Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermolecular trans-bis-silylation of terminal alkynes

Abstract

Addition of interelement compounds across alkynes is a straightforward strategy for the synthesis of densely functionalized alkenes, which are versatile units in numerous biologically active compounds. Of these processes the bis-silylation of alkynes is of particular interest, due to the synthetic use of the alkenyl silane reaction products. While cis-bis-silylation of alkynes is well known, trans-bis-silyation of alkynes is relatively underdeveloped. Here, we report the intermolecular trans-bis-silylation of terminal alkynes, using Pd-catalysis and disilane reagent 8-(2-substituted-1,1,2,2-tetramethyldisilanyl)quinoline (TMDQ), to selectively form trans-bis-silylated alkenes. The reaction process was found to be compatible with aryl and alkyl alkynes as well as those bearing electron-withdrawing groups and other alkenyl or alkynyl functionalities. The use of the reaction was displayed through late-stage functionalization of terminal alkynes bearing natural product or drug motifs and onward synthetic transformations of the trans-bis-silylated alkenes reaction products. Experimental and computational mechanistic studies reveal that the reaction probably proceeds through a combined cis-bis-silylation and Z/E isomerization process and that the use of TMDQ as the limiting reagent is key to the desired reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State-of-art of transition metal-catalysed E–Eʹ bond addition of alkynes and our reaction design.
Fig. 2: Late-stage functionalization of natural products and drug derivatives.
Fig. 3: Synthetic uses of these trans-bis-silylated alkenes.
Fig. 4: Mechanistic studies.
Fig. 5: Proposed catalytic cycle and DFT calculation.

Similar content being viewed by others

Data availability

Full experimental procedures and spectral data for this study are included in the Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2217001 (3aa), 2217002 (3am) and 2217003 (6aa). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Trost, B. M. & Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (Wiley, 2014).

    Google Scholar 

  2. Stang, P. J. & Diederich, F. Modern Acetylene Chemistry (Wiley, 2008).

  3. Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 114, 1743–1760 (2014).

    CAS  PubMed  Google Scholar 

  4. Trotus, I.-T., Zimmermann, T. & Schuth, F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem. Rev. 114, 1761–1782 (2014).

    CAS  PubMed  Google Scholar 

  5. Chinchilla, R. & Najera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev. 114, 1783–1826 (2014).

    CAS  PubMed  Google Scholar 

  6. Beletskaya, I. & Moberg, C. Element–element addition to alkynes catalyzed by the group 10 metals. Chem. Rev. 99, 3435–3461 (1999).

    CAS  PubMed  Google Scholar 

  7. Suginome, M. & Ito, Y. Transition-metal-catalyzed additions of silicon–silicon and silicon–heteroatom bonds to unsaturated organic molecules. Chem. Rev. 100, 3221–3256 (2000).

    CAS  PubMed  Google Scholar 

  8. Beletskaya, I. & Moberg, C. Element–element additions to unsaturated carbon–carbon bonds catalyzed by transition metal complexes. Chem. Rev. 106, 2320–2354 (2006).

    CAS  PubMed  Google Scholar 

  9. Feng, J. J., Mao, W., Zhang, L. & Oestreich, M. Activation of the Si-B interelement bond related to catalysis. Chem. Soc. Rev. 50, 2010–2073 (2021).

    CAS  PubMed  Google Scholar 

  10. Ansell, M. B., Navarro, O. & Spencer, J. Transition metal catalyzed element–elementʹ additions to alkynes. Coordin. Chem. Rev. 336, 54–77 (2017).

    CAS  Google Scholar 

  11. Suginome, M., Matsuda, T., Ohmura, T., Seki, A. & Murakami, M. in Comprehensive Organometallic Chemistry III Vol. 10 (eds Mingos, D. M. P. & Crabtree, R.) 725–787 (Elsevier, 2007).

  12. Negishi, E., Wang, G., Rao, H. & Xu, Z. Alkyne elementometalation-Pd-catalyzed cross-coupling. Toward synthesis of all conceivable types of acyclic alkenes in high yields, efficiently, selectively, economically, and safely: ‘green’ way. J. Org. Chem. 75, 3151–3182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).

    CAS  PubMed  Google Scholar 

  14. Mu, Y., Nguyen, T. T., Koh, M. J., Schrock, R. R. & Hoveyda, A. H. E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Nat. Chem. 11, 478–487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Prunet, J. Progress in metathesis through natural product synthesis. Eur. J. Org. Chem. 2011, 3634–3647 (2011).

    CAS  Google Scholar 

  16. Eissen, M. & Lenoir, D. Mass efficiency of alkene syntheses with tri- and tetrasubstituted double bonds. ACS Sustain. Chem. Eng. 5, 10459–10473 (2017).

    CAS  Google Scholar 

  17. Liu, C.-F. et al. Olefin functionalization/isomerization enables stereoselective alkene synthesis. Nat. Catal. 4, 674–683 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bottoni, A., Higueruelo, A. P. & Miscione, G. P. A DFT computational study of the bis-silylation reaction of acetylene catalyzed by palladium complexes. J. Am. Chem. Soc. 124, 5506–5513 (2002).

    CAS  PubMed  Google Scholar 

  19. Hada, M. et al. Theoretical study on the reaction mechanism and regioselectivity of silastannation of acetylenes with a palladium catalyst. J. Am. Chem. Soc. 116, 8754–8765 (1994).

    CAS  Google Scholar 

  20. Murakami, M., Yoshida, T., Kawanami, S. & Ito, Y. Synthesis, structure, and reaction of the first thermally stable cis-(silyl)(stannyl)palladium(II) complex. J. Am. Chem. Soc. 117, 6408–6409 (1995).

    CAS  Google Scholar 

  21. Nagashima, Y., Hirano, K., Takita, R. & Uchiyama, M. Trans-diborylation of alkynes: pseudo-intramolecular strategy utilizing a propargylic alcohol unit. J. Am. Chem. Soc. 136, 8532–8535 (2014).

    CAS  PubMed  Google Scholar 

  22. Suzuki, K., Sugihara, N., Nishimoto, Y. & Yasuda, M. anti-Selective borylstannylation of alkynes with (o-phenylenediaminato)borylstannanes by a radical mechanism. Angew. Chem. Int. Ed. 61, e202201883 (2022).

    CAS  Google Scholar 

  23. Romain, E. et al. Trans-selective radical silylzincation of ynamides. Angew. Chem., Int. Ed. 53, 11333–11337 (2014).

    CAS  Google Scholar 

  24. Ohmura, T., Oshima, K. & Suginome, M. Palladium-catalysed cis- and trans-silaboration of terminal alkynes: complementary access to stereo-defined trisubstituted alkenes. Chem. Commun. 2008, 1416–1418 (2008).

    Google Scholar 

  25. Nagao, K., Ohmiya, H. & Sawamura, M. Anti-selective vicinal silaboration and diboration of alkynoates through phosphine organocatalysis. Org. Lett. 17, 1304–1307 (2015).

    CAS  PubMed  Google Scholar 

  26. Hiyama, T. & Oestreich, M. Organosilicon Chemistry: Novel Approaches and Reactions (Wiley-VCH, 2019).

    Google Scholar 

  27. Jones, R. G., Ando, W. & Chojnowski, J. Silicon-Containing Polymers (Kluwer Academic Publishers, 2000).

    Google Scholar 

  28. Zelisko, P. M. Bio-Inspired Silicon-Based Materials (Springer, 2014).

  29. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).

    CAS  PubMed  Google Scholar 

  30. Ramesh, R. & Reddy, D. S. Quest for novel chemical entities through incorporation of silicon in drug scaffolds. J. Med. Chem. 61, 3779–3798 (2018).

    CAS  PubMed  Google Scholar 

  31. Dong, J. et al. Manganese-catalysed divergent silylation of alkenes. Nat. Chem. 13, 182–190 (2021).

    CAS  PubMed  Google Scholar 

  32. Toutov, A. A. et al. Silylation of C−H bonds in aromatic heterocycles by an earth-abundant metal catalyst. Nature 518, 80–84 (2015).

    CAS  PubMed  Google Scholar 

  33. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C−H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    CAS  PubMed  Google Scholar 

  34. Jia, X. & Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nat. Chem. 8, 157–161 (2016).

    CAS  PubMed  Google Scholar 

  35. Suginome, M. & Ito, Y. Activation of silicon–silicon σ bonds by transition-metal complexes: synthesis and catalysis of new organosilyl transition-metal complexes. J. Chem. Soc., Dalton Trans. 1998, 1925–1934 (1998).

    Google Scholar 

  36. Sakurai, H., Kamiyama, Y. & Nakadaira, Y. Novel [σ+π] reactions of hexaorganodisilanes with acetylenes catalyzed by palladium complexes. J. Am. Chem. Soc. 97, 931–932 (1975).

    CAS  Google Scholar 

  37. Ito, Y., Suginome, M. & Murakami, M. Palladium(II) acetate-tert-alkyl isocyanide as a highly efficient catalyst for the inter- and intramolecular bis-silylation of carbon-carbon triple bonds. J. Org. Chem. 56, 1948–1951 (1991).

    CAS  Google Scholar 

  38. Ozawa, F., Sugawara, M. & Hayashi, T. A new reactive system for catalytic bis-silylation of acetylenes and olefins. Organometallics 13, 3237–3243 (1994).

    CAS  Google Scholar 

  39. Braunschweig, H. & Kupfer, T. Transition-metal-catalyzed bis-silylation of propyne by [2]chromoarenophanes. Organometallics 26, 4634–4638 (2007).

    CAS  Google Scholar 

  40. Ansell, M. B., Roberts, D. E., Cloke, F. G. N., Navarro, O. & Spencer, J. Synthesis of an [(NHC)2Pd(SiMe3)2] complex and catalytic cis-bis(silyl)ations of alkynes with unactivated disilanes. Angew. Chem. Int. Ed. 54, 5578–5582 (2015).

    CAS  Google Scholar 

  41. Ahmad, M., Gaumont, A. C., Durandetti, M. & Maddaluno, J. Direct syn addition of two silicon atoms to a C≡C triple bond by Si−Si bond activation: access to reactive disilylated olefins. Angew. Chem. Int. Ed. 56, 2464–2468 (2017).

    CAS  Google Scholar 

  42. Xiao, P., Cao, Y., Gui, Y., Gao, L. & Song, Z. Me3Si–SiMe2[oCON(iPr)2–C6H4]: an unsymmetrical disilane reagent for regio- and stereoselective bis-silylation of alkynes. Angew. Chem. Int. Ed. 57, 4769–4773 (2018).

    CAS  Google Scholar 

  43. Matsuda, T. & Ichioka, Y. Rhodium-catalysed intramolecular trans-bis-silylation of alkynes to synthesise 3-silyl-1-benzosiloles. Org. Biomol. Chem. 10, 3175–3177 (2012).

    CAS  PubMed  Google Scholar 

  44. Naka, A., Shimomura, N. & Kobayashi, H. Synthesis of pyridine-fused siloles by palladium-catalyzed intramolecular bis-silylation. ACS Omega 7, 30369–30375 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. He, T. et al. Rhodium catalyzed intermolecular trans-disilylation of alkynones with unactivated disilanes. Angew. Chem. Int. Ed. 57, 10868–10872 (2018).

    CAS  Google Scholar 

  46. Zhang, Y., Wang, X.-C., Ju, C.-W. & Zhao, D. Bis-silylation of internal alkynes enabled by Ni(0) catalysis. Nat. Commun. 12, 68 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    CAS  PubMed  Google Scholar 

  48. Zafrani, Y. et al. Difluoromethyl bioisostere: examining the ‘lipophilic hydrogen bond donor’ concept. J. Med. Chem. 60, 797–804 (2017).

    CAS  PubMed  Google Scholar 

  49. Zhang, L.-H. et al. The synthetic compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-α production with antitumor activity. Cancer Res. 66, 951–959 (2006).

    CAS  PubMed  Google Scholar 

  50. Ruchelman, A. L. et al. 1,1-Diarylalkenes as anticancer agents: dual inhibitors of tubulin polymerization and phosphodiesterase 4. Bioorg. Med. Chem. 19, 6356–6374 (2011).

    CAS  PubMed  Google Scholar 

  51. Kupfer, D. & Bulger, W. H. Inactivation of the uterine estrogen receptor binding of estradiol during P-450 catalyzed metabolism of chlorotrianisene (TACE). Speculation that TACE antiestrogenic activity involves covalent binding to the estrogen receptor. FEBS Lett. 261, 59–62 (1990).

    CAS  PubMed  Google Scholar 

  52. Bollag, W. & Ott, F. Inhibition of rat mammary carcinogenesis by an arotinoid without a polar end group. Eur. J. Cancer Clin. Oncol. 23, 131–135 (1987).

    CAS  PubMed  Google Scholar 

  53. Guerrero, P. G. Jr. et al. Synthesis of arotinoid acid and temarotene using mixed (Z)-1,2-bis(organylchalcogene)-1-alkene as precursor. Tetrahedron Lett. 53, 5302–5305 (2012).

    CAS  Google Scholar 

  54. Chen, H.-C., Wu, Y., Yu, Y. & Wang, P. Pd-catalyzed isomerization of alkenes. Chin. J. Org. Chem. 42, 742–757 (2022).

    CAS  Google Scholar 

  55. Fiorito, D., Scaringi, S. & Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).

    CAS  PubMed  Google Scholar 

  56. Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerisation of alkenes: the pinnacle of atom economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

    CAS  Google Scholar 

  57. Albéniz, A. C., Espinet, P., López-Fernández, R. & Sen, A. A warning on the use of radical traps as a test for radical mechanisms: they react with palladium hydrido complexes. J. Am. Chem. Soc. 124, 11278–11279 (2002).

    PubMed  Google Scholar 

  58. Ozawa, F. & Kamite, J. Mechanistic study on the insertion of phenylacetylene into cis-bis(silyl)platinum(II) complexes. Organometallics 17, 5630–5639 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

D.Z. is grateful for the financial support from the National Natural Science Foundation of China (grant nos. 22022103, 21871146, 22188101 and 22221002, D.Z.), the National Key Research and Development Program of China (grant nos. 2019YFA0210500 and 2020YFA0711504, D.Z.), the ‘Frontiers Science Center for New Organic Matter’, Nankai University (grant no. 63181206, D.Z.) and the Fundamental Research Funds for the Central Universities and Nankai University (D.Z.). X.H. is grateful for the financial support from National Natural Science Foundation of China (grant nos. 21873081 and 22122109, X.H.), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no. SN-ZJU-SIAS-006, X.H.), Beijing National Laboratory for Molecular Sciences (grant no. BNLMS202102, X.H.), CAS Youth Interdisciplinary Team (grant no. JCTD-2021-11, X.H.), Fundamental Research Funds for the Central Universities (grant nos. 226-2022-00140 and 226-2022-00224, X.H.), the Center of Chemistry for Frontier Technologies and Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province (grant no. PSFM 2021-01, X.H.), and the State Key Laboratory of Clean Energy Utilization (grant no. ZJUCEU2020007, X.H.). Calculations were performed on the high-performance computing system at Department of Chemistry, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., Y.Z. and K.Y. performed the experiments. X.H. and R.W. designed and carried out the DFT calculations. D.Z. conceived the concept, directed the project and wrote the paper.

Corresponding authors

Correspondence to Xin Hong or Dongbing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Boris Maryasin, Akinobu Naka, John Spencer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Figs. 1–4, Methods, Text, Experiments, NMR spectra, HRMS spectra and References.

Supplementary Data 1

Crystallographic data for 3aa, CCDC 2217001.

Supplementary Data 2

Crystallographic data for 3am, CCDC 2217002.

Supplementary Data 3

Crystallographic data for 6aa, CCDC 2217003.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zhang, Y., Wu, R. et al. Intermolecular trans-bis-silylation of terminal alkynes. Nat. Synth 2, 937–948 (2023). https://doi.org/10.1038/s44160-023-00325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00325-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing