Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal halide perovskite nanorods with tailored dimensions, compositions and stabilities

Abstract

The colloidal synthesis of one-dimensional metal halide perovskite nanocrystals with precisely controlled diameter (D) and length (L) values is challenging due to the intrinsic structural symmetry and ionic crystal nature of the perovskites. This hinders investigation into their size- and shape-dependent properties and prevents their application. Here we report a general platform of cylindrical unimolecular nanoreactors to synthesize a library of one-dimensional perovskite nanorods (NRs) with tailored dimensions (D ≈ 7–16 nm; L ≈ 40–220 nm), compositions (all-inorganic perovskites; organic–inorganic perovskites; lead-free double perovskites) and enhanced colloidal, photo, polar-solvent and thermal stabilities. The dependence of the charge-carrier dynamics, photoluminescence quantum yield and optical anisotropy of the perovskite NRs on the diameter and length was examined. Decreasing the diameter yields opposite trends in the photoluminescence quantum yields and charge-carrier dynamics to that of increasing the length. In addition, enhanced structural anisotropy (that is, a higher aspect ratio of L/D) always increases the optical anisotropy of the perovskite NRs. By leveraging the cylindrical unimolecules as nanoreactors, a rich variety of uniform perovskite NRs with controllable dimensions, compositions and enhanced stabilities can be designed for use as building blocks for a variety of applications, such as in optoelectronic devices, catalysis and sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the synthesis of PS-ligated metal halide perovskite NRs.
Fig. 2: TEM images of PS-ligated CsPbBr3 NRs with various D and L values.
Fig. 3: TEM images of PS-ligated perovskite NRs of different compositions.
Fig. 4: TEM and HAADF-STEM images of PS-ligated caesium lead halide perovskite NRs.
Fig. 5: Dimension-dependent average PL decay lifetime and PLQY of two sets of PS-ligated CsPbBr3 NRs.
Fig. 6: Comparison of the stability of PS-ligated CsPbBr3 NRs and OctAm–OAm co-capped CsPbBr3 NRs by monitoring the evolution of the respective PL peak position and PL peak intensity.

Similar content being viewed by others

Data availability

The data reported in this paper are available in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, X. et al. A flexible plasmonic-membrane-enhanced broadband tin-based perovskite photodetector. Nano Lett. 21, 9195–9202 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Shang, Q. et al. Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett. 20, 6636–6643 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Raja, S. N. et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces 8, 35523–35533 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Li, Q., Yang, Y., Que, W. & Lian, T. Size- and morphology-dependent Auger recombination in CsPbBr3 perovskite two-dimensional nanoplatelets and one-dimensional nanorods. Nano Lett. 19, 5620–5627 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, C. et al. Metal halide perovskite nanorods: shape matters. Adv. Mater. 32, 2002736 (2020).

    Article  CAS  Google Scholar 

  9. Dou, Y. et al. Lattice distortion in mixed-anion lead halide perovskite nanorods leads to their high fluorescence anisotropy. ACS Mater. Lett. 2, 814–820 (2020).

    Article  CAS  Google Scholar 

  10. Wang, S. et al. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett. 19, 6315–6322 (2019).

    Article  PubMed  Google Scholar 

  11. Bera, S., Shyamal, S. & Pradhan, N. Chemically spiraling CsPbBr3 perovskite nanorods. J. Am. Chem. Soc. 143, 14895–14906 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. He, Y. et al. Dual-protected metal halide perovskite nanosheets with an enhanced set of stabilities. Angew. Chem. Int. Ed. 60, 7259–7266 (2021).

    Article  CAS  Google Scholar 

  13. Huang, H. et al. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 8, 996 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao, M. et al. Scaling laws of exciton recombination kinetics in low dimensional halide perovskite nanostructures. J. Am. Chem. Soc. 142, 8871–8879 (2020).

    Article  PubMed  Google Scholar 

  16. Li, Y. et al. Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 13, 8237–8245 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, D. et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 31, 1575–1583 (2019).

    Article  CAS  Google Scholar 

  18. Wang, Y. et al. Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties. Adv. Funct. Mater. 31, 2011251 (2021).

    Article  CAS  Google Scholar 

  19. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Yoon, Y. J. et al. Enabling tailorable optical properties and markedly enhanced stability of perovskite quantum dots by permanently ligating with polymer hairs. Adv. Mater. 31, 1901602 (2019).

    Article  Google Scholar 

  21. Roy, D., Semsarilar, M., Guthrie, J. T. & Perrier, S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38, 2046–2064 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Pang, X., He, Y., Jung, J. & Lin, Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353, 1268–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Pang, X., Zhao, L., Han, W., Xin, X. & Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8, 426–431 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article  PubMed  Google Scholar 

  25. Zhang, D., Eaton, S. W., Yu, Y., Dou, L. & Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Article  Google Scholar 

  27. Fan, Q. et al. Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties. Angew. Chem. Int. Ed. 59, 1030–1046 (2020).

    Article  CAS  Google Scholar 

  28. Shi, Y. et al. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121, 649–735 (2020).

    Article  PubMed  Google Scholar 

  29. Liu, W. et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, H. et al. One-dimensional highly-confined CsPbBr3 nanorods with enhanced stability: synthesis and spectroscopy. Nano Lett. 22, 8355–8362 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lan, Y.-F. et al. Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21, 8756–8763 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Pradhan, N. Do halide perovskites prefer a specific direction for forming one-dimensional nanostructures? ACS Energy Lett. 7, 150–153 (2021).

    Article  Google Scholar 

  33. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krieg, F. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 7, 135–144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shinde, A., Gahlaut, R. & Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 121, 14872–14878 (2017).

    Article  CAS  Google Scholar 

  36. Hintermayr, V. A. et al. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Adv. Mater. 28, 9478–9485 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Bohn, B. J. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 18, 5231–5238 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Rabouw, F. T. et al. Delayed exciton emission and its relation to blinking in CdSe quantum dots. Nano Lett. 15, 7718–7725 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Shabaev, A. & Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 4, 1821–1825 (2004).

    Article  CAS  Google Scholar 

  40. Planelles, J., Rajadell, F. & Climente, J. I. Electronic origin of linearly polarized emission in CdSe/CdS dot-in-rod heterostructures. J. Phys. Chem. C 120, 27724–27730 (2016).

    Article  CAS  Google Scholar 

  41. Liu, Z. et al. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 139, 5309–5312 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Diroll, B. T., Zhou, H. & Schaller, R. D. Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 28, 1800945 (2018).

    Article  Google Scholar 

  43. He, Y. et al. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 5, eaax4424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the following funding: Air Force Office of Scientific Research grant FA9550-19-1-0317 (Z.L.), National Science Foundation grant DMR 1903990 and CHE 1903957 (Z.L.) and National Science Foundation grant CHE 2004080 (T.L.).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. conceived the idea and supervised the work. S.L., M.Z., S.H., M.T. and W.C. carried out the experiments. S.L., M.Z., S.H., M.T., W.C., T.L. and Z.L. analysed and discussed the data and results. Z.L. and S.L. wrote the original draft.

Corresponding author

Correspondence to Zhiqun Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Qiao Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and additional experimental method, Discussion, Figs. 1–26 and Tables 1–4.

Source data

Source Data Fig. 5

Normalized PL decay data, averaged PL lifetime data and absolute PLQY data.

Source Data Fig. 6

Data reflecting evolution of the PL peak positions or intensities for the perovskite NRs under different conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Zhang, M., He, S. et al. Metal halide perovskite nanorods with tailored dimensions, compositions and stabilities. Nat. Synth 2, 719–728 (2023). https://doi.org/10.1038/s44160-023-00307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00307-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing