Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis and chiral resolution of a triply twisted Möbius carbon nanobelt

Abstract

The atomically precise synthesis of topological molecular carbons such as Möbius carbon nanobelts (MCNBs) is a challenge in synthetic organic chemistry because it requires careful control of both twist and strain. So far, only one singly twisted MCNB has been reported and MCNBs with more than two twists remain unknown. Herein we report the facile synthesis of a triply twisted MCNB by rational design via a synthetic route involving Suzuki coupling-mediated macrocyclization, Bi(OTf)3-catalysed cyclization of vinyl ethers and oxidative dehydrogenation. The Möbius band-like structure was confirmed by X-ray crystallographic analysis, which also revealed the coexistence of (P,P,P) and (M,M,M) enantiomers. The racemic isomers were resolved by chiral HPLC and the isolated enantiomers exhibited a large absorption dissymmetry factor (|gabs| = 0.019) according to circular dichroism spectroscopy, which can be explained by the fully conjugated structure and the desirable orientation of the electric and magnetic transition moments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Möbius strip-like molecules with an odd number of twists.
Fig. 2: Synthetic route to the triply twisted Möbius carbon nanobelt 1.
Fig. 3: X-ray crystallographic structures of 2a and 1.
Fig. 4: Calculated StrainViz maps for 2a/2b and 1.
Fig. 5: Calculated 3D ICSS maps and LOL-π isosurface.
Fig. 6: Photophysical and chiroptical properties.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2242047 (2a) and 2242048 (1). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The experimental data and the characterization data are available in the Supplementary Information.

References

  1. Fernández-García, J. M., Evans, P. J., Filippone, S., Herranz, M. Á. & Martín, N. Chiral molecular carbon nanostructures. Acc. Chem. Res. 52, 1565–1574 (2019).

    Article  PubMed  Google Scholar 

  2. Segawa, Y., Levine, D. R. & Itami, K. Topologically unique molecular nanocarbons. Acc. Chem. Res. 52, 2760–2767 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, Q.-H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).

    Article  CAS  Google Scholar 

  4. Rzepa, H. S. Möbius aromaticity and delocalization. Chem. Rev. 105, 3697–3715 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 5, 1923–1928 (1964).

    Article  Google Scholar 

  6. Walba, D. M., Richards, R. M. & Haltiwanger, R. C. Total synthesis of the first molecular Moebius strip. J. Am. Chem. Soc. 104, 3219–3221 (1982).

    Article  CAS  Google Scholar 

  7. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Stępień, M., Latos-Grażyński, L., Sprutta, N., Chwalisz, P. & Szterenberg, L. Expanded porphyrin with a split personality: a Hückel–Möbius aromaticity switch. Angew. Chem. Int. Ed. 46, 7869–7873 (2007).

    Article  Google Scholar 

  9. Tanaka, Y. et al. Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. Angew. Chem. Int. Ed. 120, 693–696 (2018).

    Article  Google Scholar 

  10. Park, J. K. et al. Möbius aromaticity in N-fused [24]pentaphyrin upon Rh(I) metalation. J. Am. Chem. Soc. 130, 1824–1825 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Pacholska-Dudziak, E. et al. Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. J. Am. Chem. Soc. 130, 6182–6195 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Yoon, Z. S., Osuka, A. & Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nat. Chem. 1, 113–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 44, 2221–2304 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takaba, H., Omachi, H., Yamamoto, Y., Bouffard, J. & Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 48, 6112–6116 (2009).

    Article  CAS  Google Scholar 

  16. Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. 49, 757–759 (2010).

    Article  CAS  Google Scholar 

  17. Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2, 492 (2011).

    Article  Google Scholar 

  18. Qiu, Z. et al. Isolation of a carbon nanohoop with Möbius topology. Sci. China Chem. 64, 1004–1008 (2021).

    Article  CAS  Google Scholar 

  19. Malinčík, J. et al. Circularly polarized luminescence in a Möbius helicene carbon nanohoop. Angew. Chem. Int. Ed. 61, e202208591 (2022).

    Article  Google Scholar 

  20. Terabayashi, T. et al. Synthesis of twisted [n]cycloparaphenylene by alkene insertion. Angew. Chem. Int. Ed. 61, e202214960 (2022).

    Google Scholar 

  21. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Fan, Y.-Y. et al. An isolable catenane consisting of two Möbius conjugated nanohoops. Nat. Commun. 9, 3037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nishigaki, S. et al. Synthesis of belt- and Möbius-shaped cycloparaphenylenes by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 141, 14955–14960 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, S. et al. Sulphur-embedded hydrocarbon belts: synthesis, structure and redox chemistry of cyclothianthrenes. Angew. Chem. Int. Ed. 60, 18443–18447 (2021).

    Article  CAS  Google Scholar 

  25. Segawa, Y. et al. Synthesis of a Möbius carbon nanobelt. Nat. Synth. 1, 535–541 (2022).

    Article  Google Scholar 

  26. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, X. et al. Kinetic control in the synthesis of a Möbius tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. J. Am. Chem. Soc. 142, 6493–6498 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Schaller, G. R. et al. Design and synthesis of the first triply twisted Möbius annulene. Nat. Chem. 6, 608–613 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Naulet, G. et al. Cyclic tris-[5]helicenes with single and triple twisted Möbius topologies and Möbius aromaticity. Chem. Sci. 9, 8930–8936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murai, M., Hosokawa, N., Roy, D. & Takai, K. Bismuth-catalyzed synthesis of polycyclic aromatic hydrocarbons (PAHs) with a phenanthrene backbone via cyclization and aromatization of 2-(2-arylphenyl)vinyl ethers. Org. Lett. 16, 4134–4137 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Fan, W. et al. Facile synthesis of aryl-substituted cycloarenes via bismuth(III)triflate-catalyzed cyclization of vinyl ethers. CCS Chem. 2, 1445–1452 (2020).

    Google Scholar 

  32. Fan, W., Han, Y., Wang, X., Hou, X. & Wu, J. Expanded kekulenes. J. Am. Chem. Soc. 143, 13908–13916 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Fan, W. et al. Synthesis and chiral resolution of twisted carbon nanobelts. J. Am. Chem. Soc. 143, 15924–15929 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Khan, T. A., Fornefeld, T., Hübner, D., Vana, P. & Tietze, T. F. Palladium-catalyzed 4-fold domino reaction for the synthesis of a polymeric double switch. Org. Lett. 20, 2007–2010 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Colwell, C. E., Price, T. W., Stauch, T. & Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 11, 3923–3930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  37. Lu, T. & Chen, Q. A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020).

    Article  CAS  Google Scholar 

  38. Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Hasegawa, M., Nojima, Y. & Mazaki, Y. Circularly polarized luminescence in chiral π-conjugated macrocycles. ChemPhotoChem 5, 1042–1058 (2021).

    Article  CAS  Google Scholar 

  40. Satoa, S. et al. Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity. Proc. Natl Acad. Sci. USA 116, 5194–5195 (2019).

    Article  Google Scholar 

  41. Nogami, J. et al. Catalytic stereoselective synthesis of doubly, triply, and quadruply twisted aromatic belts. Nat. Synth. https://doi.org/10.1038/s44160-023-00318-2 (2023).

Download references

Acknowledgements

J.W. acknowledges financial support through an A*STAR AME IRG grant (A20E5c0089) and an NRF Investigatorship award (NRF-NRFI05-2019-0005). H.I. and T.M.F. thank KAKENHI (20H05672 and 22K20527) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.Wu and W.F. conceived the concept, designed the project and prepared the manuscript. H.I. and T.M.F. performed the chiral HPLC experiments, CD and CPL measurements and data analysis, and prepared the manuscript. W.F. performed the synthesis. W.F., J.Wang and X.H. performed the photophysical measurements. S.W., Y.H., H.W. and Y.N. contributed to the X-ray crystallographic analyses. W.F., Y.H., Q.Z. and Z.L. performed the computational studies.

Corresponding authors

Correspondence to Hiroyuki Isobe or Jishan Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Juan Casado Cordon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Section, Figs. 1–35, Tables 1–5, and NMR and mass spectra.

Supplementary Data 1

Cartesian coordinates of optimized structures from DFT calculations.

Supplementary Data 2

Crystal data for 2a (CCDC 2242047).

Supplementary Data 3

Crystal data for 1 (CCDC 2242048).

Source data

Source Data Fig. 6

Raw data of the absorption, fluorescence and CD spectra of 2b and 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Fukunaga, T.M., Wu, S. et al. Synthesis and chiral resolution of a triply twisted Möbius carbon nanobelt. Nat. Synth 2, 880–887 (2023). https://doi.org/10.1038/s44160-023-00317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00317-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing