge challenge1–4. Light-driven synthetic 
biology via photosynthetic microorganisms offers a promising route 
to coupling carbon sequestration with petrochemical replacement5–7. 
However, the molecular tools and automated workflows for the genetic 
engineering of photosynthetic organisms lag far behind those avail-
able for commonly used industrial strains8,9. Furthermore, the product 
spectrum is limited by inherent factors10,11, for example, essential gas 
exchange, leading to the ready escape of volatile products, and the light-
induced decomposition of photosensitive products (Fig. 1a). Another 
major concern is the undesirable conversion of target products medi-
ated by endogenous enzymes12–15, and the elimination of this redundant 
activity entirely is challenging in underexplored photosynthetic strains. 

There is currently no solution to these long-standing constraints, and 
it would be of great importance to develop a universal CO2 valorization 
strategy to rapidly synthesize any chemical of interest.

Synthetic phototrophic communities with similar architecture 
to natural lichens have been used for the distribution of metabolic 
burden16,17. In this consortia design, the modified phototrophs com-
monly provide sucrose to support the growth of heterotrophs, and the 
heterotrophs can be flexibly programmed for the photoproduction 
of target compounds18,19. However, they cannot address the limita-
tions mentioned above of light-driven synthetic biology, such as the 
light-induced decomposition of target products. Inspired by, but 
different from the one-pot autotroph–heterotroph co-culture, we 
hypothesized that dividing the CO2-to-molecule conversion route 
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to direct CO2 conversion at product titres of up to ~2 g l−1, and millions 
of tonnes of CO2 could be sequestered for 1 tonne of target chemical. 
This efficient, carbon-negative route dramatically widens the scope 
of light-driven biosynthesis and opens up a promising opportunity 
for a circular economy.

Results
Rewiring cyanobacterial metabolism for mediator production
To evaluate the feasibility of the iPRCC strategy, we chose volatile  
styrene as the initial target product, a versatile commodity chemical 
whose global market is expected to reach US$69.9 billion by 202626. 
However, styrene production based on processes using petroleum feed-
stock is responsible for over 100 million tons of greenhouse gas emis-
sions each year27. We first generated a carbon sequestration module 
based on a fast-growing photosynthetic microorganism, Synechococcus 
elongatus PCC7942, to channel CO2 into a stable mediator chemical, 
cinnamic acid (CA; Fig. 1b). CA was chosen as the mediator chemical 
for its non-volatility, photostability, secretability and unmetaboliz-
ability by endogenous enzymes. The photosynthetically fixed carbon 
can be easily directed towards the shikimate pathway28, and CA that 
derived from this pathway has the potential to achieve high output. 
In nature, phenylalanine ammonia-lyase (PAL) catalyses the deamina-
tion of endogenous phenylalanine to CA29, and we tested various PAL 
enzymes by integrating them into the S. elongatus genome (Supple-
mentary Fig. 1 and Supplementary Table 1). Although the engineered 
strains could produce CA directly from CO2 (Fig. 2a), their initial titres 
(4.5–8.8 mg l−1) were too low to support further transformation. To 
redirect fixed carbon into the low-flux shikimate pathway, we used 
the feedback-inhibition-resistant (FBR) cassette harbouring two FBR 
enzymes from a previous study as a non-native carbon sink28. Strikingly, 
this strategy increased the CA titre to 156.2 ± 4.1 mg l−1 (15.6 mg l−1 d−1, 
strain S116), representing a 25-fold improvement compared with the 
parent strain S112 (Fig. 2b). Due to metabolic rigidity, metabolic parti-
tioning towards the low-flux shikimate pathway for valuable aromatics 
is commonly less than 10% in industrial workhorses30–32. In contrast, 
S116 successfully directed more than 30% of the photosynthetically 

into spatiotemporally separated carbon sequestration and whole-cell 
catalysis modules may offer new opportunities to solve these prob-
lems. In this approach, the carbon sequestration module should first 
redirect the fixed carbon to stable mediator chemicals, and the subse-
quent cellular catalysis module should rapidly convert these mediator 
chemicals to end products. Here, the mediator chemical should not be 
an easily metabolized chemical or a carbon source that can be used by 
heterotrophs, and the directional conversion of the intermediate to 
target chemicals should avoid using the fixed carbon for cell growth. 
To avoid the inherent limitations of the photosynthetic process, the 
intermediates should be non-volatile, photostable and unmetabolized 
by endogenous enzymes. Industrial workhorses such as Escherichia coli  
and Saccharomyces cerevisiae have more sophisticated genetic tool-
kits and maturing high-throughput platforms than photosynthetic 
microorganisms20–23. They are the priority chassis for cellular catalysis 
modules. The biphasic reaction, light-free catalysis and redundant 
endogenous enzymes eliminated in the catalysis module may enable 
the biosynthesis of volatile, photosensitive and unstable intracellular 
products that are difficult to obtain in photosynthetic mono- or co-
cultures. For example, aromatic aldehydes are rapidly converted into 
alcohols by numerous characterized and uncharacterized endogenous 
dehydrogenases in photosynthetic microbes, and selecting the correct 
target genes for knockout is challenging15,24,25. The CO2-to-aromatic 
aldehyde route can be developed by integrating a whole-cell catalysis 
module based on reduced aromatic aldehyde reduction (RARE) E. coli15 
and a carbon sequestration module. Although this appears to widen 
the scope of light-driven biosynthesis, no attempts have been made 
so far to use this modular strategy.

In this Article, we devised a broadly applicable CO2 valorization 
strategy, the integration of photosynthesis and resting cellular catalysis 
(iPRCC), to efficiently convert CO2 into various value-added chemicals. 
Multiple gene editing and high-throughput workflow were applied 
to cellular catalysis modules to produce volatile styrene, intracel-
lular unstable aldehydes and photosensitive molecules. The overall 
catalytic efficiency of this iPRCC strategy was enhanced up to 114-fold 
compared with photosynthetic monocultures. We scaled up this system 
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Fig. 1 | Light-driven CO2 sequestration for biomanufacturing. a, Schematic 
representation of the three main constraints faced by traditional photosynthetic 
production: (i) essential gas exchange, leading to the ready escape of volatile 
products; (ii) light-induced decomposition of photosensitive products; (iii) 
and the undesirable conversion of target products mediated by endogenous 
enzymes. b, Schematic of the iPRCC strategy, which facilitates CO2-to-molecule 
conversion by integrating carbon sequestration and cellular catalysis modules 
via stable mediator compounds. c, iPRCC strategy for the de novo biosynthesis 
of aromatic α-olefins from CO2. The carbon sequestration module converts 

CO2 into carboxylic acids, which are then catalysed to terminal olefins in the 
cellular catalysis module. The enzymes from different organisms are labelled in 
red. Gene resources: E. coli, Flavobacterium johnsoniae, Arabidopsis thaliana, 
Brassica oleracea, Helianthus annuus, Bacillus licheniformis and S. cerevisiae. 
PEP, phosphoenolpyruvate; E4P, erythrose 4-phosphate; DAHP, 3-deoxy-d-
arabino-heptulosonate 7-phosphate; CHA, chorismic acid; PPY, phenylpyruvate; 
l-Phe, l-phenylalanine; l-Tyr, l-tyrosine; fbr-DAHPS, FBR 3-deoxy-D-arabino-
heptulosonate-7-phosphate synthase; fbr-CM/PD, FBR bifunctional chorismate 
mutase/prephenate dehydratase.
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Fig. 2 | Direct photosynthetic CA production. a, CA production by engineered 
S. elongatus strains harbouring PAL genes from various sources in 10 days. Ptrc 
means the trc promoter. AtPAL, HaPAL, AcPAL, FaPAL, CaPAL indicate the PAL 
genes from Arabidopsis thaliana, Helianthus annuus, Ananas comosus, Fragaria 
× ananassa, and Capsicum annuum, respectively. b, CA production (royal purple 
columns) and growth curves (royal purple line) of recombinant strain S116 
compared with the parent WT strain. Cell growth was measured as the optical 
density at 730 nm (OD730). In a and b, values are shown as mean ± s.d. (n = 3 
biologically independent replicates); dots represent individual data points.  
c, Total biomass production per two-day by WT S. elongatus (grey columns)  
and S116 (royal purple columns) strains. The total biomass is the cell biomass  
plus the CA and free aromatic amino acids produced. All data represent the  
mean of n = 3 biologically independent samples. d, Overview of the regulation 
pattern of the photosynthetic chain in response to the powerful electron sink  
in S116. The scatter plot shows the relative transcript levels of all expressed 
genes in S116 compared with in WT S. elongatus. The numbers in red boxes and 
blue boxes indicate the up-regulated and down-regulated ratios, respectively. 
The data represent the mean of three biological replicates. ApcA, ApcB, ApcD, 
and ApcF indicate different allophycocyanin (APC) subunits. PsbA, PsbO, Psb27, 
and PsbU indicate subunits of photosystem II. Alpha, beta, delta, epsilon, a, and 
b indicate subunits of ATPase. PsaA, PsaB, PsaC, PsaE, PsaJ, and PsaM indicate 
subunits of photosystem I. CoxA, CoxB, CoxC, and CoxD indicate subunits of 
cytochrome c oxidase (COX). HoxE, HoxF, and HoxU indicate subunits of  

bi-directional hydrogenase complex (HOX). e, Unigene transcript abundance 
changes related to carbon metabolism pathways. The changes in the relative 
transcript levels for different genes are compared with WT S. elongatus. The  
light-blue arrows indicate the reactions catalysed by heterologous enzymes.  
f, The transcript levels for genes related to photorespiration pathways, acetate 
kinase and alcohol hydrogenase. CB, cell biomass; PQ, plastoquinone; PQH2, 
plastoquinol; PC, plastocyanin; Cytc6, cytochrome c6; Fd, ferredoxin; FNR, 
ferredoxin-nicotinamide adenine dinucleotide phosphate-reductase; Cytb6f, 
cytochrome b6f complex; Cytb6, cytochrome b6; Cytf, cytochrome f; PetC, 
rieske FeS-protein; PetD, subunit IV of Cytb6f; IsiA, iron stress induced protein A; 
IdiA, iron deficiency induced protein A; CcmK1, CcmK2, CcmK3, CcmL, CcmM, 
and CcmN indicate subunits of carboxysome; CAase, carbonic anhydrase; 
RuBisCO-L and RuBisCO-S indicate the subunits of ribulose 1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO); 3PGA, 3-phosphoglycerate; RuBP, ribulose 
1,5-bisphosphate; 1,3-PGA, 1,3-bisphosphoglycerate; GAP, glyceraldehyde 
3-phosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone 
phosphate; F6P, fructose 6-phosphate; SBP, sedoheptulose 1,7-bisphosphate; 
S7P, sedoheptulose 7-phosphate; R5P, ribose 5-phosphate; Ru5P, ribulose 
5-phosphate; X5P, xylulose 5-phosphate; 2PGA, 2-phosphoglycerate; DHS, 
3-dehydroshikimate; SHIK, shikimate; S3P, shikimate 3-phosphate; CPSP, 
5-O-(1-carboxyvinyl)-3-phosphoshikimate; PPA, prephenate; ACP, acetyl 
phosphate; ACA, acetaldehyde; Gly, glycine; THF, tetrahydrofolate; Ml-THF, 
5,10-methylenetetrahydrofolate.
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fixed carbon towards the shikimate pathway (Fig. 2c), and the average 
carbon fixation rate increased by ~50% compared with the wild-type 
(WT) strain (2.30 versus 1.49 mM OD730

−1 d−1, OD730 means the optical 
density at 600 nm). Collectively, the non-native carbon sink opened 
the flux valve of the shikimate pathway in S. elongatus, significantly 
improving the photosynthetic efficiency.

Limited information on how artificial carbon sinks influence inher-
ent photosynthesis, especially photosynthetic machinery and native 
metabolic sinks, is available10,33,34. We conducted a transcriptomic 
analysis to investigate global changes in S116 and support further 
engineering (Supplementary Fig. 2). Consistent with most previous 
studies10,29,34,35, the main subunits of photosystem II (PSII), electron 
transport proteins, carboxysomal components and many enzymes 
in the Calvin–Benson–Bassham (CBB) cycle were upregulated, while 
several photoprotective mechanisms were sharply downregulated  
(Fig. 2d,e). In addition, the upregulated PSII subunits and downregu-
lated photosystem I (PSI) subunits coincide with the hypothesis that a 
lower PSI/PSII ratio may minimize photoinhibition36. The photorespi-
ration pathways, acetate kinase and alcohol hydrogenase were down-
regulated (Fig. 2f), which might minimize the loss of fixed carbon via 
either released CO2 or by-products. Based on previous research37,38,  
we hypothesized that the enhanced expression of carboxysomal 
components may contribute to the decreased transcript levels of the 
photorespiration pathway. The observations described above further 
proved the enigmatic modulation mechanism in photosynthetic micro-
organisms that respond to an artificial carbon sink.

Storage polysaccharides are the main natural carbon sinks in  
S. elongatus, and we further examined their synthesis in S116. Although 

the level of rate-limiting sucrose-phosphate synthase did not change 
significantly, sucrose production decreased (Supplementary Fig. 3). 
Surprisingly, GlgC and GlgA, involved in synthesizing glycogen19,39, 
were upregulated, and enzymes facilitating the breakdown of glyco-
gen were sharply downregulated (Fig. 3a). Thus, the natural glycogen 
sink may be enhanced by the reinforced synthesis and suppressed 
digestion. Indeed, the glycogen content increased by 17 ± 2.3% in S116 
(Supplementary Fig. 3c), and this carbon partitioning may compete 
with the solar‐driven production of CA. Therefore, we first constructed 
a glycogen-deficient mutant to divert the glycogen sink by knocking 
out the glgC gene (S117; Supplementary Fig. 3c). However, the strain 
displayed notable growth retardation due to the ‘carbon sink limitation’ 
(Fig. 3b). The induction of the CA pathway partially rescued the glgC 
null mutant from growth inhibition by rebalancing light-absorption/
metabolic sink. The CA titre increased to 173.3 ± 6.3 mg l−1 in strain 
S118 (Fig. 3b), and the specific productivity improved by 23.4 ± 4.5%  
(55.4 versus 44.9 mg l−1 OD730 −1).

Interfacing carbon sequestration with cellular catalysis
With a carbon sequestration module (CA-overproducing strain S118) 
in hand, we further explored different strategies for styrene produc-
tion. We initially investigated whether a monoculture was suitable for 
the photosynthetic production of styrene (Supplementary Fig. 4a). 
Introducing cinnamic acid decarboxylase (FDC1)40, which catalyses the 
decarboxylation of the CA, resulted in the production of 4.2 ± 1.1 mg l−1 
of styrene directly from CO2 (strain S119; Supplementary Fig. 4b).  
Notably, prenyl transferase (UbiX) generated the prenylated flavin 
mononucleotide (prFMN) cofactor necessary for the decarboxylation 
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activity of FDC140, and we speculated that a hypothetical enzyme (acces-
sion no. ABB57940.1) in S. elongatus may be the prenyl transferase 
based on its high sequence homology to the UbiX from Synechocystis 
sp. PCC 6803 (Supplementary Fig. 5). As only a limited titre of styrene 
could be obtained from S119, we speculated that the titre might be 
underestimated because of the highly volatile nature of styrene and 
rapid gas exchange during photosynthetic production. Previously, 
biphasic organic–aqueous systems were used to deal with the evapo-
ration responsible for the significant loss of styrene from E. coli liquid 
culture41, with the addition of n-dodecane allowing the formation of 
15.3 ± 1.6 mg l−1 of styrene (Supplementary Fig. 4b), representing a 
264% improvement. However, the presence of the n-dodecane over-
lay lowered cell growth, and the yield of styrene was far below that of 
CA production from S118. We concluded that a substantial portion of 
styrene could still be stripped out by vigorous agitation and constant 
aeration. Thus, it is difficult to obtain an ideal yield of volatile styrene 
in a photosynthetic monoculture, regardless of the presence of an 
organic phase.

Next, we used the iPRCC strategy for styrene production as a proof 
of concept. To build the resting cellular catalysis module, FDC1 was 
overexpressed alone in WT S. elongatus to form S120. The resting cells 
of S120 could rapidly catalyse the conversion of CA into styrene with 
high efficiency in an organic–aqueous biphasic system with 10% (v/v) 
n-dodecane added (Fig. 3c). By interfacing the carbon sequestration 
module S118 with the resting cellular module S120, 109.8 ± 4.6 mg l−1 
of styrene was obtained in 10 min (Fig. 3c), representing a 26-fold 
improvement compared with the monoculture. The production of 
styrene based on the whole process was about 11 mg l−1 d−1, and there 
was no significant change in the cell densities and ratios during the 
conversion (Fig. 3d and Supplementary Fig. 6). Thus, we have demon-
strated that the biosynthesis of styrene directly from CO2 by engineered 
microorganisms can be achieved.

We then implemented this strategy to synthesize other volatile 
α-olefins directly from CO2. First, we designed carbon sequestration 
modules to convert CO2 into phenolic acids. Tyrosine ammonia-lyase 
(TAL) was expressed in S. elongatus to convert endogenous l-tyrosine 
into p-coumaric acid (pCA), with 6.1 ± 0.6 mg l−1 of pCA being produced 
by the resulting strain S121 (Supplementary Fig. 7a). After relieving 
the sole feedback inhibition in the tyrosine biosynthetic pathway by 
further introducing a FBR enzyme (Supplementary Fig. 8), the engi-
neered strain S122 could produce 134.5 ± 3.4 mg l−1 of pCA in 10 days, 
which represents a 22-fold improvement (Fig. 4a). Subsequently, 
4-coumarate 3-hydroxylase (C3H) was introduced into S121 (Supple-
mentary Fig. 7b), and the ribosome binding site (RBS) was optimized 
to boost caffeic acid (CAA) production. Notably, strain S126 with the 
synthetic RBS-3 sequence increased the CAA titre to 21.8 ± 1.6 mg l−1 
(Fig. 4b). The next step in the ferulic acid (FA) biosynthesis pathway 
involves the subsequent methylation of CAA by a caffeate O-methyl-
transferase (COMT), and S128 harbouring this entire synthetic route 
produced 27.7 ± 1.9 mg l−1 of FA from CO2 (Fig. 4c). Next, the resting 
cellular catalysis module S129 was constructed by overexpressing 
phenolic acid decarboxylase (PAD) in S. elongatus (Supplementary  
Fig. 9a). According to the iPRCC strategy, by interfacing resting cellular 
module S129 with different carbon sequestration modules (S122, S126 
or S124), 92.4 ± 2.2 mg l−1 of p-hydroxystyrene (pHS), 13.7 ± 1.7 mg l−1 
of 3,4-dihydroxystyrene (pVC) and 18.4 ± 2.1 mg l−1 of p-vinylguaiacol 
(pVG) were achieved in 10 min, respectively (Fig. 4d). These compounds 
are important aromatic monomers for the production of high-per-
formance polymers (Supplementary Table 2). The modularity of the 
iPRCC strategy also provides various ‘plug-and-play’ photosynthetic 
modules. For example, biological lignin valorization is usually limited 
by techno-economic feasibility42, and we surmised that the photosyn-
thetic cellular catalyst developed here is more desirable because of the 
independence of sugar-based feedstocks43. The most predominant 
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monomers, pCA and FA24, can be released in different ratios after  
alkaline hydrolysis of lignin-rich agricultural waste (Supplementary 
Fig. 9b). Resting module S129 serves as a photosynthetic biocatalyst 
for the simultaneous conversion of these hydrolysates into a maximum 
of 2,475.2 ± 4.1 mg l−1 of pHS and 931.5 ± 5.2 mg l−1 of pVG (Fig. 4e). These 
results indicate the feasibility of the value-added use of waste resources 
by the resting cellular catalysis module.

Multidimensional engineering for efficiency improvement
Light-driven CO2 conversion using photoautotrophic microorgan-
isms is hampered by redundant endogenous enzymes12,13. Thus, solar-
dependent biomanufacturing of unstable intracellular products  
(for example, aromatic aldehydes) remains an ongoing challenge. 
To demonstrate the potential of our iPRCC strategy, we attempted 
to convert CO2 into cinnamaldehyde. We initially extended the CA  
synthesis pathway by introducing carboxylic acid reductase (CAR) and 
phosphopantetheinyl transferase (SFP) into the CA-overproducing 
strain44. However, no cinnamaldehyde was detected in the engineered 
strain S130, and, therefore, we surmised that cinnamaldehyde was rap-
idly converted by endogenous alcohol dehydrogenases (ADHs). Next, a 
potential ADH (synpcc7942_0459) was deleted, and the resulting strain 
S131 produced trace amounts of cinnamaldehyde (~1.1 mg l−1; Supple-
mentary Fig. 10a). Aromatic aldehydes are vulnerable to metabolism 
by more than ten endogenous ADHs and aldo-keto reductases (AKRs) 
in many microorganisms, and selecting and knocking out the correct 
target genes to entirely eliminate redundant activity is challenging in 
underexplored photosynthetic strains15,25. Using the iPRCC strategy, we 
constructed a resting cellular catalysis module that efficiently converts 

CA into cinnamaldehyde (CAD). Here, E. coli was the primary chassis for 
sophisticated genetic tools and maturing high-throughput workflows, 
and it was easily manipulated to eliminate redundant endogenous 
enzymes15,21. We constructed a RARE chassis using the clustered regu-
larly interspaced short palindromic repeats (CRISPR)–Cas9 system 
to delete five ADH coding genes and three AKR coding genes in E. coli, 
and CAR and SFP were then overexpressed (Fig. 5a). Subsequently, 
125.1 ± 2.0 mg l−1 of CAD was obtained directly from CO2 by interfacing 
carbon sequestration module S118 with catalysis module E112 (Fig. 5b), 
representing a more than 114-fold improvement compared with the 
monoculture. No significant change in the cell densities and ratios was 
observed during bioconversion over 10 min (Fig. 5c and Supplemen-
tary Fig. 11). Vanillin, a widely used aromatic aldehyde24, could also be 
produced from CO2 using the iPRCC strategy (Fig. 5d). To achieve this, 
we paired the carbon sequestration module S128 with a downstream 
heterogeneous catalysis module E114 to produce 18.1 ± 0.4 mg l−1 of 
vanillin in 10 min, representing a 45-fold improvement compared with 
the monoculture (S133, 0.4 mg l−1; Fig. 5e and Supplementary Fig. 10b).

In addition to volatile and intracellular unstable products, we 
further widened the scope of light-driven biosynthesis by generating 
photosensitive products that seem unlikely to be obtained by solar-
dependent biomanufacturing due to light-induced decomposition. We 
synthesized photosensitive curcumin directly from CO2 by extending 
the FA pathway by introducing 4-coumaroyl coenzyme A (CoA) ligase 
(4CL) and curcuminoid synthase (CUS)45. As the engineered strain S134 
produced only a tiny quantity (<1 mg l−1) of curcumin (Supplementary 
Fig. 10d), we speculated that this photosensitive compound decom-
posed during illumination of the culture. Using the iPRCC strategy, the 
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CO2-to-curcumin route can be divided into a CO2-to-FA sequestration 
module (light module) and an FA-to-curcumin catalysis module (dark 
module) to avoid light-induced decomposition (Fig. 6a). Because S128 
can serve as a carbon sequestration module, a catalysis module that 
efficiently converts FA into curcumin should be constructed to test our 
hypothesis. First, the introduction of 4CL and CUS into E. coli (strain 
E115) resulted in the production of 8.8 ± 0.5 mg l−1 of curcumin. Then, 
the endogenous curcumin reductase (CurA) was knocked out (strain 
E116), which produced 11.5 ± 0.4 mg l−1 of curcumin (Fig. 6b). Further-
more, acetyl-CoA carboxylase (ACC) was overexpressed to improve 
intracellular malonyl-CoA levels, which enabled a curcumin titre of 
17.6 ± 0.6 mg l−1 (strain E117). Next, to further enhance FA bioconver-
sion, the unnatural fusion of 4CL and CUS was engineered to channel 
substrates into sequential reactions. In this approach, it is critical to 
design and optimize the interpeptide linkers46. By combining advanced 
liquid-handling technologies and artificial protein biosensors, we 
explored an automated cell-free high-throughput (auto-CFHT) work-
flow to accelerate linker optimization (Fig. 6c). We screened a library 
of hundreds of linkers (Supplementary Table 3), and the flexible linker 
16 (L-16) showed the best performance (Fig. 6d). To our knowledge, 
this represents the highest number of linkers tested for biosynthesis in 
vitro. Intriguingly, the best fusion protein has better spatial proximity 
(shorter interdistance and more face-to-face channels)47, which may 
explain why the catalytic efficiency was higher (Supplementary Fig. 12). 

Replacing 4CL and CUS with fusion proteins enhanced the curcumin 
titre to 30.1 ± 0.5 mg l−1 (E120, with L-16), representing a 71% improve-
ment (Fig. 6b). Here, the results of in vivo and in vitro experiments 
showed a positive correlation (Fig. 6b,d and Supplementary Fig. 12e). 
Subsequently, by interfacing carbon sequestration module S128 with 
catalysis module E120, 20.8 mg l−1 of curcumin was obtained directly 
from CO2 (Fig. 6e,f), representing a 46-fold improvement compared 
with the monoculture. No significant change in the cell densities and 
ratios was observed during conversion for 2 h (Supplementary Fig. 11d).  
Another photosensitive compound, scopoletin, could also be produced 
from CO2. Combining carbon sequestration module S128 with catalysis 
module E121 produced 18.4 ± 0.6 mg l−1 of scopoletin, representing a 
61-fold improvement compared with the monoculture (S135, 0.3 mg l−1; 
Fig. 6f). Our results reveal that the carbon-negative flexible platform 
based on the iPRCC strategy dramatically expands the scope of  
light-driven biosynthesis.

Expanding the carbon-negative flexible platform
The iPRCC strategy enables CO2-to-molecule conversion by modu-
lar design, and the carbon sequestration modules developed here 
could convert CO2 into phenolic acids, the gatekeeper molecules for 
polyphenol biosynthesis48. Thus, coupling these carbon sequestra-
tion modules with other autotrophic/heterotrophic catalysis mod-
ules that harbour complementary pathways could yield a range of 
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valuable natural products (Fig. 7a). To validate this concept, we 
constructed three new catalytic modules (E122, E123 and E124) for 
the efficient conversion of phenolic acids, in addition to the cata-
lytic modules developed for CAD, vanillin, curcumin and scopole-
tin production (Supplementary Fig. 13). Interfacing the carbon 
sequestration modules S118 or S122 with catalysis modules E122, 
E123 and E124 gave 143.6 ± 5.3 mg l−1 of pinosylvin, 152.7 ± 4.3 mg l−1 

of pinocembrin, 102.1 ± 7.3 mg l−1 of gastrodin, 132.1 ± 4.0 mg l−1  
of resveratrol and 122.5 ± 2.9 mg l−1 of naringenin directly from CO2 
(Fig. 7b,c). Compared with the results of previous research on mono-
cultures (constructs SP-15 and SP-16 from S. elongatus, Supplementary 
Fig. 13d)49, the titres of resveratrol and naringenin were dramatically 
enhanced 63- and 31-fold, respectively, using the iPRCC strategy  
(Fig. 7c). It is important to note that while our approach can be readily 
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adapted to a wide range of commodity chemicals, there is still room  
for improvement.

Next, we sought to ascertain the applicability of the iPRCC process 
to scaled-up fermentation. The carbon sequestration modules were 
cultured in a 12-l photobioreactor, and phenolic acid production was 
at least 120% higher (Supplementary Fig. 14). By interfacing the pho-
tobioreactor with a 1.5-l fermenter (Fig. 7d), up to 1.7 g l−1 of natural 
products could be successfully achieved (Fig. 7e). The productiv-
ity of this process is close to that of some heterotrophic organisms, 
and the highest titre obtained here is even higher than that of many  
heterotrophic microorganisms using carbohydrates (Supplementary 
Table 4 and Supplementary Fig. 15). A key benefit of solar-based bio-
manufacturing is its negative carbon footprint. Not taking into account 
carbon absorption during plant growth, traditional biomanufacturing 
processes depend on sugar-based feedstocks and are associated with 
net-positive CO2 emissions, contributing to global warming43,50, for 
instance, at least 11.9 kgCO2 equivalents (kgCO2e) per kg of produced 
styrene and 31.4 kgCO2e kg−1 of produced vanillin. Conversely, solar-
based biomanufacturing effectively locks carbon into the products. We 
estimated that 17.2–180.9 tCO2 can be sequestered for 1 tonne of target 
product (a negative carbon footprint of −17.2 to −180.9 kgCO2e kg−1 
of products) by using the iPRCC strategy (Fig. 7f). Accordingly, this 
easy-to-develop and flexible biotechnique has unique advantages for 
carbon-negative manufacturing and the circular economy.

Discussion and conclusion
Climate change is a pervasive threat to biodiversity, the economy and 
the overall quality of life. Light-driven CO2 valorization using synthetic 
biology promises to simultaneously alleviate climate warming and 
achieve sustainable manufacturing5–7. However, the molecular tools and 
automated workflows available for genetic engineering in photosyn-
thetic organisms lag far behind those available for the commonly used 
heterotrophic workhorses9. Nowadays, synthetic phototrophic com-
munities have become increasingly important and attractive for their 
great potential in the circular bioeconomy16–19,51–54. They artfully break 
up the CO2-to-molecule conversion route into carbon sequestration and 
biosynthesis modules for the division of metabolic labour18,19. A number 
of phototrophic communities containing cyanobacteria and different 
heterotrophic partners have been successfully established for chemical 
production directly from CO2 (Supplementary Table 5). However, the 
one-pot autotroph–heterotroph co-culture does not seem to address 
the long-standing constraints of light-driven biosynthesis, such as the 
light-induced decomposition of target products. In this study, we have 
developed a viable and potentially general CO2 valorization platform 
based on a modular strategy called iPRCC. For the carbon sequestra-
tion module, the CO2 fixation rate was notably improved by metabolic 
network remodelling, and an ingenious self-modulation mechanism 
in the photosynthetic system has been proposed. Benefiting from 
the sophisticated genetic tools available for E. coli, we implemented 
substantial strain engineering to rapidly generate and optimize a series 
of resting cellular catalysis modules. In particular, we adopted the auto-
CFHT workflow to accelerate linker optimization markedly. Unlike the 
commonly used automated high-throughput biofoundry pipelines, 
which require numerous pieces of equipment55, only an integrated 
fluent automation workstation is sufficient for auto-CFHT, which can 
also be used for pathway prototyping and cell-free biomanufactur-
ing. The iPRCC strategy provides a roadmap for widening the product 
scope of light-driven biosynthesis, and more than ten valuable mol-
ecules have been manufactured sustainably from CO2 (Supplementary  
Fig. 16). Remarkably, many of the natural compounds produced here 
are historically challenging to synthesize, while they are widely used as 
active ingredients in medicine. For example, scopoletin has consider-
able potential for combating the COVID-19 pandemic56. Compared with 
monocultures, the titres of the products obtained by the iPRCC strategy 
were improved by up to two orders of magnitude, and gram-per-litre 

levels were achieved through scaled-up fermentation, demonstrating 
the superiority of the iPRCC system.

The choice of mediator chemicals is vital for establishing an 
iPRCC-based carbon-negative platform, and there are several selec-
tion criteria that need to be considered: (1) high photostability and low 
volatility, (2) resistance to endogenous enzymes, (3) not an available 
carbon source, (4) easily secreted into the medium, (5) derived from 
high-flux pathways and (6) preferably metabolite nodes with strong 
expansibility. In this study, we chose phenolic acids, the gatekeepers 
of the phenylpropanoid biosynthesis pathway, as mediator chemicals. 
Thus, an enormous array of natural products could be obtained by 
simply replacing the catalytic modules with newly constructed or 
already existing modules. In addition, many precursor substances, 
such as mevalonate and lactate, are suitable mediators of the carbon-
negative biosynthesis of terpenes, degradable plastics and other valu-
able compounds57,58. It is important to note that the catalysis modules 
we used here were mainly based on E. coli for convenient engineering. 
However, the culture of heterotrophic microorganisms requires a spe-
cific organic carbon and nitrogen source. This nutritional requirement 
can be solved in two ways: (1) by using photosynthetic catalysis modules 
as an alternative to that used for the biosynthesis of olefins and (2) by 
converting the biomass from the carbon sequestration module into 
carbohydrate-rich and organic nitrogen-rich feedstock for feeding 
the catalysis modules. Also, the alginate encapsulation technology 
is expected to stabilize and recycle the catalysis modules59. Although 
we used a photobioreactor for scaled-up fermentation, an outdoor 
pond system should further reduce large-scale manufacturing costs. 
A recent study has suggested that scaling up the semi-continuous 
cultivation of S. elongatus in an outdoor pond system could bring the 
minimum biomass price down to US$281 per tonne (ref. 60). Thus, our 
carbon-negative flexible platform may enable economically competi-
tive applications in broader industries.

In conclusion, the iPRCC strategy provides a general carbon-
negative platform for converting CO2 into a wide range of commodity 
chemicals. In addition, the dual-mode process can be easily adapted 
to other target products because of its compatibility with existing 
microbial cell factories. This may facilitate the further development 
of light-driven synthetic biology. The other key benefit offered by 
light-driven biomanufacturing is its negative carbon footprint, and 
using CO2 instead of sugars as the initial feedstock decouples biosyn-
thesis from commodity prices. For example, by a back-of-the-envelope 
calculation, at least 100 tonnes of CO2 can be sequestered for 1 tonne 
of vanillin. Additionally, the rising carbon tax (for example, Can$20 
per tonne increasing to Can$170 per tonne by 2030 in Canada)61 may 
facilitate this carbon-negative manufacturing. We hope this broadly 
applicable platform will boost the bioindustry of CO2 reduction for a 
more sustainable future.

Methods
Transformation of S. elongatus
Plasmids were naturally transformed into S. elongatus as previously 
described.49 Strains were grown to an OD730 of about 0.6, and then 2 μg 
of plasmid DNA was added to 500 μl cultures. The strains were spread 
on BG-11 plates supplemented with spectinomycin (20 μg ml−1) after 
12 h of culture in the dark. All inserted genes were amplified by PCR and 
sequencing to confirm that they were integrated into the correct site.

Carbon partitioning and carbon emission analysis
S. elongatus cells were collected and dried at 80 °C for 18 h and then 
measured gravimetrically; the dry cell weight was regarded as the cell 
biomass. Carbon partitioning (PCP) is equal to the increased carbon of 
the products (CA, free l-Phe and free l-Tyr) divided by the sum of the 
increased carbon: PCP = (WCA + WPhe + WTyr)/(WCB × CC + WCA + WPhe + WTyr) ×  
100%, where WCB is the increased cell biomass, CC is the carbon content 
of the cell biomass (51.34%)29, and WCA, WPhe and WTyr are the increased 
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carbon in CA, l-Phe and l-Tyr, respectively. The average carbon fixation 
rate, RCO2 R, was calculated from the sum of the increased carbon  
and specific growth rate: RCO2 = (WCB × CC + WCA + WPhe + WTyr)/ POD730 /T, 
where POD730 is the average growth of S. elongatus per day and T is the 
time (day). The amount of carbon in the products was calculated from 
the product titres (mmol l−1), multiplied by 9 (the number of molecules 
of CO2 fixed per molecule of CA, l-Phe or l-Tyr produced). The increased 
carbon was calculated by taking the carbon measured at one time point 
and subtracting 99% of the carbon measured at the previous time point 
(1% of the culture volume was replaced at each time point due to sam-
pling). When biosynthesis of target aromatics from glucose in industrial 
microorganisms, glucose (C6H12O6) was mainly used for the products 
and accumulation of biomass (C4H7O1.5N) that causes about one-third 
loss of the carbon atoms to CO2. Assuming that all carbon atoms in 
glucose were converted into products, biomass and CO2, by a back-of-
the-envelope calculation, the minimum carbon emission during tra-
ditional biosynthesis, ECTB, of a target chemical can be calculated as 
follows: ECTB = 2 × (CGlucose − CProduct × NProduct/Glucose) × MCO2 /CProduct/MProduct, 
where CGlucose and CProduct are the molar concentrations of consumed 
glucose and generated product, respectively, NProcuct/Glucose is the number 
of carbon atoms in the product divided by the number of carbon atoms 
in glucose (six), and MCO2 and MProduct are the molecular weights of CO2 
and the product, respectively. By a back-of-the-envelope calculation, 
the minimum carbon emission based on the iPRCC strategy, ECiPRCC-O, 
for α-olefins can be calculated as follows: ECiPRCC-O = −(WCB-P × CC × MCO2/ 
MC × VP + WCA × MCO2 /MProcuct × VP + WCB-R × CC × MCO2 /MC × VF)/TProduct, 
where VP and VF are the volume of the carbon sequestration module  
in the photobioreactor and the volume of the cellular catalysis mod-
ule in the fermenter, respectively, and TProduct is the titre of the product. 
WCB-P and WCB-R refer as the biomass of carbon sequestration module 
and photosynthetic catalysis module, respectively. MC = 12. The mini-
mum carbon emission based on the iPRCC strategy, ECiPRCC, for other 
products can be calculated as follows: ECiPRCC = −(WCB-P × CC × MCO2/ 
MC × VP + WCA × MCO2 /MMediator × VP − WCB-R × CCE × MCO2 /MC × VF)/TProduct. 
CCE indicates the carbon content of emitted CO2 (two molecules of 
carbon per C4H7O1.5N) for the accumulation of E. coli biomass (C4H7O1.5N, 
M = 93): (12 × 2)/93. MMediator indicates the molecular weight of mediator 
chemical. The positive and negative values of EC indicate the net emis-
sion and net absorption of CO2, respectively.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of the study are available in the paper 
and its Supplementary Information. Source data are provided with 
this paper.
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