Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts

Abstract

Transition metal photo-induced catalysts operating in a single catalytic cycle are preferable compared with binary catalytic systems comprising both transition metal and photoredox catalysts. Such single-catalyst systems perform the dual function of visible light absorption and chemical transformation. However, most visible-light-driven catalytic reactions proceed via radical mechanisms, limiting the reaction types to which the catalysts are applicable. Several non-radical catalytic reactions have been developed, but these reactions are substrate dependent owing to the low visible-light-harvesting ability of the catalysts. Here we report the design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts, spiro-fluorene-indenoindenyl (SFI)-Rh(I) complexes. The SFI-Rh(I) complexes with non-fused but π-extended ligands reduce substrate dependence owing to high visible-light-harvesting ability, and show high stability due to resistance against protonation. Thus, the SFI-Rh(I) catalysts extend the scope of typical Rh(I)-catalysed reactions, such as the C–H borylation of arenes and [2+2+2] cycloaddition of alkynes, to challenging substrates under blue light-emitting diode irradiation at room temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of previous studies and this work.
Fig. 2: Au(I)-catalysed triple cyclization of tetraaryl-1,5-diynes.
Fig. 3: Synthesis and characterization of SFI-Rh(I) complexes.
Fig. 4: Theoretical mechanistic studies of photoinduced C–H borylation of arenes.
Fig. 5: Theoretical mechanistic studies of photoinduced [2+2+2] cycloaddition.

Data availability

The data that support the findings of this study are available in this article and Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2123980 (2j), CCDC 2210844 (3m) and CCDC 2210843 (3n). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Cheung, K. P. S., Sarkar, S. & Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 112, 1543–1625 (2022).

    Google Scholar 

  2. Cheng, W.-M. & Shang, R. Transition metal-catalyzed organic reactions under visible light: recent developments and future perspectives. ACS Catal. 10, 9170–9196 (2020).

    CAS  Google Scholar 

  3. Parasram, M. & Gevorgyan, V. Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chem. Soc. Rev. 46, 6227–6240 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Pei, C., Empel, C. & Koenigs, R. M. Visible-light-induced, single-metal-catalyzed, directed C–H functionalization: metal-substrate-bound complexes as light-harvesting agents. Angew. Chem. Int. Ed. 61, e202201743 (2022).

    CAS  Google Scholar 

  5. Guillemard, L. & Wencel-Delord, J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 16, 1754–1804 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Alkyl carbon–carbon bond formation by nickel/photoredox cross-coupling. Angew. Chem. Int. Ed. 58, 6152–6163 (2019).

    CAS  Google Scholar 

  7. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 52–69 (2017).

    CAS  Google Scholar 

  8. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Vogler, A. & Kunkely, H. Photoreactivity of metal-to-ligand charge transfer excited states. Coord. Chem. Rev. 177, 81–96 (1998).

    CAS  Google Scholar 

  10. Kalyanasundaram, K., Zakeeruddin, S. M. & Nazeeruddin, Md. K. Ligand to metal charge transfer transitions in Ru(III) and Os(III) complexes of substituted 2,2’-bipyridines. Coord. Chem. Rev. 132, 259–264 (1994).

    CAS  Google Scholar 

  11. Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    CAS  PubMed  Google Scholar 

  12. Shields, B. J., Kudisch, B., Scholes, G. D. & Doyle, A. G. Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. J. Am. Chem. Soc. 140, 3035–3039 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ma, J. et al. Visible-light-activated asymmetric β-C-H functionalization of acceptor-substituted ketones with 1,2-dicarbonyl compounds. J. Am. Chem. Soc. 139, 17245–17248 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Saha, A. et al. Substrate-rhodium cooperativity in photoinduced ortho-alkynylation of arenes. Angew. Chem. Int. Ed. 61, e202210492 (2022).

    CAS  Google Scholar 

  15. Gandeepan, P., Koeller, J., Korvorapun, K., Mohr, J. & Ackermann, L. Visible-light-enabled ruthenium-catalyzed meta-C-H alkylation at room temperature. Angew. Chem. Int. Ed. 58, 9820–9825 (2019).

    CAS  Google Scholar 

  16. Sagadevan, A. & Greaney, M. F. meta-Selective C–H activation of arenes at room temperature using visible light: dual-function ruthenium catalysis. Angew. Chem. Int. Ed. 58, 9826–9830 (2019).

    CAS  Google Scholar 

  17. Jana, S., Pei, C., Bahukhandi, S. B. & Koenigs, R. M. Photoinduced ruthenium-catalyzed alkyl-alkyl cross-coupling reactions. Chem. Catal. 1, 467–479 (2021).

    CAS  Google Scholar 

  18. Ma, P., Wang, S. & Chen, H. Reactivity of transition-metal complexes in excited states: C–O bond coupling reductive elimination of a Ni(II) complex is elicited by the metal-to-ligand charge transfer state. ACS Catal. 10, 1–6 (2020).

    CAS  Google Scholar 

  19. Ravetz, B. D., Wang, J. Y., Ruhl, K. E. & Rovis, T. Photoinduced ligand-to-metal charge transfer enables photocatalyst-independent light-gated activation of Co(II). ACS Catal. 9, 200–204 (2019).

    CAS  Google Scholar 

  20. Thongpaen, J. et al. Visible light induced rhodium(I)-catalyzed C–H borylation. Angew. Chem. Int. Ed. 58, 15244–15248 (2019).

    CAS  Google Scholar 

  21. Abdiaj, I., Fontana, A., Gomez, M. V., de la Hoz, A. & Alcázar, J. Visible-light-induced nickel-catalyzed Negishi cross-couplings by exogenous-photosensitizer-free photocatalysis. Angew. Chem. Int. Ed. 57, 8473–8477 (2018).

    CAS  Google Scholar 

  22. Abdiaj, I. et al. Photoinduced palladium-catalyzed Negishi cross-couplings enabled by the visible-light absorption of palladium-zinc complexes. Angew. Chem. Int. Ed. 57, 13231–13236 (2018).

    CAS  Google Scholar 

  23. Wei, X.-J. et al. Visible-light-promoted iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling in flow. Angew. Chem. Int. Ed. 58, 13030–13034 (2019).

    CAS  Google Scholar 

  24. Xie, J. et al. Light-induced gold-catalyzed Hiyama arylation: a coupling access to biarylboronates. Angew. Chem. Int. Ed. 57, 16648–16653 (2018).

    CAS  Google Scholar 

  25. Mas-Roselló, J., Herraiz, A. G., Audic, B., Laverny, A. & Cramer, N. Chiral cyclopentadienyl ligands: design, syntheses and applications in asymmetric catalysis. Angew. Chem. Int. Ed. 60, 13198–13244 (2021).

    Google Scholar 

  26. Nishii, Y. & Miura, M. Cp*M-catalyzed direct annulation with terminal alkynes and their surrogates for the construction of multi-ring systems. ACS Catal. 10, 9747–9757 (2020).

    CAS  Google Scholar 

  27. Piou, Y. & Rovis, T. Electronic and steric tuning of a prototypical piano stool complex: Rh(III) catalysis for C–H functionalization. Acc. Chem. Res. 51, 170–180 (2018).

    CAS  PubMed  Google Scholar 

  28. Song, G. & Li, X. Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes. Acc. Chem. Res. 48, 1007–1020 (2015).

    CAS  PubMed  Google Scholar 

  29. Moore, W. N. G., Henke, W. C., Lionetti, D., Day, V. W. & Blakemore, J. D. Single-electron redox chemistry on the [Cp*Rh] platform enabled by a nitrated bipyridyl ligand. Molecules 23, 2857–2873 (2018).

    PubMed Central  PubMed  Google Scholar 

  30. Kim, J., Kim, D. & Chang, S. Merging two functions in a single Rh catalyst system: bimodular conjugate for light-induced oxidative coupling. J. Am. Chem. Soc. 142, 19052–19057 (2020).

    CAS  PubMed  Google Scholar 

  31. Tanaka, J., Nagashima, Y., Araujo Dias, A. J. & Tanaka, K. Photo-induced ortho-C–H borylation of arenes through in situ generation of rhodium(II) ate complexes. J. Am. Chem. Soc. 143, 11325–11331 (2021).

    CAS  PubMed  Google Scholar 

  32. Garrett, C. E. & Fu, G. C. Exploiting η5- to η3-indenyl ring slippage to access a directed reaction: ether-directed, rhodium-catalyzed olefin hydroboration. J. Org. Chem. 63, 1370–1371 (1998).

    CAS  Google Scholar 

  33. Kharitonov, V. B., Muratov, D. V. & Loginov, D. A. Indenyl complexes of group 9 metals: synthetic and catalytic chemistry. Coord. Chem. Rev. 399, 213027 (2019).

    CAS  Google Scholar 

  34. Kharitonov, V. B. et al. Indenyl rhodium complexes with arene ligands: synthesis and application for reductive amination. Organometallics 37, 2553–2562 (2018).

    CAS  Google Scholar 

  35. Abdulla, K., Booth, B. L. & Stacey, C. Cyclotrimerization of acetylenes catalyzed by (η5-cyclopentadienyl)rhodium complexes. J. Organomet. Chem. 293, 103–114 (1985).

    CAS  Google Scholar 

  36. Kharitonov, V. B. et al. Fluorene complexes of group 9 metals: fluorene effect and application for reductive amination. Organometallics 38, 3151–3158 (2019).

    CAS  Google Scholar 

  37. Nakamura, K., Furumi, S., Takeuchi, M., Shibuya, T. & Tanaka, K. Enantioselective synthesis and enhanced circularly polarized luminescence of S-shaped double azahelicenes. J. Am. Chem. Soc. 136, 5555–5558 (2014).

    CAS  PubMed  Google Scholar 

  38. Ouchi, S., Koshikawa, T., Nagashima, Y. & Tanaka, K. Platinum-catalyzed intramolecular spirocyclization of N-(methylnaphthalenyl)-propiolamides via formal aromatic ene reaction. Org. Lett. 23, 1934–1939 (2021).

    CAS  PubMed  Google Scholar 

  39. Hendrich, C. M., Sekine, K., Koshikawa, T., Tanaka, K. & Hashmi, A. S. K. Homogeneous and heterogeneous gold catalysis for materials science. Chem. Rev. 14, 9113–9163 (2021).

    Google Scholar 

  40. Asiria, A. M. & Hashmi, A. S. K. Gold-catalysed reactions of diynes. Chem. Soc. Rev. 45, 4471–4503 (2016).

    Google Scholar 

  41. Aguilar, E., Sanz, R., Fernández-Rodríguez, M. A. & García-García, P. 1,3-Dien-5-ynes: versatile building blocks for the synthesis of carbo- and heterocycles. Chem. Rev. 116, 8256–8311 (2016).

    CAS  PubMed  Google Scholar 

  42. Akhmetov, V., Feofanov, M., Sharapa, D. I. & Amsharov, K. Alumina-mediated π‐activation of alkynes. J. Am. Chem. Soc. 143, 15420–15426 (2021).

    CAS  PubMed  Google Scholar 

  43. Hashmi, A. S. L. et al. Gold-catalyzed synthesis of dibenzopentalenes—evidence for gold vinylidenes. Adv. Synth. Catal. 354, 555–562 (2012).

    CAS  Google Scholar 

  44. Wurm, T. et al. On the gold-catalyzed generation of vinyl cations from 1,5-diynes. Angew. Chem. Int. Ed. 56, 3364–3368 (2017).

    CAS  Google Scholar 

  45. Sanjuán, A. M., Virumbrales, C., García-García, P., Fernández-Rodríguez, M. A. & Sanz, R. Formal [4+1] cycloadditions of β,β-diaryl-substituted ortho-(alkynyl)styrenes through gold(I)-catalyzed cycloisomerization reactions. Org. Lett. 18, 1072–1075 (2016).

    PubMed  Google Scholar 

  46. Marder, T. B., Calabrese, J. C., Roe, D. C. & Tulip, T. H. The slip-fold distortion of π-bound indenyl ligands. Dynamic NMR and X-ray crystallographic studies of (η-indenyl)RhL2 complexes. Organometallics 6, 2012–2014 (1987).

    CAS  Google Scholar 

  47. Garon, C. N. et al. Synthesis and structure of indenyl rhodium(I) complexes containing unsaturated phosphines: catalyst precursors for alkene hydroboration. Dalton Trans. 38, 1624–1631 (2009).

    Google Scholar 

  48. Xu, L. et al. Recent advances in catalytic C–H borylation reactions. Tetrahedron 73, 7123–7157 (2017).

    CAS  Google Scholar 

  49. Kawamorita, S., Miyazaki, T., Ohmiya, H., Iwai, T. & Sawamura, M. Rh-catalyzed ortho-selective C–H borylation of N-functionalized arenes with silica-supported bridgehead monophosphine ligands. J. Am. Chem. Soc. 133, 19310–19313 (2011).

    CAS  PubMed  Google Scholar 

  50. Roering, A. J. et al. Iridium-catalyzed, substrate-directed C–H borylation reactions of benzylic amines. Org. Lett. 14, 3558–3561 (2012).

    CAS  PubMed  Google Scholar 

  51. Zou, X. et al. Chiral bidentate boryl ligand enabled iridium-catalyzed asymmetric C(sp2)–H borylation of diarylmethylamines. J. Am. Chem. Soc. 141, 5334–5342 (2019).

    CAS  PubMed  Google Scholar 

  52. Hoque, M. E., Hassan, M. M. M. & Chattopadhyay, B. Remarkably efficient iridium catalysts for directed C(sp2)–H and C(sp3)–H borylation of diverse classes of substrates. J. Am. Chem. Soc. 143, 5022–5037 (2021).

    CAS  PubMed  Google Scholar 

  53. Hassan, M. M. M. et al. Ir-catalyzed ligand-free directed C–H borylation of arenes and pharmaceuticals: detailed mechanistic understanding. J. Org. Chem. 87, 4360–4375 (2022).

    Google Scholar 

  54. Sakamoto, K. et al. Illuminating stannylation. J. Am. Chem. Soc. 143, 5629–5635 (2021).

    CAS  PubMed  Google Scholar 

  55. Wei, C. S., Jiménez-Hoyos, C. A., Videa, M. F., Hartwig, J. F. & Hall, M. B. Origins of the selectivity for borylation of primary over secondary C–H bonds catalyzed by Cp*-rhodium complexes. J. Am. Chem. Soc. 132, 3078–3091 (2010).

    CAS  PubMed  Google Scholar 

  56. Hartwig, J. F. et al. Rhodium boryl complexes in the catalytic, terminal functionalization of alkanes. J. Am. Chem. Soc. 127, 2538–2552 (2005).

    CAS  PubMed  Google Scholar 

  57. Matton, P., Huvelle, S., Haddad, M., Phansavath, P. & Ratovelomanana-Vidal, V. Recent progress in metal-catalyzed [2+2+2] cycloaddition reactions. Synthesis 54, 4–32 (2022).

    CAS  Google Scholar 

  58. Pla-Quintana, A. & Roglans, A. Chiral induction in [2+2+2] cycloaddition reactions. Asian J. Org. Chem. 7, 1706–1718 (2018).

    CAS  Google Scholar 

  59. Amatore, M. & Aubert, C. Recent advances in stereoselective [2+2+2] cycloadditions. Eur. J. Org. Chem. 2015, 265–286 (2015).

    CAS  Google Scholar 

  60. Shibata, Y. & Tanaka, K. Rhodium-catalyzed [2+2+2] cycloaddition of alkynes for the synthesis of substituted benzenes: catalysts, reaction scope, and synthetic applications. Synthesis 44, 323–350 (2012).

    CAS  Google Scholar 

  61. Kato, Y. et al. Iron/photosensitizer hybrid system enables the synthesis of polyaryl-substituted azafluoranthenes. J. Am. Chem. Soc. 144, 18450–18458 (2022).

    CAS  PubMed  Google Scholar 

  62. Abe, R., Nagashima, Y., Tanaka, J. & Tanaka, K. Room temperature fluoranthene synthesis through cationic Rh(I)/H8-BINAP-catalyzed [2+2+2] cycloaddition: unexpected acceleration due to noncovalent interactions. ACS Catal. 13, 1604–1613 (2023).

    CAS  Google Scholar 

  63. Wu, Y.-T., Hayama, T., Baldridge, K. K., Linden, A. & Siegel, J. S. Synthesis of fluoranthenes and indenocorannulenes: elucidation of chiral stereoisomers on the basis of static molecular bowls. J. Am. Chem. Soc. 128, 6870–6884 (2006).

    CAS  PubMed  Google Scholar 

  64. Roglans, A., Pla-Quintana, A. & Solà, M. Mechanistic studies of transition-metal-catalyzed [2+2+2] cycloaddition reactions. Chem. Rev. 121, 1894–1979 (2021).

    CAS  PubMed  Google Scholar 

  65. Yokose, H., Nagashima, Y., Kinoshita, S., Nogami, J. & Tanaka, K. Enantioselective synthesis of axially chiral styrene-carboxylic esters by rhodium-catalyzed chelation-controlled [2+2+2] cycloaddition. Angew. Chem. Int. Ed. 61, e202202542 (2022).

    CAS  Google Scholar 

  66. Torres, Ó. et al. Examining the factors that govern the regioselectivity in rhodium-catalyzed alkyne cyclotrimerization. Organometallics 38, 2853–2862 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported partly by JSPS KAKENHI grant nos JP21K14623 (to Y.N.) and JP19H00893 (to K.T.) and JP22H05346 in Transformative Research Areas (A) JP21A204 Digitalization-driven Transformative Organic Synthesis (Digi-TOS) (to Y.N.). This research was also supported partly by grants from Fukuoka Naohiko Memorial Foundation, Uehara Memorial Foundation and UBE Foundation (to Y.N.). We thank Umicore for the support in supplying the Rh complexes. Allotment of computational resources from TSUBAME (Tokyo Institute of Technology) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.O., Y.N. and K.T. conceived and designed the experiments. S.O., T.I. and Y.N. conducted experiments. Y.N. conducted computational studies. J.N. performed the X-ray crystal structure analysis. Y.N. and K.T. directed the project and wrote the paper. All authors participated in data analyses and discussions.

Corresponding authors

Correspondence to Yuki Nagashima or Ken Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Synthesis thanks Edward Anderson, Chunhua Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, synthetic experiments, single-crystal X-ray diffraction analysis of 2j, 3m and 3n, computational studies, NMR spectra, UV–vis absorption data and references, Supplementary Figs. 1–17 and Tables 1–9.

Supplementary Data 1

Crystallographic data for 2j (CCDC 2123980).

Supplementary Data 2

Crystallographic data for 3m (CCDC 2210844).

Supplementary Data 3

Crystallographic data for 3n (CCDC 2210843).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchi, S., Inoue, T., Nogami, J. et al. Design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts. Nat. Synth 2, 535–547 (2023). https://doi.org/10.1038/s44160-023-00268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00268-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing