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A robotic platform for the synthesis of 
colloidal nanocrystals

Haitao Zhao    1,7  , Wei Chen    1,7, Hao Huang    1,7, Zhehao Sun1,2,7, Zijian Chen    1, 
Lingjun Wu    1, Baicheng Zhang    3, Fuming Lai    1, Zhuo Wang1,4, 
Mukhtar Lawan Adam    1, Cheng Heng Pang    4, Paul K. Chu5, Yang Lu    6, 
Tao Wu4, Jun Jiang    3  , Zongyou Yin    2   & Xue-Feng Yu    1 

Morphological control with broad tunability is a primary goal for  
the synthesis of colloidal nanocrystals with unique physicochemical 
properties. Here we develop a robotic platform as a substitute for trial-
and-error synthesis and labour-intensive characterization to achieve this 
goal. Gold nanocrystals (with strong visible-light absorption) and double-
perovskite nanocrystals (with photoluminescence) are selected as typical 
proof-of-concept nanocrystals for this platform. An initial choice of key 
synthesis parameters was acquired through data mining of the literature. 
Automated synthesis and in situ characterization with further ex situ 
validation was then carried out and controllable synthesis of nanocrystals 
with the desired morphology was accomplished. To achieve morphology-
oriented inverse design, correlations between the morphologies and 
structure-directing agents are identified by machine-learning models 
trained on a continuously expanded experimental database. Thus, the 
developed robotic platform with a data mining–synthesis–inverse design 
framework is promising in data-driven robotic synthesis of nanocrystals  
and beyond.

Colloidal nanocrystals (NCs) have shown great potential in optical, 
photochemical, electrochemical, optoelectronic and biomedical appli-
cations1–3. One of the major goals in the synthesis of colloidal NCs is to 
achieve desired physicochemical properties through morphological 
control. However, traditional trial-and-error synthesis and labour-
intensive characterization procedures restrict the development of 
morphology-tunable NCs. To reduce the time and effort required, 
robotic synthesis, in which these manual tasks are conducted by robotic 
chemists/scientists4,5, chemical synthesis machines6,7 or self-driving 
laboratories8–12, is being rapidly developed to free up human scientists. 
Great progress has recently been made in this promising synthetic 

approach through the combination of robotic techniques13,14 and arti-
ficial intelligence (AI) technologies15,16.

Several synthetic platforms have been successfully developed 
for the synthesis of organic materials, for example, small organic 
molecules7,17,18, organic cages and catenanes14, peptides6, pharma-
ceutical compounds13, analgesic lidocaine and other compounds19. 
On these platforms, automated synthesis4–8,13,15–17,19,20, robotic 
characterization4,8,14,16,20, experimental database generation4,5,8,15,16,19,21 
and AI4,5,8,15,16,18,19,21–23 have been gradually accomplished. Toward 
retrosynthesis of targeted materials15,18,23, the combination of AI 
and an experimental database generated on a robotic platform is 
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identification for applying an inverse material design approach 
(‘inverse design’)33,34.

Here we show how these limitations can be addressed by devel-
oping a robotic platform through a framework consisting of data-
driven automated synthesis, robot-assisted controllable synthesis and 
morphology-oriented inverse design. We demonstrate this platform 
by synthesizing inorganic colloidal NCs, with an emphasis on their 
morphological control. Specifically, gold NCs (with strong visible-light 
absorption and no photoluminescence) and lead-free double-perovs-
kite NCs (with photoluminescence and weak visible-light absorption) 
are selected as typical proof-of-concept NCs for research topics that 
are well known and emerging, respectively. Moreover, the correlations 
between tunable NC morphologies and key synthesis parameters are 
identified by ML models trained on a robot-assisted high-throughput 
experimental database.

Results
Framework of the robotic platform
To overcome the limitations of robotic synthesis and explore the com-
plex tunable morphologies of colloidal NCs, a new robotic platform 
was specifically developed for high-throughput synthesis and charac-
terization of NCs. To design such a platform, the key steps in a typical 
research project performed by human scientists, namely, searching the 
literature, conducting the synthesis and characterization of NCs, and 
iterating throughout trial-and-error experiments to obtain optimized 
synthesis parameters, were all considered in the conceptual framework 
of the robotic platform. This new synthetic framework, as illustrated 
in Fig. 1, integrates data mining of the initial key synthesis parameters 
from the literature (Fig. 1(1)), controllable synthesis of colloidal NCs 
(Fig. 1(2)) and inverse design of targeted NC morphologies (Fig. 1(3)).

In the framework, data mining of related literature is first con-
ducted to provide initial choices of key synthesis parameters of NCs, 
such as the types or concentrations of surfactants. To illustrate the 
operation of the whole platform, two typical demonstrations, gold NCs 
and double-perovskite NCs, are selected for exploring research topics 
with abundant and relatively little published literature, respectively.

Based on the synthesis parameters obtained from data mining, we 
conducted high-throughput synthesis and characterization of NCs to 
investigate morphology-controlled synthesis (controllable synthesis), 
which has been a research hotspot in materials chemistry31. The key syn-
thesis parameters that control the crystal morphology are identified 
as structure-directing agents (SDAs). The processes integrate Robotic 
Execution Excel files, a simulated operation system, and automated 
synthesis and characterization modules. Specifically, the Robotic 
Execution Excel files are designed for execution of the automated plat-
form, which works as a user-friendly interactive interface between the 
platform and researchers, in which no programming skills are required. 
The experimental design is accomplished by writing the Excel file with 
information about the SDAs. The designed procedures written in the 
Excel file are pre-examined before the experiment, and monitored in 
real time during the robotic synthesis process by the simulated opera-
tion system (Supplementary Videos 1 and 2).

The platform was built with the desired synthesis and characteriza-
tion functionalities, as shown in Fig. 2. Photographs and a schematic 
representation of the platform are shown in Fig. 2a,b, respectively. 
Compared to the currently available platforms4–8,13–17,19,20, our platform, 
which is equipped with rapid optical characterization modules—such 
as a spectrometer (for ultraviolet–visible–near-infrared absorption 
measurement), a colour-ultrasensitive mobile camera (to obtain pho-
tographs and red–green–blue (RGB) values) and light sources (white 
light and ultraviolet light)—and integrated with automated synthesis 
modules and two collaborative robots, is specifically developed for 
automated synthesis and characterization of colloidal NCs. The typi-
cal properties of gold NCs (with strong visible-light absorption) and 
double-perovskite NCs (with photoluminescence) are robotically in 

a breakthrough for accelerating the discovery of materials24. How-
ever, in practice, robot-assisted high-throughput characterization 
remains less explored, whereas synthesis planning has been inte-
grated with retrosynthesis to streamline robotic synthesis15. A soft-
ware platform that could directly translate the organic chemistry 
literature into editable code to drive automated synthesis has been 
reported19. Moreover, advanced data-driven models have been recently 
applied to extract the organic synthesis parameters from patents for  
synthesis planning22,23.

The application of robotic synthesis, pioneered through the syn-
thesis of organic materials, is expected to be expanded to the field 
of inorganic materials24. A state-of-the-art robotic chemist has been 
reported to significantly improve the performance of photocatalysts4, 
indicating the great potential for robotic characterization of inorganic 
materials. The adoption of a robotic platform in the preparation and 
characterization of lead halide perovskites has been reported25. Other 
lead-containing perovskite (MAPbBr3, FAPbBr3, CsPbI3, CsPbBr3 (ref.26), 
MAPbI3 (refs. 26,27), FAPbI3 (refs. 26,27) and MA0.1Cs0.05FA0.85Pb(I0.95Br0.05)3  
(ref. 28)) thin films were further studied by incorporating automated 
synthesis, robotic characterization and machine learning (ML) tech-
niques. Moreover, the combination of automation and AI has been 
applied to the discovery of palladium thin films8. However, data min-
ing of the literature to drive the robotic search for targeted inorganic 
materials, especially NCs, has rarely been explored.

In the field of inorganic materials, data-driven initial 
hypotheses22,23, robot-assisted synthesis4,6 and experimental 
databases11,18,29 are promising for integration on robotic platforms to 
progressively acquire knowledge30, iteratively develop ML models18 and 
efficiently reveal data correlations16. Nevertheless, limitations still exist 
that hinder the robotic synthesis of inorganic NCs, for example, the 
lack of data-driven models for translating synthetic goals into robotic 
synthesis4,22,23, experimentally characterized crystal morphologies for 
realizing controllable synthesis31,32 and ML model-based correlation 
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Fig. 1 | Framework of the robotic platform for the synthesis of colloidal 
NCs. (1) Data mining of the literature. (2) Controllable synthesis of colloidal 
NCs (consisting of Robotic Execution Excel, a simulated operation system, and 
automatic synthesis and characterization). (3) Inverse design of targeted NC 
morphologies (with correlations between SDAs and NC morphologies identified 
by ML models).
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situ characterized by the spectrometer and the mobile camera on the 
platform. Absorption spectra and photographs (taken under white 
light or ultraviolet irradiation and the corresponding digitalized RGB 
values) are automatically acquired for further analysis. Supplementary 
Videos 1 and 2 show the operation of the platform.

Through automated synthesis and characterization, SDAs and the 
corresponding characterization results are acquired. ML models are 
then trained to identify the correlations between SDAs and NC mor-
phologies. Finally, inverse design, in which the desired morphologies 
are used to predict the SDAs used in robotic synthesis (morphologies 
→ SDAs)33, is implemented to accelerate the synthesis of targeted NCs. 
Moreover, the database is continuously expanded through data mining, 
automated characterization and ML predictions, which provides con-
structive guidance for achieving morphology-oriented inverse design.

This framework (Fig. 1) of data mining–synthesis–inverse design 
will be discussed in detail to demonstrate the capabilities of this robotic 
platform (literature search, NC synthesis and characterization, and 
correlation identification) in the following sections.

Data-driven automated synthesis
To plan and perform material synthesis, key synthesis parameters must 
be known, which are often determined on the basis of literature reports, 
trial-and-error experiments or the researcher’s previous experience. 
Recently, synthesis parameters, such as solvents and ligands, were 
predicted by extracting experimental text from patents, using state-
of-the-art data-driven models22,23. Although manual work cannot be 
easily fully replaced by data mining, the efficiency can be drastically 
boosted via automated literature searches compared with traditional 
trial-and-error experiments, and the dependency on the researcher’s 
expertise can be greatly reduced. However, in practice, data mining of 
synthesis parameters for automated synthesis, especially for NCs, is 
an emerging research area.

In the current study, data mining of the literature was applied to 
drive the platform with the aid of an automated literature recommenda-
tion system35. Key parameters required for the synthesis of well-known 
gold NCs and less-known double-perovskite NCs were extracted from 
the literature in two typical ways, either directly from the specific 
literature of gold NCs or indirectly from the related literature of other 
perovskites (Supplementary Fig. 1).

To demonstrate that the platform can address the difficulty of 
studying morphology-controlling synthesis variables among a large 
number of parameters in abundant published literature, gold NCs 
were selected as a typical example (Supplementary Fig. 1). For the 
known gold NC synthesis protocol, the target of data mining is to 
determine the most frequently used concentrations of the surfactant 
(hexadecyltrimethylammonium bromide (CTAB)) and other agents 
(for example, AgNO3, HCl, l-ascorbic acid (AA), HAuCl4, NaBH4 and 
gold seeds). Figure 3a and Supplementary Fig. 2 (in detail) show the fre-
quency distribution of the concentrations of key synthesis parameters 
reported in 1,300 studies regarding this specific synthesis protocol. 
Among them, the papers with the most frequently used parameters 
are indicated with blue dots in Fig. 3a. Moreover, L2, corresponding to 
the highest-frequency parameter, is defined as the middle level, and a 
linear transformation (Supplementary Table 1) is applied to keep the L2 
parameters at the same vertical position, as shown in Fig. 3b. By further 
fitting the curves obtained by Gaussian expansion, the boundaries 
of the shaded rectangle are determined as the low (L1) and high (L3) 
levels. Hence, L1, L2 and L3 are selected as key synthesis parameters 
for robotic execution of experiments.

Based on the data-mining results, the automated synthesis fol-
lowed an orthogonal design, as shown in Supplementary Table 2. Ultra-
violet‒visible‒near-infrared absorption spectroscopy (Supplementary 
Fig. 3) and multivariate analysis of variance (Supplementary Table 3) 
were performed. Twenty-four initial levels of experimental conditions 
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(Supplementary Table 4) were chosen for a further single-factor 
(adjusting one factor) study based on the results of the orthogonal 
experiments. To explore the potential impact of all single factors (CTAB, 
AgNO3, HCl, gold seeds, AA and HAuCl4), 24 levels and 96 extended 
levels of high-throughput experiments were designed, as shown in 
Supplementary Table 4, and were carried out to construct a database. 
A photograph of 96 samples obtained from automated synthesis with 
the 96 extended levels of CTAB is displayed in Fig. 3c as an example, 
showing the gradually changing colour of the synthesized gold NCs. 
The corresponding optical absorption spectra are provided in Supple-
mentary Fig. 4, showing the strong absorption of gold NCs in the visible 
region. These results suggest that adjusting the concentration of CTAB 
as a key synthesis parameter can lead to colour change and a peak shift 
of the longitudinal surface plasmon resonance (LSPR), indicating that 
these parameters can have a potential effect on morphology manipula-
tion. Hence, a further study of morphology-controlled synthesis will 
be of great significance.

For the research topic of lead-free double-perovskite NCs, about 
which there is less published literature (although lead-containing 
perovskite materials have been widely studied), the target of data 
mining is to identify potential surfactants and solvents in the related 
literature for the synthesis of Cs2AgIn1−xBixCl6 NCs as another typical 
demonstration (Supplementary Fig. 1). The bismuth ions are doped 
into the cubic unit cell of the Cs2AgInCl6 crystal to enhance the crystal 

quality and photoluminescence efficiency. This lead-free material was 
selected for its low toxicity and high photoluminescence efficiency.  
A probe of the potential influence of all solvents (Supplementary Table 5)  
and surfactants (Supplementary Table 6) with the initial choices 
obtained from data mining (Fig. 3d) was conducted on the platform.

First, in situ photoluminescence characterization (under irradia-
tion by ultraviolet light with emission at 365 nm) of 48 solvents was 
conducted in an attempt to screen the double-perovskite samples with 
the highest photoluminescence efficiency. The images were obtained 
using a colour-ultrasensitive mobile camera, and the colours were 
analysed both qualitatively by visual inspection and quantitatively by 
digital analysis of the RGB values, as shown in Fig. 3e and Supplemen-
tary Fig. 5. The R values of the samples with ethanol (A4), ethyl acetate 
(B2), isopropanol (IPA, B4), diethyl ether (C3), acetic acid (C5) and 
1,4-dioxane (2B2) as the solvent exposed to ultraviolet irradiation were 
higher than 240, and their emissions were much brighter, as shown in 
Fig. 3e, indicating higher photoluminescence efficiency.

Second, with these six solvents selected, the potential role of 61 
surfactants (obtained from data mining, as additives in 366 experi-
ments) in the morphology tuning of NCs was investigated. The super-
natant was extracted for photoluminescence analysis under ultraviolet 
irradiation since crystals of small sizes can be better dispersed in solu-
tion (which results in a colour difference in the solution), while larger 
crystals tend to quickly precipitate. For most samples with different 
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Fig. 3 | Data-driven automated synthesis. a, Data mining of key synthesis 
parameters for gold NCs (the key synthesis parameters extracted are the 
concentrations of CTAB, AgNO3, HCl, AA, HAuCl4, NaBH4 and gold seed). 
Papers with IDs 1–24 and 527–528 are identified and the others are displayed in 
Supplementary Fig. 2. Blue dots indicate papers with the most frequently used 
parameters. b, Frequency distribution of the concentration with identified low 
(L1), middle (L2) and high (L3) levels. The most frequently used concentrations 
are identified as L2, and linear transformation is applied to make all L2 values fall 
at the same vertical position. L1 and L3 refer to the boundary values of the shaded 
rectangle covering the specific area of the fitting curves obtained by Gaussian 

expansion. c, Photographs of samples prepared by automated synthesis (96 
samples with different concentrations of CTAB; 1–12 and A–H are the microplate 
labels). d, Data mining of key synthesis parameters for double-perovskite NCs 
(initial candidates of 48 solvents and 61 surfactants, the others are listed in 
Supplementary Tables 5 and 6; 2D4 is the well in column 4 and row D of the second 
plate shown in the tables). e, Photograph showing 24 samples with different 
solvents prepared by automated synthesis under ultraviolet irradiation (top) and 
corresponding R (red) values of the photoluminescense (bottom). f, Samples of 
supernatants extracted with 24 surfactants (top) and corresponding R values of 
the photoluminescence (bottom).
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additives, the photoluminescence colours show little difference due 
to the precipitation of larger crystals at the bottom. The dispersibility 
of the extracted supernatant of all the samples was characterized, as 
shown in Fig. 3f (the rest of the data are shown in Supplementary Fig. 6). 
The results illustrate that the sample with polyvinyl pyrrolidone (PVP, 
circled well in Fig. 3f) as the surfactant exhibits the best dispersibility 
and strongest photoluminescence (R = 39), indicating the possible 
formation of smaller crystals, which is worth further investigating for 
controllable synthesis of crystals with a wide range of sizes.

Robot-assisted controllable synthesis
When using this robotic platform, the key to controllable synthesis is 
to establish correlations between SDAs for automated synthesis and 
the corresponding crystal morphologies on the nanoscale. To achieve 
this goal, in situ robotic synthesis and characterization, ML prediction 
and ex situ transmission electron microscopy (TEM) or scanning elec-
tron microscopy (SEM) characterization (for morphology validation) 
were combined (Fig. 4). The correlations between the SDAs and the 
morphologies were determined by constructing ML models based on a 
dataset generated from rapid in situ characterization and validated by 
a small dataset generated from ex situ characterization. Based on the 
initial results from data-driven robotic synthesis, controllable synthesis 
of the two typical examples (gold NCs and double-perovskite NCs) was 
further explored.

On the basis of single-factor experiments, the ML models identi-
fied correlations between the robotically in situ characterized LSPR 
and SDA content for gold NCs, which are presented in Supplementary  

Fig. 7 (the corresponding coefficients are listed in Supplementary 
Tables 7 and 8). CTAB, AgNO3 and HCl showed greater effects on the 
LSPR than the gold seeds, AA and HAuCl4. Therefore, CTAB, AgNO3 
and HCl were identified as SDAs, which could be used as key synthesis 
parameters to control the morphology during robotic synthesis. For 
example, the LSPR peak shift in Supplementary Fig. 4 could be adjusted 
by the factor CTAB using this platform. As a result, the relationships 
between the SDAs and the characterized LSPR were verified to be the 
key to achieve controllable synthesis.

To further explore the manipulation mechanism, double-factor 
(that is, investigation of two identified SDAs) experiments were carried 
out (Supplementary Table 9). The LSPR was further extracted and then 
used to train the double-factor ML models. CTAB and AgNO3 exhibited 
synergistic effects on the tunability of the LSPR (Fig. 4a), which is con-
sistent with the observation that CTAB and Ag+ form a face-specific 
capping agent for tuning the morphology36,37.

Furthermore, the morphological aspect ratio (AR) (Fig. 4b) was 
measured and calculated based on TEM results (Fig. 4c and Supple-
mentary Fig. 8). A linear relationship between the LSPR and morpho-
logical AR was observed, as shown in Fig. 4b. These results further 
confirm that the SDA-based parameter can be used as an input, while 
the AR can be used as the output, providing data useful for controlla-
ble synthesis of NCs. The double-factor ML models of AR versus SDA 
contents are presented in Supplementary Fig. 9 (the corresponding 
coefficients are listed in Supplementary Tables 10 and 11). Interest-
ingly, CTAB and HCl in the double-factor experiment (Supplementary 
Fig. 9f) exhibited similar behaviour in morphology manipulation (in a 
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collaborative manner) to that of CTAB and AgNO3 in their double-factor 
experiment (Supplementary Fig. 9c). In contrast, for the double-fac-
tor experiment investigating AgNO3 and HCl (parameters in Supple-
mentary Table 11), AgNO3 dominated the morphology manipulation  
(Supplementary Fig. 9i).

The design of triple-factor experiments (parameters in Supple-
mentary Table 12) and the developed ML models are shown in Sup-
plementary Tables 13 and 14. By varying three SDAs in the triple-factor 
experiments, a more complex AR response profile was observed, as 
shown in Supplementary Fig. 10. Therefore, the correlation between 
the SDAs and morphological AR in the controllable synthesis of gold 
NCs was confirmed.

For controllable synthesis of double-perovskite crystals, single-
factor and double-factor experiments were performed to tune the 
crystal size from microcrystals to NCs. PVP as a surfactant shows 
great promise in reducing the size of the double-perovskite crystals, 

as suggested by the results of the surfactant screening experiments  
(Fig. 3f). In addition, considering that the main ions might also contrib-
ute to the formation of crystals, single-factor experiments (parameters 
in Supplementary Table 15) were conducted to verify the effects of 
the CsCl, InCl3 and BiCl3 additives together with PVP as the surfactant 
based on the crystal structure (Supplementary Fig. 11) and photolu-
minescence (Supplementary Fig. 12) results. In the presence of PVP 
(0–1,000 μl) and BiCl3 (0–100 μl), the pure phase of Cs2AgIn1−xBixCl6 
(0 ≤ x ≤ 1) (Supplementary Fig. 11g) was obtained, as confirmed by 
X-ray diffraction patterns (Supplementary Fig. 11d–f). Moreover, 
the supernatants of the samples with varied PVP and BiCl3 contents 
exhibited photoluminescence changes (Supplementary Fig. 12). These 
experiments reveal the vital roles of PVP and BiCl3 in the growth of 
Cs2AgIn1−xBixCl6 double perovskites as SDAs.

Therefore, double-factor experiments (PVP and BiCl3 contents) 
were designed to further investigate the factor effects in tuning the 
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Fig. 5 | Experimental database and ML models facilitate inverse design.  
a, Graphical illustration of the database for synthesizing gold NCs: O, S, D, T and I 
represent the orthogonal, single-factor, double-factor, triple-factor and inverse 
design experiments, respectively. b, Graphical illustration of the database for 
synthesizing double-perovskite NCs. c, ML normalized RGB–AR model for 
gold NCs. R, G, B represent red, green and blue, respectively. d, ML normalized 

RGB–size model for double-perovskite NCs. R, G, B represent red, green and 
blue, respectively. e, The ML-predicted correlations between SDAs (as inputs) 
and the AR or LSPR (as output) were identified for inverse design of targeted 
gold NCs. f, The ML-predicted correlations between SDAs (as inputs) and size (as 
output) were identified for inverse design of the double-perovskite NCs from 
microcrystals.
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crystal size, as shown in Supplementary Table 16. Ultraviolet‒visible‒
near-infrared absorption spectra and colour analysis of the samples 
show similar trends, which can be elucidated by Mie scattering theory38. 
In situ ultraviolet‒visible‒near-infrared absorption spectroscopy char-
acterization was conducted (Supplementary Fig. 13). The spectra were 
normalized according to the absorption peak, and the absorption 
intensity at 400 nm, as shown in Supplementary Fig. 14, was extracted 
as an indicator of the crystal size39. The double-factor ML model of the 
characterized absorption versus SDA content is presented in Fig. 4d, 
showing that the intensity at 400 nm decreased with increasing PVP 
and BiCl3 contents (validated in Supplementary Fig. 15). The correla-
tion between the normalized absorption at 400 nm and the crystal 
size was further evaluated, as shown in Fig. 4e. The size was validated 
by SEM characterization (down to 64 nm) (Fig. 4f and Supplementary  
Fig. 16). These results indicate that the size of the Cs2AgIn1−xBixCl6 
double-perovskite crystal can be manipulated by changing both the 
PVP and BiCl3 contents (Supplementary Fig. 17), which is consistent 
with the SEM validation and theoretical calculations (Supplementary  
Fig. 18). Hence, the correlations between the SDAs (PVP and BiCl3 con-
tents) as inputs and crystal sizes as the output for controllable synthesis 
of double-perovskite NCs were identified.

Morphology-oriented inverse design
Utilizing the data acquired from controllable synthesis, the robotic 
platform was further developed with the aim of inversely designing 
targeted NC morphologies based on the correlations between SDAs and 
the morphologies identified by ML models. This platform continues to 
be improved by receiving more robotically characterized data to realize 
the ultimate goal of morphology-oriented inverse design of NCs. With 
the aid of the platform, over 2,300 gold NC samples and 1,000 double-
perovskite NC samples were synthesized and in situ characterized; 
graphical diagrams of the databases are shown in Fig. 5a,b, respectively. 
The experimental database is considered to be crucial in supporting 
the inverse design process.

At the same time, the results obtained from in situ colour charac-
terization using the colour-ultrasensitive mobile camera contributed 
to the generation of another potential dataset for rapid inverse design. 
Colour information (RGB values) was extracted from photographs of 
gold NCs (Supplementary Fig. 19) and double-perovskite NCs (Sup-
plementary Fig. 20). The corresponding RGB values are presented 
in Supplementary Tables 17 and 18, and the ML models of gold NCs 
and double-perovskite NCs were trained based on the normalized 
RGB values, as presented in Fig. 5c,d, respectively. ML models with R2 
values of 0.94 and 0.90 were obtained for gold and double-perovskite 
NCs (the formulas and coefficients of the models are provided in Sup-
plementary Tables 19 and 20), respectively. The results indicate that 
colour analysis, which is typically achieved by visual inspection by a 
professional scientist, can serve as another indirect indicator for rapid 
morphological identification. In this way, the platform can be used 
for digitalization of colour in a similar way as a scientist but without 
bias, thus contributing to inverse design of NCs with colour features.

Based on the experimental database and ML models, the morphol-
ogies (AR or size) as ‘input’ and identified SDAs as ‘output’ are presented 
for gold NCs and double-perovskite NCs in Fig. 5e,f, respectively. In  
Fig. 5e,f, the effective ranges of the typical morphological AR (for gold 
NCs, from 1.90 to 6.00) and size (for double-perovskite NCs, down to 
64 nm) are graphically displayed. Morphological control with broad 
tunability within these ranges is revealed for both gold NCs and double-
perovskite NCs. Finally, the achieved inverse design of a targeted NC 
morphology with the corresponding SDAs is also illustrated in Fig. 5e,f.

The effective inverse design of gold NCs (Supplementary Fig. 21) 
and double-perovskite NCs (Supplementary Fig. 22) shows the promise 
of robotic synthesis of targeted NCs. In particular, we demonstrate 
the successful synthesis of targeted gold NCs (AR = 4.06 ± 0.41) and 
of nanosized (78 nm) and microsized (749 nm) double perovskites 

using the inverse design strategy, as given in Supplementary Tables 21  
and 22. Therefore, this study reveals that inverse design can be achieved 
by making use of databases (SDA-based parameters from robotic syn-
thesis, robotic in situ characterization results and ex situ validation 
results) and the corresponding ML models.

Discussion
To address the limitations of automated synthesis and characteriza-
tion of colloidal NCs with morphological control on the nanoscale, a 
robotic platform framework is established by integrating data mining, 
controllable synthesis and inverse design of targeted NC morphologies.

For automated synthesis, data mining of the literature was con-
ducted to provide initial choices of key synthesis parameters, for 
example, the concentrations of the known surfactants for gold NCs 
and the types of unknown surfactants for lead-free double-perovskite 
NCs. High-throughput automated synthesis, such as single-factor and 
double-factor experiments, was then systematically conducted. In 
these processes, accessible large (in situ characterized ultraviolet‒vis-
ible‒near-infrared absorption spectra and RGB results) and small (ex 
situ TEM and SEM validations) datasets were generated to continuously 
expand the experimental databases. Through a sequence of iterations, 
the corresponding experimental database was constructed for training 
the ML models, which enabled controllable synthesis of morphology-
tunable NCs. These developed ML models could be used to identify the 
complex correlations between the SDAs and crystal morphologies in 
the controllable synthesis of gold NCs and double-perovskite NCs. 
The experimental databases and ML models are critical for supporting 
the inverse design process. Furthermore, inverse design of targeted 
morphologies with the ML-predicted SDA-based synthesis parameters 
(morphologies → SDAs) was successfully demonstrated for both gold 
NCs (with strong visible-light absorption) and double-perovskite NCs 
(with intensive photoluminescence).

Comprising data-driven robotic synthesis, robot-assisted con-
trollable synthesis and morphology-oriented inverse design, this 
new synthetic framework was developed for synthesis of inorganic 
NCs. Training individuals to be highly qualified scientists with the 
expertise for conducting crystal synthesis and characterization on the 
nanoscale entails considerable cost. The outcomes of NC morphology 
manipulation can be diverse, as they depend heavily on the scientists’ 
experiences. Moreover, most material synthesis and discovery involve 
trial-and-error synthesis and labour-intensive characterization19,40. 
The prototype of this robotic platform specifically demonstrated for 
synthesis and characterization of NCs is a start toward reducing the 
manual tasks. In the current work, initial selection of key synthesis 
parameters from a literature search, high-throughput synthesis and 
in situ characterization, synthesis parameter-crystal morphology cor-
relation identification, and inverse design of morphology-tunable NCs 
were achieved, which are comparable to those performed by an expe-
rienced scientist in these fields. This synthetic approach is believed to 
be promising for digital synthesis of NCs from data to a crystal with the 
desired morphology using the robotic platform.

Methods
Data mining
The initial choices of key synthesis parameters were obtained by data 
mining the existing literature through our automated literature rec-
ommendation system to plan the automated synthesis. The whole 
process consists of several steps, as shown in Supplementary Fig. 1: 
(1) downloading literature from publishers by keywords; (2) using 
rules to locate target paragraphs; (3) splitting words and sentences 
in paragraphs by ChemicalTagger41 ; (4) applying a four-step cascad-
ing tagger (chemical named entity recognition by OSCAR435, addi-
tional recognition of chemical entities based on a domain dictionary, 
identification of the units of compound properties based on regular 
expressions and tagging of English parts of speech (POS) by OpenNLP  
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(https://opennlp.apache.org); (5) applying phrase parsing;41 and (6) 
statistically analysing the distribution of the extracted key synthesis 
parameters. In this work, the workflow of the automated literature 
recommendation system was demonstrated with two typical topics: 
gold NCs and double-perovskite NCs (details are provided in the Sup-
plementary Methods).

Robotic platform
The robotic platform was designed and assembled in our labora-
tory with a series of modules capable of performing robot-assisted 
high-throughput synthesis and in situ characterizations. Automated 
pipettes, sample and consumables storage, a synthesis platform, light 
sources, colour-ultrasensitive mobile cameras, and a microplate reader 
are integrated with a mobile robot and a robotic arm, as shown in  
Fig. 2. Based on the synthesis parameters obtained from data mining, 
the execution of automated experiments is programmed in Robotic 
Execution Excel files and then checked and monitored by a simulated 
operation system to conduct synthesis and characterization of NCs. 
Two typical operation videos for gold NCs (under white light for col-
our capture) and double-perovskite NCs (under ultraviolet light for 
fluorescence capture) are provided in Supplementary Videos 1 and 2.

Preparation of chemical solutions
Standard solutions, consisting of CTAB (0.2 M), HAuCl4 (0.02 M), AgNO3 
(0.01 M), HCl (3 M) and AA (0.2 M) for the synthesis of gold NCs, and 
CsCl (0.2 M in 36–38% HCl), AgCl (5 mM in 36–38% HCl), InCl3 (0.1 M in 
36–38% HCl) and BiCl3 (0.1 M in 36–38% HCl) for the synthesis of double-
perovskite NCs, were first manually prepared in volumetric flasks 
(100 ml). Then, the standard solutions were transferred to the plate 
on the platform and automatically diluted in proportion by execution 
of the designed Robotic Execution Excel files. As a result, the desired 
concentrations of precursors could be obtained for the synthesis of 
gold NCs and double-perovskite NCs. Details are provided in the Sup-
plementary Methods.

Automated synthesis of gold NCs
For a typically automated synthesis of gold NCs, certain amounts of 
CTAB (0.1 M, 1 ml), HAuCl4 (0.01 M, 50 μl), AgNO3 (0.01 M, 10 μl), HCl 
(1 M, 20 μl) and AA (0.1 M, 8 μl) were pipetted into a well of a 96-well 
microplate by automatic pipettes. A 4 min mixing process was set for 
each addition of chemicals (except for the gold seeds). After that, 2.4 μl 
of preprepared seed solution was injected into the growth solution and 
then gently stirred for 10 s. The microplate was transferred to a furnace 
by the robotic arm and kept undisturbed at 28 °C for 12 h. After the 
growth of gold NCs for 12 h, the microplate was taken out of the furnace 
by the robotic arm. Next, 200 µl of the mixed solution was aspirated 
into a well of a 96-well transparent microplate for ultraviolet‒visible‒
near-infrared absorption measurement and colour characterization. 
Details of the synthesis parameters and experimental design for the 
gold NCs are given in the Supplementary Methods. A video showing 
the automated synthesis of the gold NCs is also provided in the Sup-
plementary Video 1.

Automated synthesis of double-perovskite NCs
For a typical automated synthesis of Cs2AgIn1−xBixCl6 double perovskite, 
1 ml of PVP solution (20 mg ml−1 in 36–38% HCl), 500 µl of AgCl (5 mM in 
36–38% HCl), 500 µl of CsCl (0.2 M in 36–38% HCl), 90 µl of InCl3 (0.1 M 
in 36–38% HCl) and 10 µl of BiCl3 (0.1 M in 36–38% HCl) were added into 
one well of a 24-deep-well plate. For experiments of varied V(PVP), a 
complementary HCl (36–38%) solution was added to ensure that the 
total volume of the PVP solution and HCl was 1,000 µl. The solution 
was then mixed for 30 s. Next, 250 µl of the solution in each well was 
transferred into the corresponding well in another 24-well transparent 
plate, followed by the addition of 1,250 µl of isopropanol as a solvent, 
leading to the immediate formation of NCs/microcrystals. The mixed 

solution was then taken for further characterization. Details of the 
synthesis parameters and experimental design, and a video showing 
the automated synthesis of the double perovskite, are provided in 
Supplementary Methods and Supplementary Video 2.

ML models
ML models were employed for identification of the correlation between 
the synthesis parameters and the corresponding morphologies from an 
experimental database, which were characterized by an ultraviolet‒vis-
ible‒near-infrared absorption spectrometer and a colour-ultrasensitive 
mobile camera installed on the robotic platform. The sure independ-
ence screening and sparsifying operator (SISSO) approach42,43, a super-
vised ML algorithm that is a compressed sensing-based approach, was 
used to determine the critical correlation. For the construction of 
the experimental feature spaces during ML training, the set of imple-
mented operators was:

opset ≡ {(+)(−)(∗)(/)( ∧-1)( ∧2)( ∧3)(exp)(log)(sqrt)(cbrt)(sin)(cos)}

The detailed ML models with the corresponding coefficients are 
given in the Supplementary Information (Supplementary Tables 7, 8, 
10, 11, 13, 14, 19 and 20) for gold NCs and double-perovskite NCs.

Data availability
The data that support the findings of this study are available in the Sup-
plementary Information (Supplementary Methods, Supplementary 
Figs. 1–22 and Supplementary Tables 1–22), Supplementary Videos 1 
and 2 (synthesis of colloidal gold nanocrystals and double-perovskite 
nanocrystals on the robotic platform). Source data are provided with 
this paper.

Code availability
The computer code, algorithm and related data to generate the results 
that are reported in this paper and are central to its main claims are 
available in the Zenodo repository with the digital object identifier: 
https://doi.org/10.5281/zenodo.7353405. The algorithms for chemical 
name entity recognition35, expressions and grammatical structures41, 
and SISSO42,43 are adaptable as described in detail in Refs. 35,41–43.
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