Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly


Two-dimensional (2D) ionogel membranes have emerged as a promising class of materials for broad applications in flexible electronics, smart robotics and artificial intelligence. However, the rapid, reliable and reproducible fabrication of ionogel membranes remains challenging due to difficult-to-control molecular behaviour. To overcome this challenge, we propose a ‘dip and peel’ strategy to exfoliate 2D ionogel membranes from a biomacromolecular gelatum (for example, a cellulose ionogel colloid) by controlling the solvent-induced supramolecular self-assembly. This strategy enables the simple and rapid fabrication of ionogel membranes with tunable shapes, controllable thicknesses, high ionic conductivity up to 14.1 mS cm−1, good stretchability exceeding 130% and excellent tandem duplication over 700 times. We further extend this strategy to fabricate different ionogel membranes from various biomacromolecules, including silk fibroin, chitosan and guar gum. Our results shed light on exploration of fundamental macromolecular interactions and provide an effective approach to prepare 2D biomacromolecular ionogel membranes with advanced functionalities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A general solvent-induced exfoliation strategy inspired by the ‘milk-skin effect’.
Fig. 2: Preparation of the P-membranes from the bulk cellulose/[Bmim]Cl colloid.
Fig. 3: Microstructure characterizations of the P-membrane.
Fig. 4: MD simulations and spectroscopic analyses.
Fig. 5: Mechanical properties and ionic conductivity of P-membrane and demonstrations of potential application.
Fig. 6: Universality of the solvent-induced exfoliation strategy.

Data availability

All data generated or analysed during this study are available within the paper and its Supplementary Information.


  1. Pochan, D. & Scherman, O. Introduction: molecular self-assembly. Chem. Rev. 121, 13699–13700 (2021).

    CAS  PubMed  Google Scholar 

  2. Johnson, E. K., Adams, D. J. & Cameron, P. J. Directed self-assembly of dipeptides to form utrathin hydrogel membranes. J. Am. Chem. Soc. 132, 5130–5136 (2010).

    CAS  PubMed  Google Scholar 

  3. Cha, G. D. & Kim, D.-H. Toughness and elasticity from phase separation. Nat. Mater. 21, 266–268 (2022).

    CAS  PubMed  Google Scholar 

  4. Chen, S., Costil, R., Leung, F. K.-C. & Feringa, B. L. Self-assembly of photoresponsive molecular amphiphiles in aqueous media. Angew. Chem. Int. Ed. 60, 11604–11627 (2021).

    CAS  Google Scholar 

  5. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    CAS  PubMed  Google Scholar 

  6. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    CAS  Google Scholar 

  7. Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, J., Emmerich, L., Wu, J., Vana, P. & Zhang, K. Hydroplastic polymers as eco-friendly hydrosetting plastics. Nat. Sustain. 4, 877–883 (2021).

    Google Scholar 

  9. Zhang, B. et al. Dense hydrogen-bonding network boosts ionic conductive hydrogels with extremely high toughness, rapid self-recovery, and autonomous adhesion for human-motion detection. Research 2021, 9761625 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, 2000619 (2021).

    CAS  Google Scholar 

  11. Jiang, K. et al. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nat. Synth. 2, 58–66 (2023).

    Google Scholar 

  12. Evans, A. A., Cheung, E., Nyberg, K. D. & Rowat, A. C. Wrinkling of milk skin is mediated by evaporation. Soft Matter 13, 1056–1062 (2017).

    CAS  PubMed  Google Scholar 

  13. Simoncelli, S., Li, Y., Cortés, E. & Maier, S. A. Nanoscale control of molecular self-assembly induced by plasmonic hot-electron dynamics. ACS Nano 12, 2184–2192 (2018).

    CAS  PubMed  Google Scholar 

  14. Qian, X. et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotech. 14, 1048–1055 (2019).

    CAS  Google Scholar 

  15. Wang, M. et al. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21, 359–365 (2022).

    CAS  PubMed  Google Scholar 

  16. Jiang, G. et al. A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022, 9814767 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin, D. et al. Gridization-driven mesoscale self-assembly of conjugated nanopolymers into luminescence-anisotropic photonic crystals. Adv. Mater. 34, 2109399 (2022).

    CAS  Google Scholar 

  18. Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403 (2020).

    CAS  Google Scholar 

  19. Zhao, D. et al. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34, 2107857 (2022).

    CAS  Google Scholar 

  20. Zhuo, S., Song, C., Rong, Q., Zhao, T. & Liu, M. Shape and stiffness memory ionogels with programmable pressure-resistance response. Nat. Commun. 13, 1743 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Obst, M. et al. Chemical vapor deposition of ionic liquids for the fabrication of ionogel films and patterns. Angew. Chem. Int. Ed. 60, 25668–25673 (2021).

    CAS  Google Scholar 

  22. Liu, X. et al. Aligned ionogel electrolytes for high-temperature supercapacitors. Adv. Sci. 6, 1801337 (2019).

    Google Scholar 

  23. Zhang, C. et al. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv. Mater. 34, 2105996 (2022).

    CAS  Google Scholar 

  24. Lee, H. et al. Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31, 2103083 (2021).

    CAS  Google Scholar 

  25. Chen, C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020).

    CAS  Google Scholar 

  26. Wang, G. et al. Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydr. Polym. 283, 119160 (2022).

    CAS  PubMed  Google Scholar 

  27. Zhu, Y. et al. A non‐Newtonian fluidic cellulose‐modified glass microfiber separator for flexible lithium‐ion batteries. EcoMat 3, e12126 (2021).

    CAS  Google Scholar 

  28. Bai, L. et al. Biopolymer nanofibers for nanogenerator development. Research 2021, 1843061 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guan, Q.-F., Ling, Z.-C., Han, Z.-M., Yang, H.-B. & Yu, S.-H. Ultra-strong, ultra-tough, transparent, and sustainable nanocomposite films for plastic substitute. Matter 3, 1308–1317 (2020).

    Google Scholar 

  30. Li, G.-L. et al. Constructing π‑stacked supramolecular cage based hierarchical self-assemblies via π···π stacking and hydrogen bonding. J. Am. Chem. Soc. 143, 10920–10929 (2021).

    CAS  PubMed  Google Scholar 

  31. Ke, H. et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat. Chem. 11, 470–477 (2019).

    CAS  PubMed  Google Scholar 

  32. Chen, Q. et al. Sustainable, superfast deconstruction of natural cellulosic aggregates toward intrinsically green, multifunctional gel. Chem. Eng. J. 435, 134856 (2022).

    CAS  Google Scholar 

  33. Ding, Y. et al. Preparation of high‐performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 29, 1704253 (2017).

    Google Scholar 

  34. Liu, K. et al. Flexible and robust bacterial cellulose‐based ionogels with high thermoelectric properties for low‐grade heat harvesting. Adv. Funct. Mater. 32, 2107105 (2021).

    Google Scholar 

  35. Ye, Y. H. et al. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions. Adv. Funct. Mater. 2209787 (2022).

  36. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    CAS  PubMed  Google Scholar 

  37. Kobayashi, Y., Tokishita, S. & Yamamoto, H. Determination of Hansen solubility parameters of ionic liquids by using Walden plots. Ind. Eng. Chem. Res. 59, 14217–14223 (2020).

    CAS  Google Scholar 

  38. Nakamura, D. & Nakano, H. Liquid-phase exfoliation of germanane based on Hansen solubility parameters. Chem. Mater. 30, 5333–5338 (2018).

    CAS  Google Scholar 

  39. Wang, X., Zhou, J., Pang, B. & Zhao, D. Rapid microwave-assisted ionothermal dissolution of cellulose and its regeneration properties. J. Renew. Mater. 7, 1363–1380 (2019).

    CAS  Google Scholar 

  40. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    PubMed  Google Scholar 

  41. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 10817 (2022).

    Google Scholar 

  42. Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

Download references


H.Y. and D.Z. acknowledge support by the National Science Fund for Distinguished Young Scholars of China (grant number 31925028) and the National Natural Science Foundation of China (grant number 32171720). G.Y. acknowledges support from the Welch Foundation F-1861, a Norman Hackerman Award in Chemical Research and a Camille Dreyfus Teacher-Scholar Award.

Author information

Authors and Affiliations



G.Y., H.Y. and D.Z. supervised the project and designed the experiments. Y.Z. carried out most of the experiments. K.C., S.Z., G.J., W.C., W.B. and X.W. participated in the experiments. G.J. contributed to the analysis of MD simulations. Y.G., Y.L. and W.C. contributed to analysis of the Hansen solubility parameters. Y.Z., D.Z. and H.Y. contributed to the application of e-skin. Y.Z, Y.G., D.Z., H.Y. and G.Y. collectively wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dawei Zhao, Haipeng Yu or Guihua Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jian Hu, Ho Seok Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–20 and Tables 1–5.

Supplementary Video 1

Solvent-induced exfoliation of P-membrane within 1 s.

Supplementary Video 2

A glass-rod-assisted transfer method to obtain a flat P-membrane.

Supplementary Video 3

Layer-by-layer peeling of the P-membranes.

Supplementary Video 4

Fabrication of a large-area P-membrane.

Supplementary Video 5

Inkjet printing the P-membrane-based flexible circuit chip.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Guo, Y., Cao, K. et al. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth 2, 864–872 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing