Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic stereoselective synthesis of doubly, triply and quadruply twisted aromatic belts

Abstract

Twisted aromatic belt molecules provide unique topologies and complex chiralities for nanocarbon materials. However, a synthetic method for aromatic belts with multiple twists remains elusive. Here we report the catalytic and stereoselective synthesis of doubly, triply and quadruply twisted aromatic belts (up to e.r. = 98:2) via rhodium(I)-catalysed asymmetric [2 + 2 + 2] cycloadditions. The hybrid substrate design, consisting of curved metaphenylene units and linear paraphenylene units, overcomes the hurdles of conventional methods, that is, large twist strain and unravelling of twists during belt formation, allowing the coexistence of multiple P- and M-twists in a single belt molecule. Three-dimensional structures of the multiply twisted aromatic belts were confirmed by X-ray crystallography, revealing that their topology depends on the sequence of P- and M-twists. Decomposition analysis of the linking number (Lk) shows that the twisting number (Tw) of the triply twisted Möbius belt is Tw = 2.45, among the highest Tw found for twisted conjugated macrocycles. Analysis of the electron density of delocalized bonds reveals that the electronic structure has unique Lk-dependent topologies, such as a catenane and a trefoil knot.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Precedents of double-stranded twisted belts.
Fig. 2: Synthetic strategy to introduce multiple twists in an aromatic belt.
Fig. 3: Catalytic stereoselective synthesis of multiply twisted aromatic belts.
Fig. 4: X-ray crystal structures of 10, 12 and 14.
Fig. 5: Molecular topologies and electronic structures of multiply twisted aromatic belts.
Fig. 6: Photophysical and chiroptical properties of aromatic belts.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this article and its Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2220749 [(±)-10], CCDC 2220760 [(±)-12] and CCDC 2220761 (14). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Cairns, J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6, 208–213 (1963).

    CAS  PubMed  Google Scholar 

  2. Saether, O. et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34, 4147–4158 (1995).

    CAS  PubMed  Google Scholar 

  3. Hermann, M., Wassy, D. & Esser, B. Conjugated nanohoops incorporating donor, acceptor, hetero- or polycyclic aromatics. Angew. Chem. Int. Ed. 60, 15743–15766 (2021).

    CAS  Google Scholar 

  4. Guo, Q. H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).

    CAS  Google Scholar 

  5. Segawa, Y., Levine, D. R. & Itami, K. Topologically unique molecular nanocarbons. Acc. Chem. Res. 52, 2760–2767 (2019).

    CAS  PubMed  Google Scholar 

  6. Fernández-Garciá, J. M., Evans, P. J., Filippone, S., Herranz, M. Á. & Martín, N. Chiral molecular carbon nanostructures. Acc. Chem. Res. 52, 1565–1574 (2019).

    PubMed  Google Scholar 

  7. Rickhaus, M., Mayor, M. & Juríček, M. Chirality in curved polyaromatic systems. Chem. Soc. Rev. 46, 1643–1660 (2017).

    CAS  PubMed  Google Scholar 

  8. Fowler, P. W. & Rzepa, H. S. Aromaticity rules for cycles with arbitrary numbers of half-twists. Phys. Chem. Chem. Phys. 8, 1775–1777 (2006).

    CAS  PubMed  Google Scholar 

  9. Călugăreanu, G. Sur les classes d’isotopie des noeuds tridimensionnels et leurs invariants. Czech. Math. J. 11, 588–625 (1961).

    Google Scholar 

  10. Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 29, 1923–1928 (1964).

    Google Scholar 

  11. Rzepa, H. S. Möbius aromaticity and delocalization. Chem. Rev. 105, 3697–3715 (2005).

    CAS  PubMed  Google Scholar 

  12. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    CAS  PubMed  Google Scholar 

  13. Thulin, B. & Wennerström, O. Synthesis of [2.2](3,6)-phenanthrenophanediene. Acta Chem. Scand. 30, 369–371 (1976).

    Google Scholar 

  14. Saikawa, M., Nakamura, T., Uchida, J., Yamamura, M. & Nabeshima, T. Synthesis of figure-of-eight helical bisBODIPY macrocycles and their chiroptical properties. Chem. Commun. 52, 10727–10730 (2016).

    CAS  Google Scholar 

  15. Naulet, G. et al. Cyclic tris-[5]helicenes with single and triple twisted Möbius topologies and Möbius aromaticity. Chem. Sci. 9, 8930–8936 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Senthilkumar, K. et al. Lemniscular [16]cycloparaphenylene: a radially conjugated figure-eight aromatic molecule. J. Am. Chem. Soc. 141, 7421–7427 (2019).

    CAS  PubMed  Google Scholar 

  17. Wang, L. H. et al. Synthesis, structures, and properties of highly strained cyclophenylene–ethynylenes with axial and helical chirality. Angew. Chem. Int. Ed. 59, 17951–17957 (2020).

    CAS  Google Scholar 

  18. Kiel, G. R. et al. Expanded helicenes as synthons for chiral macrocyclic nanocarbons. J. Am. Chem. Soc. 142, 11084–11091 (2020).

    CAS  PubMed  Google Scholar 

  19. Kubo, H., Shimizu, D., Hirose, T. & Matsuda, K. Circularly polarized luminescence designed from molecular orbitals: a figure-eight-shaped [5]helicene dimer with D2 symmetry. Org. Lett. 22, 9276–9281 (2020).

    CAS  PubMed  Google Scholar 

  20. Schaub, T. A. et al. Exploration of the solid-state sorption properties of shape-persistent macrocyclic nanocarbons as bulk materials and small aggregates. J. Am. Chem. Soc. 142, 8763–8775 (2020).

    PubMed  Google Scholar 

  21. Nojima, Y., Hasegawa, M., Hara, N., Imai, Y. & Mazaki, Y. Small figure-eight luminophores: double-twisted tethered cyclic binaphthyls boost circularly polarized luminescence. Chem. Eur. J. 27, 5923–5929 (2021).

    CAS  PubMed  Google Scholar 

  22. Li, C. et al. Synthesis of imidazole-based [30]heptaphyrin and stable figure-eight [60]tetradecaphyrins via [5 + 2] condensations in one pot. Org. Lett. 23, 3746–3750 (2021).

    CAS  PubMed  Google Scholar 

  23. Wang, J., Ju, Y. Y., Low, K. H., Tan, Y. Z. & Liu, J. A molecular transformer: a π-conjugated macrocycle as an adaptable host. Angew. Chem. Int. Ed. 60, 11814–11818 (2021).

    CAS  Google Scholar 

  24. Schaller, G. R. et al. Design and synthesis of the first triply twisted Möbius annulene. Nat. Chem. 6, 608–613 (2014).

    CAS  PubMed  Google Scholar 

  25. Jiang, X. et al. Kinetic control in the synthesis of a Möbius tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J. Am. Chem. Soc. 142, 6493–6498 (2020).

    CAS  PubMed  Google Scholar 

  26. Soya, T., Mori, H. & Osuka, A. Quadruply twisted Hückel-aromatic dodecaphyrin. Angew. Chem. Int. Ed. 57, 15882–15886 (2018).

    CAS  Google Scholar 

  27. Stȩpień, M., Latos-Grazyński, L., Sprutta, N., Chwalisz, P. & Szterenberg, L. Expanded porphyrin with a split personality: a Hückel–Möbius aromaticity switch. Angew. Chem. Int. Ed. 46, 7869–7873 (2007).

    Google Scholar 

  28. Tanaka, Y. et al. Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. Angew. Chem. Int. Ed. 47, 681–684 (2008).

    CAS  Google Scholar 

  29. Pacholska-Dudziak, E. et al. Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. J. Am. Chem. Soc. 130, 6182–6195 (2008).

    CAS  PubMed  Google Scholar 

  30. Fan, Y.-Y. et al. An isolable catenane consisting of two Möbius conjugated nanohoops. Nat. Commun. 9, 3037 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    CAS  PubMed  Google Scholar 

  32. Luo, Z. et al. Toward Möbius and tubular cyclopolyarene nanorings via arylbutadiyne macrocycles. Angew. Chem. Int. Ed. 59, 14854–14860 (2020).

    CAS  Google Scholar 

  33. Qiu, Z. L. et al. Isolation of a carbon nanohoop with Möbius topology. Sci. China Chem. 64, 1004–1008 (2021).

    CAS  Google Scholar 

  34. Malinčík, J. et al. Circularly polarized luminescence in a Möbius helicene carbon nanohoop. Angew. Chem. Int. Ed. 61, e202208591 (2022).

    Google Scholar 

  35. Terabayashi, T. et al. Synthesis of twisted [N]cycloparaphenylene by alkene insertion. Angew. Chem. Int. Ed. 62, e202214960 (2023).

    CAS  Google Scholar 

  36. Walba, D. M., Richards, R. M. & Haltiwanger, R. C. Total synthesis of the first molecular Möbius strip. J. Am. Chem. Soc. 104, 3219–3221 (1982).

    CAS  Google Scholar 

  37. Nishigaki, S. et al. Synthesis of belt- and Möbius-shaped cycloparaphenylenes by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 141, 14955–14960 (2019).

    CAS  PubMed  Google Scholar 

  38. Wang, S. et al. Sulphur-embedded hydrocarbon belts: synthesis, structure and redox chemistry of cyclothianthrenes. Angew. Chem. Int. Ed. 60, 18443–18447 (2021).

    CAS  Google Scholar 

  39. Yuan, J. et al. A tubular belt and a Möbius strip with dynamic joints: synthesis, structure, and host–guest chemistry. Org. Lett. 23, 9554–9558 (2021).

    CAS  PubMed  Google Scholar 

  40. Segawa, Y. et al. Synthesis of a Möbius carbon nanobelt. Nat. Synth. 1, 535–541 (2022).

    Google Scholar 

  41. Cheng, X. J. et al. Twisted cucurbit[14]uril. Angew. Chem. Int. Ed. 52, 7252–7255 (2013).

    CAS  Google Scholar 

  42. Fan, W. et al. Synthesis and chiral resolution of twisted carbon nanobelts. J. Am. Chem. Soc. 143, 15924–15929 (2021).

    CAS  PubMed  Google Scholar 

  43. Krzeszewski, M., Ito, H. & Itami, K. Infinitene: a helically twisted figure-eight [12]circulene topoisomer. J. Am. Chem. Soc. 144, 862–871 (2022).

    CAS  PubMed  Google Scholar 

  44. Kohrs, D., Volkmann, J. & Wegner, H. A. Cycloparaphenylenes via [2 + 2 + 2] cycloaddition. Chem. Commun. 58, 7483–7494 (2022).

    CAS  Google Scholar 

  45. Matton, P., Huvelle, S., Haddad, M., Phansavath, P. & Ratovelomanana-Vidal, V. Recent progress in metal-catalyzed [2 + 2 + 2] cycloaddition reactions. Synthesis 54, 4–32 (2022).

    CAS  Google Scholar 

  46. Stará, I. G. & Starý, I. Helically chiral aromatics: the synthesis of helicenes by [2 + 2 + 2] cycloisomerization of π-electron systems. Acc. Chem. Res. 53, 144–158 (2020).

    PubMed  Google Scholar 

  47. Tanaka, K. Transition-Metal-Mediated Aromatic Ring Construction (Wiley, 2013).

  48. Pla-Quintana, A. & Roglans, A. The choice of rhodium catalysts in [2 + 2 + 2] cycloaddition reaction: a personal account. Molecules 27, 1332–1360 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanaka, K. Rhodium Catalysis in Organic Synthesis: Methods and Reactions (Wiley-VCH, 2019).

  50. Tran-Van, A. F. et al. Synthesis of substituted [8]cycloparaphenylenes by [2 + 2 + 2] cycloaddition. Org. Lett. 16, 1594–1597 (2014).

    CAS  PubMed  Google Scholar 

  51. Kohrs, D., Becker, J. & Wegner, H. A. A modular synthesis of substituted cycloparaphenylenes. Chem. Eur. J. 28, e202104239 (2022).

    PubMed  Google Scholar 

  52. Hermann, M. et al. Chiral dibenzopentalene-based conjugated nanohoops through stereoselective synthesis. Angew. Chem. Int. Ed. 60, 10680–10689 (2021).

    CAS  Google Scholar 

  53. Nogami, J. et al. Synthesis of cyclophenacene- and chiral-type cyclophenylene-naphthylene belts. Angew. Chem. Int. Ed. 61, e202200800 (2022).

    CAS  Google Scholar 

  54. Nogami, J. et al. Asymmetric synthesis, structures, and chiroptical properties of helical cycloparaphenylenes. Chem. Sci. 12, 7858–7865 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nogami, J. et al. Enantioselective synthesis of planar chiral zigzag-type cyclophenylene belts by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 142, 9834–9842 (2020).

    CAS  PubMed  Google Scholar 

  56. Sun, Z. et al. Finite phenine nanotubes with periodic vacancy defects. Science 363, 151–155 (2019).

    CAS  PubMed  Google Scholar 

  57. Ikemoto, K., Yang, S. & Naito, H. A nitrogen-doped nanotube molecule with atom vacancy defects. Nat. Commun. 11, 1807 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ikemoto, K., Harada, S., Yang, S., Matsuno, T. & Isobe, H. A defective nanotube molecule of C552H496N24 with pyridinic and pyrrolic nitrogen atoms. Angew. Chem. Int. Ed. 61, e202114305 (2022).

    CAS  Google Scholar 

  59. Bergman, H. M., Kiel, G. R., Handford, R. C., Liu, Y. & Tilley, T. D. Scalable, divergent synthesis of a high aspect ratio carbon nanobelt. J. Am. Chem. Soc. 143, 8619–8624 (2021).

    CAS  PubMed  Google Scholar 

  60. Xia, Z., Pun, S. H., Chen, H. & Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem. Int. Ed. 60, 10311–10318 (2021).

    CAS  Google Scholar 

  61. Szczepanik, D. W. et al. A uniform approach to the description of multicenter bonding. Phys. Chem. Chem. Phys. 16, 20514–20523 (2014).

    CAS  PubMed  Google Scholar 

  62. Herges, R. & Geuenich, D. Delocalization of electrons in molecules. J. Phys. Chem. A 105, 3214–3220 (2001).

    CAS  Google Scholar 

  63. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    CAS  PubMed  Google Scholar 

  64. Schleyer, Pv. R., Maerker, C., Dransfeld, A., Jiao, H. & Van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    CAS  PubMed  Google Scholar 

  65. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    CAS  PubMed  Google Scholar 

  66. Darzi, E. R. & Jasti, R. The dynamic, size-dependent properties of [5]-[12]cycloparaphenylenes. Chem. Soc. Rev. 44, 6401–6410 (2015).

    CAS  PubMed  Google Scholar 

  67. Fan, W. et al. Synthesis and chiral resolution of a triply twisted Möbius carbon nanobelt. Nat. Synth. 2, NATSYNTH-22111175 (2023).

    Google Scholar 

Download references

Acknowledgements

This research was supported partly by Grants-in-Aid for Scientific Research (numbers JP21K18949 and JP19H00893 to K.T., number JP21J22287 to J.N., number JP22H05346 to Y.N., number 20H02720 to K.M. and numbers 17H06173, 22H00320 and JP22H05125 to M.U.) from JSPS (Japan) and CREST (number JPMJCR19R2 to M.U.) from JST (Japan). We thank Takasago International Corporation for the gift of Segphos and H8-BINAP. A generous allotment of computational resources from TSUBAME (Tokyo Institute of Technology) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.N. designed the project, carried out experimental works and wrote a draft manuscript. J.N. and Y.N. carried out computational studies. D.H. performed X-ray crystal structure analyses of triply and quadruply twisted aromatic belts 12 and 14. K.M. and M.U. performed an X-ray crystal structure analysis of doubly twisted aromatic belt 10. K.T. designed, advised and directed the project, and wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Daisuke Hashizume or Ken Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Juan Casado Cordon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Synthetic experiments, chiral HPLC charts of 10, 12 and 13, X-ray crystallographic analyses of (±)-10, (±)-12 and 14, possible mechanism for stereoselective [2 + 2 + 2] cycloaddition, photophysical and chiroptical properties, DFT calculations, 1H, 13C and 2D NMR spectra of compounds, Supplementary Figs. 1–40 and Tables 1–36.

Supplementary Data 1

Crystal data for compound 10, CCDC 2220749.

Supplementary Data 2

Crystal data for compound 12, CCDC 2220760.

Supplementary Data 3

Crystal data for compound 14, CCDC 2220761.

Source data

Source Data Fig. 5

Statistical Source Data. xyz coordinate data and angular information used to calculate linking numbers for compounds 10, 12, 13, Möbius-type [10]CPP and triply twisted carbon nanobelt.

Source Data Fig. 6

Statistical Source Data. Raw data (.txt) of ultraviolet–visible absorption, fluorescence and ECD spectra of compounds 10, 11, 12, 13 and 14.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogami, J., Hashizume, D., Nagashima, Y. et al. Catalytic stereoselective synthesis of doubly, triply and quadruply twisted aromatic belts. Nat. Synth 2, 888–897 (2023). https://doi.org/10.1038/s44160-023-00318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00318-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing