Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A solution processible single-crystal porous organic polymer

Abstract

Synthetic organic polymers are typically insoluble polycrystalline or amorphous products rather than single crystals. Here we demonstrate that covalent polymer chains can achieve single-crystal form through the rational design of their hierarchical structure. Single-crystal X-ray diffraction analysis reveals that the polycondensation of 1,4-phenylenebisboronic acid yields a B4O52− cluster-based tetramer, which further extends into one-dimensional covalent chains that are physically crosslinked by hydrogen bonds and electrostatic interactions. These interactions ultimately afford a single crystal porous framework denoted as PHOF-1. Cryogenic electron microscopy and gel permeation chromatography studies indicate that the dissolved PHOF-1 maintains the consecutive one-dimensional chain structure with a very narrow molecular weight distribution. This solution processibility enables the continuous coating PHOF-1 onto a non-woven fabric to afford a composite textile capable of capturing NH3. The design strategy may open an avenue for the exploration of single-crystal porous polymer materials with precise structural information, confined pore spaces and straightforward solution processibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis route of PHOF-1.
Fig. 2: Hierarchical structure of PHOF-1.
Fig. 3: Stability and porosity of PHOF-1.
Fig. 4: Synthesis and reversible transformation of PHOF-1.
Fig. 5: NH3 capture performance of PHOF-1.
Fig. 6: Solution-processed PHOF-1 coating on fabrics.

Similar content being viewed by others

Data availability

Experimental data, characterization data and crystallographic data are provided in Supplementary Information. Meanwhile, the X-ray crystallographic data for PHOF-1, PHOF-1-Re and PHOF-1-NH3 have also been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. 2088646, 2088647 and 2239634, which can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk.

References

  1. Zhang, Y. & Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 41, 2083–2094 (2012).

    CAS  PubMed  Google Scholar 

  2. Zou, L. et al. Porous organic polymers for post-combustion carbon capture. Adv. Mater. 29, 1700229 (2017).

    Google Scholar 

  3. Zhang, T., Xing, G., Chen, W. & Chen, L. Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front. 4, 332–353 (2020).

    CAS  Google Scholar 

  4. Wood, C. D. et al. Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater. 19, 2034–2048 (2007).

    CAS  Google Scholar 

  5. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  PubMed  Google Scholar 

  6. Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 21, 1291–1295 (2009).

    CAS  Google Scholar 

  7. Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009).

    CAS  Google Scholar 

  8. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    PubMed  Google Scholar 

  9. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    CAS  Google Scholar 

  10. Kandambeth, S., Dey, K. & Banerjee, R. Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141, 1807–1822 (2019).

    CAS  PubMed  Google Scholar 

  11. Yang, X. et al. Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage. Angew. Chem. Int. Ed. 61, e202207043 (2022).

    CAS  Google Scholar 

  12. Dou, L. et al. Single-crystal linear polymers through visible light–triggered topochemical quantitative polymerization. Science 343, 272–277 (2014).

    CAS  PubMed  Google Scholar 

  13. Keller, A. Morphology of crystallizing polymers. Nature 169, 913–914 (1952).

    CAS  Google Scholar 

  14. Yang, J., Kang, F., Wang, X. & Zhang, Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater. Horiz. 9, 121–146 (2022).

    CAS  PubMed  Google Scholar 

  15. Song, Y., Sun, Q., Aguila, B. & Ma, S. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 6, 1801410 (2019).

    Google Scholar 

  16. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    CAS  PubMed  Google Scholar 

  17. Jiang, X. et al. Topochemical synthesis of single-crystalline hydrogen-bonded cross-linked organic frameworks and their guest-induced elastic expansion. J. Am. Chem. Soc. 141, 10915–10923 (2019).

    CAS  PubMed  Google Scholar 

  18. Lauher, J. W., Fowler, F. W. & Goroff, N. S. Single-crystal-to-single-crystal topochemical polymerizations by design. Acc. Chem. Res. 41, 1215–1229 (2008).

    CAS  PubMed  Google Scholar 

  19. Hou, L. et al. Highly stable single crystals of three-dimensional porous oligomer frameworks synthesized under kinetic conditions. Angew. Chem. Int. Ed. 60, 14664–14670 (2021).

    CAS  Google Scholar 

  20. Huang, X., Sun, C. & Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 63, 1367–1390 (2020).

    CAS  Google Scholar 

  21. Dou, J.-H. et al. Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nat. Mater. 20, 222–228 (2021).

    CAS  PubMed  Google Scholar 

  22. Bourda, L., Krishnaraj, C., Van Der Voort, P. & Van Hecke, K. Conquering the crystallinity conundrum: efforts to increase quality of covalent organic frameworks. Mater. Adv. 2, 2811–2845 (2021).

    CAS  Google Scholar 

  23. Ha, D.-G. et al. Large single crystals of two-dimensional π-conjugated metal–organic frameworks via biphasic solution-solid growth. ACS Cent. Sci. 7, 104–109 (2021).

    CAS  PubMed  Google Scholar 

  24. Gonen, T. et al. Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958).

    CAS  PubMed  Google Scholar 

  26. Benvenuti, M. & Mangani, S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat. Protoc. 2, 1633–1651 (2007).

    CAS  PubMed  Google Scholar 

  27. Brunori, M. et al. The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc. Natl Acad. Sci. USA 97, 2058–2063 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  PubMed  Google Scholar 

  29. Yang, Y. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933–939 (2021).

    CAS  PubMed  Google Scholar 

  30. Ma, K. et al. Ultrastable mesoporous hydrogen-bonded organic framework-based fiber composites toward mustard gas detoxification. Cell Rep. Phys. Sci. 1, 100024 (2020).

    Google Scholar 

  31. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).

    CAS  Google Scholar 

  32. Wu, C. et al. Large second-harmonic response and giant birefringence of CeF2(SO4) induced by highly polarizable polyhedra. J. Am. Chem. Soc. 143, 4138–4142 (2021).

    CAS  PubMed  Google Scholar 

  33. Wu, C. et al. Giant optical anisotropy in the UV-transparent 2D nonlinear optical material Sc(IO3)2(NO3). Angew. Chem. Int. Ed. 60, 3464–3468 (2021).

    CAS  Google Scholar 

  34. Karmakar, A., Desai, A. V. & Ghosh, S. K. Ionic metal–organic frameworks (iMOFs): design principles and applications. Coord. Chem. Rev. 307, 313–341 (2016).

    CAS  Google Scholar 

  35. Liang, X., Tian, Y., Yuan, Y. & Kim, Y. Ionic covalent organic frameworks for energy devices. Adv. Mater. 33, 2105647 (2021).

    CAS  Google Scholar 

  36. Liu, B. T. et al. Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 32, 6 (2020).

    Google Scholar 

  37. Dickerson, T. J., Reed, N. N. & Janda, K. D. Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem. Rev. 102, 3325–3344 (2002).

    CAS  PubMed  Google Scholar 

  38. Zhu, C., Liu, L., Yang, Q., Lv, F. & Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 112, 4687–4735 (2012).

    CAS  PubMed  Google Scholar 

  39. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed  Google Scholar 

  40. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Google Scholar 

  41. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    PubMed  Google Scholar 

  42. Yang, W. et al. Exceptional thermal stability in a supramolecular organic framework: porosity and gas storage. J. Am. Chem. Soc. 132, 14457–14469 (2010).

    CAS  PubMed  Google Scholar 

  43. Li, P., Ryder, M. R. & Stoddart, J. F. Hydrogen-bonded organic frameworks: a rising class of porous molecular materials. Acc. Mater. Res. 1, 77–87 (2020).

    CAS  Google Scholar 

  44. Hisaki, I., Xin, C., Takahashi, K. & Nakamura, T. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem. Int. Ed. 58, 11160–11170 (2019).

    CAS  Google Scholar 

  45. Li, P. et al. Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem. Int. Ed. 58, 1664–1669 (2019).

    CAS  Google Scholar 

  46. Song, X. et al. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities. J. Am. Chem. Soc. 144, 10663–10687 (2022).

    CAS  PubMed  Google Scholar 

  47. Li, Y.-L. et al. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 142, 7218–7224 (2020).

    CAS  PubMed  Google Scholar 

  48. Liu, W. et al. A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nat. Commun. 11, 1633 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vikrant, K., Kumar, V., Kim, K.-H. & Kukkar, D. Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 5, 22877–22896 (2017).

    CAS  Google Scholar 

  50. Islamoglu, T. et al. Metal–organic frameworks against toxic chemicals. Chem. Rev. 120, 8130–8160 (2020).

    CAS  PubMed  Google Scholar 

  51. Moribe, S. et al. Ammonia capture within isoreticular metal–organic frameworks with rod secondary building units. ACS Mater. Lett. 1, 476–480 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from National Key Research and Development Program of China (2018YFA0208600, T.-F.L.), National Natural Science Foundation of China (22033008, R.C.), CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (121835KYSB20200034, T.-F.L) and Fujian Science Technology Innovation Laboratory for Optoelectronic Information of China (2021ZR105, T.-F.L). K.O.K. gratefully acknowledges support from the IIN Postdoctoral Fellowship and the Northwestern University International Institute for Nanotechnology. We thank J. Yue and B. Guan of the Institute of Chemistry (Chinese Academy of Sciences) for the cryo-TEM measurements. We thank Z. Xiong for the birefringence experiment and Q. Yin for the SC-XRD data collection.

Author information

Authors and Affiliations

Authors

Contributions

T.-F.L., O.K.F. and R.C. guided the project. B.-T.L. designed and carried out most of the synthesis and characterizations in this work. S.-H.G. and R.W assisted the synthetic experiment. X.-T.J. assisted the TEM image measurement. Y.Z. assisted the SEM image measurement. Z.C. conducted the experiments on NH3 adsorption and separation. S.Z. assisted the in situ FT-IR spectra testing. B.-T.L. finished the manuscript, K.O.K. helped with editing and T.-F.L., O.K.F. and R.C. commented and revised on the manuscript.

Corresponding authors

Correspondence to Tian-Fu Liu, Omar K. Farha or Rong Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Sheng Dai, Shengqian Ma and Soumya Mukherjee for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, discussion and Tables 1–8.

Supplementary Video 1

Regeneration process of PHOF-1.

Supplementary Video 2

Stability of PHOF-1 in different solvents.

Supplementary Video 3

Stability of PHOF-1 in acidic solution.

Supplementary Crystallographic

Data 1 for PHOF-1 Crystal data of PHOF-1, CCDC 2088646.

Supplementary Crystallographic

Data 2 for PHOF-1-Re Crystal data of PHOF-1-Re, CCDC 2088647.

Supplementary Crystallographic Data

Supplementary Crystallographic Data 3 for PHOF-1-NH3 Crystal data of PHOF-1-NH3, CCDC 2239634.

Source data

Source Data Fig. 3

Source data of PXRD patterns and adsorption isotherms.

Source Data Fig. 4

Source data of optical microscope images and cryo-EM image.

Source Data Fig. 5

Source data of NH3 adsorption–desorption isotherms and NH3 breakthrough curves.

Source Data Fig. 6

Source data of SEM image and EDS carbon and boron elemental mapping images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BT., Gong, SH., Jiang, XT. et al. A solution processible single-crystal porous organic polymer. Nat. Synth 2, 873–879 (2023). https://doi.org/10.1038/s44160-023-00316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00316-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing