Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rare earth–cobalt bimetallic catalysis mediates stereocontrolled living radical polymerization of acrylamides

Abstract

The tacticity of polymers is one of the governing microstructural parameters that determines their material properties. Current methods to access stereoregular polymers are based on coordination and ionic polymerizations. However, these polymerization methods are limited to a small group of monomers. By contrast, radical polymerization is compatible with diverse chemical functionalities but provides poor stereocontrol primarily due to the challenge of controlling the stereochemistry of carbon-centred radicals. Here, by covalently tethering a rare earth cation-based Lewis acid to cobalt(III) complexes, we designed a bimetallic catalytic system to achieve stereocontrol in living radical polymerization. The interplay of pendant group–Lewis acid interaction and cobalt-mediated reversible radical deactivation within a confined space results in chain propagation through a meso-configurated radical chain end. Acrylamide monomers with diverse polar and ionic pendant groups were polymerized in a stereoregular manner with a percentage of meso diads as high as 95%. Thermo-responsive, adhesion and electrical properties of homopolymers were readily diversified by tuning tacticity without compositional variance. This method provides a diversity-oriented design platform to access polymers with broadly tunable bulk, solution and interfacial properties from single monomer feedstock through tacticity engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stereocontrol in radical polymerizations.
Fig. 2: LACoP-mediated LRPs in methanol.
Fig. 3: Kinetic and mechanistic studies of LACoP-mediated LRPs.
Fig. 4: Tacticity-dependent material properties.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. Source data are provided with this paper.

References

  1. Worch, J. C. et al. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 3, 514–535 (2019).

    CAS  Google Scholar 

  2. Karasz, F. E. & MacKnight, W. J. The influence of stereoregularity on the glass transition temperatures of vinyl polymers. Macromolecules 1, 537–540 (1968).

    CAS  Google Scholar 

  3. Pino, P. & Suter, U. W. Some aspects of stereoregulation in the stereospecific polymerization of vinyl monomers. Polymer 17, 977–995 (1976).

    CAS  Google Scholar 

  4. Uryu, T., Ohkawa, H. & Oshima, R. Synthesis and high hole mobility of isotactic poly(2-N-carbazolylethyl acrylate). Macromolecules 20, 712–716 (1987).

    CAS  Google Scholar 

  5. Wang, Y. et al. Facile synthesis of isotactic polyacrylonitrile via template polymerization in interlayer space for dielectric energy storage. ACS Appl. Polymer Mat. 2, 775–781 (2020).

    CAS  Google Scholar 

  6. Schurer, J. W., de Boer, A. & Challa, G. Influence of tacticity of poly(methyl methacrylate) on the compatibility with poly(vinyl chloride). Polymer 16, 201–204 (1975).

    CAS  Google Scholar 

  7. Rajalingam, P. & Radhakrishxan, G. Polyacrylonitrile precursor for carbon fibers. J. Macromol. Sci. C 31, 301–310 (1991).

    Google Scholar 

  8. Min, K. E. & Paul, D. R. Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci., Part B: Polym. Phys. 26, 1021–1033 (1988).

    CAS  Google Scholar 

  9. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Teator, A. J., Varner, T. P., Knutson, P. C., Sorensen, C. C. & Leibfarth, F. A. 100th Anniversary of macromolecular science viewpoint: the past, present, and future of stereocontrolled vinyl polymerization. ACS Macro Letters 9, 1638–1654 (2020).

    CAS  PubMed  Google Scholar 

  11. Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 100, 1223–1252 (2000).

    CAS  PubMed  Google Scholar 

  12. Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev. 109, 5157–5214 (2009).

    CAS  PubMed  Google Scholar 

  13. Neuwald, B., Caporaso, L., Cavallo, L. & Mecking, S. Concepts for stereoselective acrylate insertion. J. Am. Chem. Soc. 135, 1026–1036 (2013).

    CAS  PubMed  Google Scholar 

  14. Ouchi, M., Kamigaito, M. & Sawamoto, M. Stereoregulation in cationic polymerization by designed Lewis acids. 1. Highly isotactic poly(isobutyl vinyl ether) with titanium-based Lewis acids. Macromolecules 32, 6407–6411 (1999).

    CAS  Google Scholar 

  15. Teator, A. J. & Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 363, 1439 (2019).

    CAS  PubMed  Google Scholar 

  16. Satoh, K. & Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev. 109, 5120–5156 (2009).

    CAS  PubMed  Google Scholar 

  17. Braunecker, W. A. & Matyjaszewski, K. Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 32, 93–146 (2007).

    CAS  Google Scholar 

  18. Iizuka, Y. et al. Chiral (–)-DIOP ruthenium complexes for asymmetric radical addition and living radical polymerization reactions. Eur. J. Org. Chem. 2007, 782–791 (2007).

    Google Scholar 

  19. Puts, R. D. & Sogah, D. Y. Control of living free-radical polymerization by a new chiral nitroxide and implications for the polymerization mechanism. Macromolecules 29, 3323–3325 (1996).

    CAS  Google Scholar 

  20. Porter, N. A., Allen, T. R. & Breyer, R. A. Chiral auxiliary control of tacticity in free radical polymerization. J. Am. Chem. Soc. 114, 7676–7683 (1992).

    CAS  Google Scholar 

  21. Habaue, S. & Okamoto, Y. Stereocontrol in radical polymerization. Chem. Record 1, 46–52 (2001).

    CAS  Google Scholar 

  22. Paleos, C. M. Polymerization in Organized Media (CRC Press, 1992).

  23. Isobe, Y., Fujioka, D., Habaue, S. & Okamoto, Y. Efficient Lewis acid-catalyzed stereocontrolled radical polymerization of acrylamides. J. Am. Chem. Soc. 123, 7180–7181 (2001).

    CAS  PubMed  Google Scholar 

  24. Bovey, F. Polymer NSR spectroscopy. V. The effect of zinc chloride on the free radical polymerization of methyl methacrylate. J. Polym. Sci. 47, 480–481 (1960).

    CAS  Google Scholar 

  25. Noble, B. B. & Coote, M. L. in Advances in Physical Organic Chemistry Vol. 49 (eds Williams, I. H. & Williams, N. H.) 189–258 (Academic Press, 2015).

  26. Zhao, Y., Yu, M. & Fu, X. Photo-cleavage of the cobalt–carbon bond: visible light-induced living radical polymerization mediated by organo-cobalt porphyrins. Chem. Commun. 49, 5186–5188 (2013).

    CAS  Google Scholar 

  27. Wayland, B. B., Poszmik, G., Mukerjee, S. L. & Fryd, M. Living radical polymerization of acrylates by organocobalt porphyrin complexes. J. Am. Chem. Soc. 116, 7943–7944 (1994).

    CAS  Google Scholar 

  28. Romain, C., Thevenon, A., Saini, P. K. & Williams, C. K. in Carbon Dioxide and Organometallics (ed. Lu, X.-B.) 101–141 (Springer, 2015).

  29. Delferro, M. & Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 111, 2450–2485 (2011).

    CAS  PubMed  Google Scholar 

  30. Wu, Z., Peng, C.-H. & Fu, X. Tacticity control approached by visible-light induced organocobalt-mediated radical polymerization: the synthesis of crystalline poly(N,N-dimethylacrylamide) with high isotacticity. Polym. Chem. 11, 4387–4395 (2020).

    CAS  Google Scholar 

  31. Imamura, Y., Fujita, T., Kobayashi, Y. & Yamago, S. Tacticity, molecular weight, and temporal control by lanthanide triflate-catalyzed stereoselective radical polymerization of acrylamides with an organotellurium chain transfer agent. Polym. Chem. 11, 7042–7049 (2020).

    CAS  Google Scholar 

  32. Shanmugam, S. & Boyer, C. Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015).

    CAS  PubMed  Google Scholar 

  33. Lutz, J.-F., Neugebauer, D. & Matyjaszewski, K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization. J. Am. Chem. Soc. 125, 6986–6993 (2003).

    CAS  PubMed  Google Scholar 

  34. Izatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 95, 2529–2586 (1995).

    CAS  Google Scholar 

  35. Arnaud-Neu, F., Delgado, R. & Chaves, S. Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers (IUPAC Technical Report). Pure Appl. Chem. 75, 71–102 (2003).

    CAS  Google Scholar 

  36. Izatt, R. M. et al. Thermodynamic and kinetic data for cation-macrocycle interaction. Chem. Rev. 85, 271–339 (1985).

    CAS  Google Scholar 

  37. Isobe, Y., Nakano, T. & Okamoto, Y. Stereocontrol during the free‐radical polymerization of methacrylates with Lewis acids. J. Polym. Sci., Part A: Polym. Chem. 39, 1463–1471 (2001).

    CAS  Google Scholar 

  38. Park, B., Imamura, Y. & Yamago, S. Stereocontrolled radical polymerization of acrylamides by ligand-accelerated catalysis. Polym. J. 53, 515–521 (2021).

    CAS  Google Scholar 

  39. Ray, B. et al. RAFT polymerization of N-isopropylacrylamide in the absence and presence of Y(OTf)3: simultaneous control of molecular weight and tacticity. Macromolecules 37, 1702–1710 (2004).

  40. Su, X. et al. Stereocontrol during photo-initiated controlled/living radical polymerization of acrylamide in the presence of Lewis acids. Eur. Polym. J. 44, 1849–1856 (2008).

    CAS  Google Scholar 

  41. Doi, Y. & Asakura, T. Catalytic regulation for isotactic orientation in propylene polymerization with Ziegler-Natta catalyst. Makromol. Chem. Phys. 176, 507–509 (1975).

    CAS  Google Scholar 

  42. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    CAS  PubMed  Google Scholar 

  43. Zhao, Y. et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robotics 6, eabd5483 (2021).

    Google Scholar 

  44. Liu, H. & Zhu, X. Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions. Polymer 40, 6985–6990 (1999).

    CAS  Google Scholar 

  45. Ou, W. et al. In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy. Nat. Commun. 14, 392 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pantula, A. et al. Untethered unidirectionally crawling gels driven by asymmetry in contact forces. Sci. Robotics 7, eadd2903 (2022).

    Google Scholar 

  47. Zhao, D., Wang, P., Zhao, Q., Chen, N. & Lu, X. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation. Desalination 348, 26–32 (2014).

    CAS  Google Scholar 

  48. Tsuchiizu, A., Hasegawa, T. & Katsumoto, Y. Water sorption on a thin film of stereocontrolled poly(N-ethylacrylamide) and poly(N,N-diethylacrylamide). In Proc. ICOMF14 – 14th International Conference on Organized Molecular Films (LB 14), MATEC Web of Conferences, 03001 (EDP Sciences, 2013).

  49. Rzaev, Z. M. O., Dinçer, S. & Pişkin, E. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog. Polym. Sci. 32, 534–595 (2007).

    CAS  Google Scholar 

  50. Pang, X. & Cui, S. Single-chain mechanics of poly(N,N-diethylacrylamide) and poly(N-isopropylacrylamide): comparative study reveals the effect of hydrogen bond donors. Langmuir 29, 12176–12182 (2013).

    CAS  PubMed  Google Scholar 

  51. Katsumoto, Y., Kubosaki, N. & Miyata, T. Molecular approach to understand the tacticity effects on the hydrophilicity of poly(N-isopropylacrylamide): solubility of dimer model compounds in water. J. Phys. Chem. B 114, 13312–13318 (2010).

    CAS  PubMed  Google Scholar 

  52. Wirthl, D. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui, C. & Liu, W. Recent advances in wet adhesives: adhesion mechanism, design principle and applications. Prog. Polym. Sci. 116, 101388 (2021).

    CAS  Google Scholar 

  55. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    CAS  PubMed  Google Scholar 

  56. Kim, H. J., Chen, B., Suo, Z. & Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020).

    CAS  PubMed  Google Scholar 

  57. Gao, D. & Lee, P. S. Rectifying ionic current with ionoelastomers. Science 367, 735–736 (2020).

    CAS  PubMed  Google Scholar 

  58. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Materials 4, 312–330 (2019).

    CAS  Google Scholar 

  59. Choi, U. H. et al. Ionic conduction and dielectric response of poly(imidazolium acrylate) ionomers. Macromolecules 45, 3974–3985 (2012).

    CAS  Google Scholar 

  60. Weiber, E. A. & Jannasch, P. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes. Chem. Sus. Chem. 7, 2621–2630 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by United States National Science Foundation (grant no. CHE-2108681). M.Z. acknowledges the support through a 3M Non-Tenured Faculty Award. J.M. Mayer and E. Stewart-Jones are acknowledged for their assistance with the variable-temperature ultraviolet-visible light measurements. We thank P. Guo for light intensity measurement, J. Yan for providing access to a cold room to carry out low-temperature polymerizations, and A. Datye and Y. Xue for help with the thermomechanical tests. We acknowledge N. Hazari, S.J. Miller, S. Lin, K. Kawamoto, Y. Gu, J. Zhao, A.N. Le and Y. Ma for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., X.Z. and F.L. designed the research. X.Z., F.L. and M.C. conducted the experiments. M.Z., X.Z. and M.C. wrote the manuscript with input from F.L.

Corresponding author

Correspondence to Mingjiang Zhong.

Ethics declarations

Competing interests

X.Z. and M.Z. are inventors on a patent application (US provisional patent application no. 63/427,662) submitted by Yale University that covers the development of catalysts/initiators for stereocontrolled living polymerizations and of related tacticity-engineered functional polymers. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Shigeru Yamago and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and Methods, Text, Figs. 1–101 and Tables 1–22.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lin, F., Cao, M. et al. Rare earth–cobalt bimetallic catalysis mediates stereocontrolled living radical polymerization of acrylamides. Nat. Synth 2, 855–863 (2023). https://doi.org/10.1038/s44160-023-00311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00311-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing