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The rise of self-driving labs in chemical and 
materials sciences

Milad Abolhasani    1  & Eugenia Kumacheva2,3,4

Accelerating the discovery of new molecules and materials, as well as 
developing green and sustainable ways to synthesize them, will help to 
address global challenges in energy, sustainability and healthcare. The 
recent growth of data science and automated experimentation techniques 
has resulted in the advent of self-driving labs (SDLs) via the integration 
of machine learning, lab automation and robotics. An SDL is a machine-
learning-assisted modular experimental platform that iteratively operates 
a series of experiments selected by the machine learning algorithm to 
achieve a user-defined objective. These intelligent robotic assistants 
help researchers to accelerate the pace of fundamental and applied 
research through rapid exploration of the chemical space. In this Review, 
we introduce SDLs and provide a roadmap for their implementation 
by non-expert scientists. We present the status quo of successful SDL 
implementations in the field and discuss their current limitations and future 
opportunities to accelerate finding solutions for societal needs.

Finding tangible solutions for global challenges in energy, sustain-
ability and healthcare is the cornerstone of the research, economic 
and societal activities; however, the current strategies to address 
these challenges are time, resource and labour intensive. From the 
first practical demonstration of a silicon solar cell in 1954, it took more 
than half a century to find a more cost-effective material than silicon, 
and yet it is not deployed at scale1. The timeframe of drug discovery 
and development is typically ten years, with a cost of more than US$1 
billion (ref. 2). Despite the worldwide acknowledgement of climate 
change and environmental pollution with plastics more than 20 years 
ago3,4, currently there is no scalable technological solution for effective 
carbon capture and seawater treatment. These examples share a com-
mon challenge: the need to explore a vast number of continuous and 
discrete experimental variables to find the most effective composition 
as well as manufacturing routes of molecules and materials. Current 
exploration strategies in chemical and materials sciences rely on prior 
knowledge and, experimentally, on changing variables one at a time 
or in a combinatorial fashion. Despite the straightforward nature of 
these approaches, they do not meet the required pace of discovery 
in chemical and materials sciences to address the global challenges 

in energy, sustainability and healthcare5. Although initially highly 
promising, combinatorial screening strategies did not make a major 
breakthrough in the fields of energy materials or small molecules, due 
to the exponential growth of the number of required experiments with 
every added experimental variable.

In addition, the slow progress in chemical space exploration is 
attributed to: 1) the physical disconnection between the stages of syn-
thesis, characterization and performance evaluation in a conventional 
chemistry and materials science lab, as well as (2) the time gap between 
performing an experiment and making a decision about the conditions 
of the next experiment(s) to find a new compound or material with 
the targeted properties, identify an optimized synthetic route for an 
existing compound or unveil the underlying mechanism of a complex 
reaction. The physical disconnection refers to the siloed nature of the 
conventional research efforts on the discovery of new materials and 
molecules. Finding innovative solutions for large-scale global problems 
requires an interdisciplinary approach to experimental chemical and 
materials science. The siloed format of conventional chemistry and 
materials science labs slows down the very much required interdisci-
plinary research. For example, in the conventional experimental efforts 
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By the robotic integration of experimental modules, SDLs connect 
the otherwise physically disconnected stages of reagent preparation, 
synthesis, characterization and performance evaluation to establish 
an end-to-end experimental workflow for an accelerated synthesis and 
development of new molecules and materials. The end-to-end nature of 
SDLs17 becomes extremely powerful to co-design materials and devices. 
For example, the co-design of clean energy materials and devices within 
an SDL equipped with the material synthesis, purification, processing 
and device integration modules enables another research acceleration 
opportunity beyond the siloed operation of SDLs only focused on the 
synthesis or processing aspects of materials.

Importantly, the use of SDLs can avail a substantial amount of 
the researcher’s time to focus on new conceptual or intellectual chal-
lenges, rather than on time-consuming repetitive tasks in the lab. 
Instead of changing one variable at a time, by incorporating ML, SDLs 
intelligently explore the chemical space and at the same time minimize 
or eliminate the time gap between acquiring experimental results and 
decision-making for the conditions of the next experiment. In contrast 
to the frequently misinterpreted purpose of SDLs (replacing highly 
trained scientists in research settings), intelligent robotic assistants 
are meant to accelerate discovery and avail the time of chemists and 
materials scientists to high-level scientific questions. For example, 
providing an SDL with a research acceleration of 10 times (Fig. 1b) for 
each of the researchers shown in Fig. 1a increases their overall research 
productivity by at least 30 times, which allows them to work on new 
scientific questions. As a result, SDLs reshape the role of the operator 
and/or researcher in the chemical and materials science workflow 
(Fig. 1b). Intelligent experimental planning and autonomous explo-
ration of the experimental space allow scientists to see a big picture 
of the scientific problem, discard unfavourable synthetic routes and 
effectively identify impactful intrinsic and extrinsic experimental 
variables that control the targeted physicochemical properties of 
molecules or materials.

Over the past decade, promising applications of SDLs were dem-
onstrated to accelerate the synthesis and fabrication of molecules 
and materials, for example, carbon nanotubes18, complex organic 
compounds13,19–21, nanomaterials22–27, phase-change memory materials28 
and thin-film materials29,30. Yet, the SDL utility in chemical and materials 
sciences is still limited. The reasons for the slow progress of SDLs are 
the lack of: (1) standardized and cost-effective hardware, (2) readily 
accessible software, (3) user-friendly operational guidelines for chem-
ists and materials scientists and (4) the incorporation of physics-based 
models with autonomous experimentation.

This Review introduces SDLs for experimental chemistry and 
materials science and highlights recent successful examples for the 
autonomous synthesis of organic molecules and functional (nano)
materials. It provides a roadmap for starting an SDL in a conventional 
chemistry and materials science lab and discusses the steps toward its 
successful implementation. The discussion of current limitations and 

on the discovery of clean energy technologies, different research 
groups study materials and develop devices. Materials scientists and 
device engineers typically work separately on different aspects of 
clean energy technologies. As a result, solution-processable clean 
energy materials are being sought after without considering their 
specific requirements at the device level, and device architectures 
are being optimized without the best-performing material at hand. 
In addition, this disconnection of the material synthesis and device-
level integration results in an inefficient research operation without 
taking advantage of intermediate information (materials properties). 
These limitations stem from the current human-dependent approach 
to research in every step of an experimental workflow. The COVID-19 
pandemic exposed the strong reliance on ‘in person’ presence for 
conventional experimental research, and the laboratory shutdowns 
led researchers to think about their approach to experimental research 
in academic and industrial settings6.

The vast size and high dimensionality (dimension refers here to a 
continuous or discrete experimental variable) of the chemical design 
spaces that need to be experimentally explored require new integrated 
strategies to accelerate the discovery of new molecules and advanced 
functional materials, as well as to find sustainable ways for their scaled-
up synthesis and manufacturing.

Recent advances in robotics7,8 and artificial intelligence9,10 offer an 
exciting opportunity to reshape research in the experimental chemical 
and materials sciences. Artificial intelligence, a subfield of computer 
science, seeks to build machines with human-programmed intelligence 
(for example, the ability of decision-making). Machine learning (ML), a 
subfield of artificial intelligence, seeks to build mathematical models 
for complex tasks and processes with high-dimensional spaces to per-
form automated operations, such as the prediction of a synthesis out-
come or material properties or image classification. The convergence 
of ML, lab automation (for example, synthesis, separation, purification 
and characterization) and robotics (for example, reagent preparation 
and sample transfer between different experimental modules) led to 
the development of ‘self-driving labs’ (SDLs)11. SDLs leverage scientific 
and technological advancements made in academia and industry over 
the past decade in lab automation12–14, reaction miniaturization (via flow 
chemistry and microfluidics)15 and online analytical characterization16. 
In contrast to human-dependent experimental settings in conventional 
chemistry and materials science labs (Fig. 1a), the SDLs (Fig. 1b) use: (1) 
robots to operate multiple repetitive tasks that are time-consuming, 
require precision or pose safety concerns when dealing with toxic or 
flammable chemicals, and (2) computers that can outperform human 
scientists for certain tasks, such as handling high-dimensional big data. 
In this manner, the use of SDLs addresses three challenges of conven-
tional chemistry and materials science labs: (1) inefficient and slow 
experimental space exploration, (2) physical disconnection between 
different experimental stages and (3) the time gap between performing 
an experiment and selecting the next experiment to be tested.

a b

Fig. 1 | Conventional versus self-driving labs. a,b, Illustration of the transition from a conventional chemistry and materials science lab (a) to an SDL for each 
researcher (b) to address the challenges of the current disconnected experimental workflows by using modular robotic experimentation and the intelligent planning 
of experiments.
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future opportunities for SDLs serves as a catalyst for academic labs in 
chemical and materials sciences to accelerate the implementation of 
this new integrated workflow in their experimental research, and for 
industry to focus on the standardization of SDL hardware and software 
for their broad deployment to accelerate the synthesis of new com-
pounds and the development of advanced materials that contribute 
to scalable future technological solutions.

SDLs in chemical and materials sciences
An SDL is an intelligent experimental platform equipped with differ-
ent hardware modules that iteratively operate a series of syntheses 
or physical processes selected and planned by the ML algorithm in 
a closed-loop format to achieve a predefined objective. The SDL’s 
closed-loop operation refers to the cycle of performing an ML-selected 
experiment by following an automated series of tasks, acquiring exper-
imental data, updating an ML model and making a decision about the 
next set of experimental conditions to be tested by the SDL. Examples 
of tasks performed by the modules include reagent preparation, mix-
ing, synthesis, purification, printing and characterization. An SDL 
operator defines the closed-loop ‘campaign’ objective, for example, 
to identify a new compound with the desired properties, accelerated 
retrosynthesis of an existing compound or low-temperature manu-
facturing of a thin-film material. In addition, the SDL operator can 
leverage the prior domain knowledge and human expertise, such as 
physics-based models (for example, conservation laws) and an initial 
hypothesis (for example, about the reaction mechanism), as well as 
constrains of the reaction conditions, such as the range of tempera-
tures, pressures and reagent concentrations. In this sense, SDLs act as 
an assistant to scientists in the discovery, exploration, optimization 
and/or synthesis–structure–property mapping of new molecules and 
advanced materials. Furthermore, SDLs enable access to unexplored 
regions of the experimental design space and accelerate the pace of 
research towards novel compounds. With intelligent experimental 
planning, big data generated by SDLs can rapidly provide important 
information about the underlying reaction mechanisms of complex 
multistage reactions.

Figure 2 illustrates recent implementation of SDLs in chemical 
and materials sciences. For example, SDLs enabled closed-loop synthe-
sis–property relationship mapping (Fig. 2a) and on-demand synthesis  
(Fig. 2b) of semiconductor22,23,26,31–33 and metal24,25,34 nanoparticles 
>1,000 times faster than conventional techniques. Chiral metal halide 
perovskite nanoparticles were revealed by an SDL with 250 autono-
mously selected and performed experiments (Fig. 2c). Furthermore, 
the use of SDLs accelerated the discovery of semiconductor and metal 
thin-film compositions29,30,35 and their low-temperature processing 
conditions, 50 °C lower than that of prior art (Fig. 2d)30. An eight-day 
continuous and unattended operation of an SDL (688 experiments) 
unveiled an effective photocatalyst formulation for hydrogen evolu-
tion from water six times more active than that of prior art (Fig. 2e)21. 
The data-driven operation of an SDL reduced the total number of 
experiments required to identify a high-performing three-dimensional-
printed structure with maximum toughness by 60-fold compared with 
a conventional grid search (Fig. 2f)36. In addition to the examples listed, 
SDLs were recently utilized for the on-demand and on-site manufactur-
ing of active pharmaceutical ingredients13,19,20.

The main impact of SDLs is the ‘research acceleration’ to gener-
ate new knowledge that leads to the discovery of novel compounds 
or manufacturing routes of the best-performing materials 10–1,000 
times faster than by utilizing one-at-a-time variable exploration or 
combinatorial experiments. The acceleration factor directly trans-
lates into a substantial reduction in research time, cost, resources,  
waste and carbon footprint in academia and industry. We believe  
that the accelerated finding of innovative solutions to global  
problems will be the most impactful contribution of SDLs in the  
next decade.

A roadmap for SDLs
The most common questions asked by a scientist considering the 
adoption of an SDL in the chemical or materials science research are, 
‘Where should I start?’, ‘What ML algorithms can be used for experiment-
selection and data mining?’, ‘How long does it take to build an SDL?’ 
and ‘What would be the cost of building an SDL?’. The answers to these 
questions are directly related to the type of molecules or materials to 
be prepared and the goal of research, for example, discovery, explora-
tion, mechanistic study or optimization. Figure 3a presents a general 
roadmap for SDLs, aimed at answering the question ‘Where should I 
start?’. From the hardware perspective, the targeted class of molecules 
or materials determines the selection of the required SDL hardware 
modules by specifying the reagents and the type of reaction (that is, 
gas, liquid or solid phase), as well as the necessary characterization 
techniques. From the software perspective, the goal of an SDL operation 
also determines the scope of the intelligent experiment planning and 
the required software components for the SDL’s closed-loop campaigns.

As shown in Fig. 3a, a modular approach to the implementation of 
an SDL in a conventional chemistry or materials science lab includes 
the selection and integration of hardware and software modules to cre-
ate the experimental design that is best suited for the targeted class of 
molecules or materials. The preparation of reagents involves robotic 
handling, stirring, heating and degassing of liquids and/or solids. 
Depending on the nature of the reaction, miniaturized flow reactors, 
parallel batch reactors or glass and/or silicon substrates (thin-film 
materials) are utilized for the automated synthesis under conditions 
selected by the ML algorithm (software). The purification module of 
the SDL hardware can include solvent removal (for organic synthesis), 
centrifugation (for nanomaterial synthesis) or spin coating (for thin-
film preparation). The processing module includes the evaluation of 
the physical or chemical performance of the autonomously produced 
molecules or materials, for example, their photostability, conductiv-
ity or reactivity. Examples of the SDL processing modules include 
the coating and printing of thin films and nanocrystal inks, bioactiv-
ity of active pharmaceutical ingredients in medicinal chemistry and 
turnover frequency in (photo)catalysis. The characterization module 
is critically important for the evaluation of the properties of molecules 
and materials produced in the SDL after each module. The analytical 
techniques that have already been implemented in SDLs for organic 
synthesis include high-performance liquid chromatography and gas 
chromatography, mass spectrometry, nuclear magnetic resonance 
(NMR) spectroscopy and Fourier-transform infrared spectroscopy. 
Characterization techniques integrated with SDLs for the autonomous 
development of nanomaterials and thin films include ultraviolet–vis-
ible–near infrared absorption and photoluminescence spectroscopy. 
When a characterization technique is difficult to dedicate to a specific 
SDL due to the cost (for example, X-ray diffraction spectroscopy), com-
plicated sample preparation (for example, transmission and scanning 
electron microscopy) or inaccessibility in the SDL location (for exam-
ple, a synchrotron light source), ML-assisted parameter space explora-
tion is accomplished at a slower pace than that of a fully autonomous 
robotic experimentation, as it requires a manual sample preparation 
and characterization by an operator37. In this format, the lack of robotic 
automation of one or a few experimental steps will lower the overall 
research throughput compared with that of a fully autonomous robotic 
experimentation format, but the ML-assisted experiment selection 
will still make it considerably faster than the conventional exploration 
strategies in chemical and materials sciences.

As illustrated in Fig. 3a, sample transfer between different modules 
of an SDL can be handled by stationary26,29,30,36 or mobile21 robots or 
using pumps, valves and tubing13,20,22,23,25. When dealing with air- and/
or moisture-sensitive chemical compounds, placing the SDL under an 
inert atmosphere can improve sample handling and data reproduc-
ibility. When the characterization module is integrated online with the 
synthesis module, the reaction sampling can be conducted by using 
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valves and pumps13,20 without the need for the robotic arm. If the char-
acterization technique cannot be directly integrated with the synthesis 
module, but can be placed within a close proximity of the synthesis 
module, a stationary robotic arm can transfer the sample between the 
synthesis and characterization modules of the SDL26,29,30,36. When the 
characterization module cannot be placed within reach of a stationary 
robotic arm, a mobile robotic arm can perform the sample transfer 
across the SDL21. The configurations of the SDLs with fluidic sample 
transfer and a stationary robotic arm require custom-development 
and specific integration of the characterization modules with the 
synthesis module of the SDLs, whereas mobile robots are a retrofit to 
the conventional chemistry and materials science labs. Robotic arms, 
in addition to sample transfer, can also be utilized for autonomous 
reconfiguration of the end-to-end modular workflow from the starting 
reagents to the final purified product, which substantially expands 
the SDL’s capabilities to explore continuous and discrete variables 
and enable access to a larger portion of the design space than that of 
conventional experimental platforms.

From the software perspective, data flow between different SDL 
modules serves as a key point for closed-loop operations38,39. Reliable 
data flow using robust data representation and metadata tracking 
strategy, that is, recording and reporting the latent features of each 
experiment, is required to truly digitize the synthesis and manufac-
turing of molecules and materials with scalable and transferrable 
knowledge. An accelerated discovery will only become possible when 
standardized and reliable digital data of all the reactions tested by 
SDLs become readily available. Equipping SDLs with standardized 
data representation and access to the metadata of prior experiments 
performed on the same or different SDLs will address the common 
challenge of lab-to-lab variations (or irreproducibility) that is faced in 
the synthesis of functional materials and complex organic compounds.

SDLs incorporate ML for modelling and the uncertainty quan-
tification of experimental data or genetic algorithms to efficiently 
explore the synthesis design space of molecules or (nano)materials in 
a sequential, closed-loop and adaptive manner40–42. This critical adap-
tive aspect of autonomous experimentation leverages the uncertainty 

Fig. 2 | Successful examples of SDLs in chemical and materials sciences. 
a,b, Autonomous material properties mapping (a) and bandgap engineering 
of metal halide perovskite quantum dots (QDs) using a flow reactor-based 
SDL23 (b). c, Autonomous discovery of chiral perovskite nanocrystals using a 
flow-reactor-based SDL26. d, Accelerated discovery of optimal low-temperature 
synthesis conditions for spray coating of palladium films using an SDL equipped 
with a stationary robotic arm over four closed-loop replicates (campaigns)30. 
e, Autonomous identification of an optimal photocatalyst mixture for the 
maximum hydrogen production from water using a batch-reactor-based SDL 
equipped with a mobile robotic arm21. The dot colour transition from blue to red 
indicates an increase in hydrogen evolution. f, Top: an example of an SDL with 

intelligent experiment selection outperforming a conventional grid search to 
rapidly discover the optimal geometry of an additively manufactured part with 
maximum toughness (U). Bottom: force (F) versus displacement (D) curve of the 
three-dimensional-printed geometry with the maximum U, discovered by an SDL 
equipped with a stationary robotic arm36. Φ, quantum yield; a.u., arbitrary units; 
CD, circular dichroism; EFWHM, emission linewidth; EI, expected improvement; Ep, 
peak emission energy; IPL, photoluminescence intensity; MV, maximum variance; 
a.u., arbitrary units. Adapted with permission from: a,b, ref. 23, Wiley; c, ref. 26, 
Springer Nature Ltd; f, ref. 36, AAAS. Reproduced with permission from: d, ref. 30, 
Springer Nature Ltd; e, ref. 21, Springer Nature Ltd.
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quantification of data-driven ML models to overcome the limitations 
of non-adaptive combinatorial screening techniques. Closed-loop 
formulation–synthesis–structure–property mapping of the targeted 
class of molecules or materials can be performed by using genetic 
algorithms or by integrating an ML model (thus improving the model 
prediction accuracy with every new data point) of single or multiple 
experimental objectives, for example, reaction yield and regioselectiv-
ity or film thickness and manufacturing temperature with uncertainty 
quantification. The uncertainty quantification of ML models can be 
utilized to select the next experimental condition by using exploration 
(design space navigation), exploitation (optimization) or balanced 
exploration–exploitation decision policies. Existing open-access SDL 
software packages, which include ChemOS43 and ARES OS44, provide a 
user-friendly starting point for researchers in chemical and materials 
sciences to initiate an autonomous experimentation. The closed-loop 
operation of SDLs can be utilized for fundamental studies, for example, 
to uncover reaction mechanisms, as well as in applied research, for 
example, the identification of the most sustainable manufacturing 
route of the target molecule or material. Using ML algorithms that are 
not properly selected, designed or tuned to achieve a specific objective 

of the SDL operation substantially increases the number of closed-loop 
experimental iterations and, hence, the total cost of experiments42. 
This is why comparing the suitability of ML algorithms for different 
classes of molecules and (nano)materials45 by using freely accessible 
and reproducible data libraries is a vitally important feature of the 
future developments of SDLs. Providing open-access ML benchmarking 
resources will be crucial to answer the question ‘What ML algorithms 
can be used for experiment selection and data mining?’.

The answers to questions ‘How long does it take to build an SDL?’ 
and ‘What would be the cost of building an SDL?’ are directly related 
to the complexity of the required experimental modules (for example, 
single versus multistage experimental stages), the range and number of 
operating process conditions (for example, pressure and temperature), 
type of solvent (aqueous versus organic), required characterization 
technique(s) and acceptable precision. Building a reliable SDL with 
a high level of reproducibility for chemistry and materials science 
labs can take from several weeks to 1–2 years and cost from less than 
US$1,000 to more than US$1,000,000. For example, the hardware and 
software requirements of an SDL that performs at room-temperature 
with a colorimetric or spectroscopic readout (Fig. 3b)35,46 are different 
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Fig. 3 | A roadmap of SDLs. a, An overview of the approach to building an SDL 
in a chemical and materials science lab. b, A flowchart of an SDL built using 
robotic liquid handling and well-plate-based synthesis integrated with online 
colorimetric or spectroscopic characterization modules for room-temperature 

solution-phase chemistries stable under air and moisture. c, A flowchart of an 
end-to-end SDL for the accelerated co-design of clean energy materials and 
devices under an air- and moisture-free environment.
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to those of an end-to-end autonomous robotic experimentation plat-
form working under an inert atmosphere for the co-design of clean 
energy materials and devices (Fig. 3c). The hardware and software 
modularization and standardization of SDLs, along with providing 
open-access communication protocols with different characterization 
instrumentations for in situ or online product analysis, can reduce the 
development timeframe of SDLs from 1–2 years to 1–2 months.

Successful examples of SDLs
Over the past five years, proof-of-concept SDLs—for example, 
Chemputer13,20, BEAR36,47, CAMEO28 and Artificial Chemist22,23—
were successfully utilized for the autonomous synthesis of 
nanoparticles22–27,32,34, polymers48 and copolymers49, thin-film 
materials29,50,51, carbon nanotubes52, supramolecular clusters53, com-
plex organic molecules13,19,20,54, photocatalysts21 and shape-memory 
materials28 for applications in additive manufacturing36, liquid product 
formulations55,56, pharmaceuticals57 and clean energy technologies58–60. 
Figure 4 shows three approaches to the hardware and robotic integra-
tion of SDLs: portable robotic arms that access an entire SDL (Fig. 4a)21 
or connect different modules of SDLs61, stationary robots that supply 
manufactured parts36, collected nanomaterial inks26 or thin film sub-
strates (Fig. 4b)29,30 to different SDL modules, and compact workstations 
for tube and/or pump-based reagent transfer between the synthesis 
and characterization modules of SDLs (Fig. 4c)13,62. The unique aspect 
of mobile robots (Fig. 4a) is the facile access to conventional char-
acterization techniques available in a chemical lab without the need 

for a direct integration with the synthesis module of SDLs. Despite 
this advantage, the high cost of mobile robots that offer a precise and 
reproducible sample transfer with multiple grippers poses a major 
bottleneck for such SDLs.

Figure 5 shows examples of parallel batch (Fig. 5a)25 and flow reac-
tors (Fig. 5b)22–24,26,34 utilized to automatically perform reactions in 
SDLs. In the case of organic or nanomaterial synthesis with no solid 
reagent or precipitation during the synthesis, flow reactors provide 
an excellent opportunity for reaction miniaturization, reduced chemi-
cal consumption and waste generation, facile integration with online 
characterization techniques and access to synthesis conditions, for 
example, mixing and heating or cooling rates that are not accessible 
to batch reactors19,22–24,32,63. These advantages of flow reactors make 
them a promising candidate to access unexplored regions of the design 
spaces for emerging molecules and (nano)materials. For solid-phase 
synthesis and processing (for example, preparation of thin films, bat-
tery materials or solid-state polymerization), or reactions with the 
precipitation of solid products or by-products, parallel batch reactors 
are more suitable reactor candidates for SDLs.

From the characterization perspective, both online and offline 
modules, such as custom-developed spectroscopy techniques22–24,32,34 
and imaging tools29,30, and off-the-shelf analytical units, for example, 
high-performance liquid chromatography, Fourier-transform infrared 
spectroscopy, NMR spectroscopy and gas chromatography13,19–21, have 
been successfully integrated with SDLs for the autonomous synthesis 
and development of functional materials and molecules. Furthermore, 
online characterization modules can provide access to measurements 
after each stage of multistage syntheses or material fabrication. Such 
intermediate-stage information can be leveraged to accelerate a search 
through the high-dimensional space of multistage processes by the 
early identification of more advantageous synthetic routes. The inte-
gration of SDLs with online characterization techniques leverages 
the extensive hardware development and online reaction sampling 
techniques developed during the past two decades via the emergence 
and growth of lab-on-a-chip technologies. In addition to common 
spectral characterization techniques, the structural characterization 
of fabricated (nano)materials using electron microscopy (transmis-
sion electron microscopy and scanning electron microscopy) and 
small- and wide-angle X-ray scattering can also be integrated with 
SDLs; however, the high capital cost and the need for additional com-
plex hardware development and integration limit their integration 
with SDLs to specially dedicated facilities. From the ML perspective, 
a range of strategies suitable for handling continuous and discrete 
parameters, from Bayesian optimization to evolutionary algorithms 
(for example, covariance matrix adaptation evolution strategy and 
genetic algorithms) have been successfully implemented in SDLs for 
the accelerated development and on-demand synthesis of organic 
molecules, nanomaterials and thin-film materials. For details of differ-
ent ML algorithms utilized in SDLs relevant to chemical and materials 
sciences, we refer the reader to recent comprehensive reviews of such 
algorithms40,64–68.

Current limitations and future opportunities of 
SDLs
Despite successful proof-of-concept examples of SDLs in the acceler-
ated synthesis of complex organic molecules and advanced (nano)mate-
rials, many opportunities exist for further research and development. 
First and foremost, for non-experts in autonomous robotic experimen-
tation, the transition of SDLs from sophisticated custom-developed 
technologies to a mainstream approach in experimental chemical and 
materials sciences requires major advances in hardware development, 
which include module engineering and online characterization tech-
niques to reduce the entry barriers, such as cost, module assembly, 
operation and troubleshooting. The high cost of robots and charac-
terization modules, the complicated assembly of custom-developed 
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Fluidic
sample
transfer

Mobile robots

Fig. 4 | The use of robotics in SDLs. a–c, Photographs of mobile21 (a), stationary30 
(b) or fluidic (c) robots13 utilized for the automated sample transfer between 
experimental modules of SDLs. Reprinted with permission from: a (right), ref. 21, 
Springer Nature Ltd; b (right), ref. 30, Springer Nature Ltd; c (right), ref. 13, AAAS.
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modules and extensive troubleshooting, all combined with the lack of 
standardization of hardware modules, data flow, data representation 
and intelligent experiment-selection algorithms, are the current major 
limitations of SDLs. We see the initial cost barrier of SDLs as an ena-
bling opportunity for the research acceleration community in chemical 
and materials sciences. The large capital expenditure of current SDLs 
provides a unique opportunity for researchers interested in hardware 
development to focus on low-cost and open-source SDL modules, such 
as liquid-handling robots69, syringe pumps70, three-dimensional-printed 
reactionware71 and field-deployable diagnostics72. Moreover, the recent 
growth of cloud labs around the world73 provides another potential 
avenue for early career researchers to access state-of-the-art robotic 
experimentation facilities without major capital investments.

The adoption of SDLs by scientists across chemical and materi-
als sciences would entail a highly intelligent and flexible automation 
of research labs with autonomously reconfigurable experimental 
modules. The challenge of the autonomous development of advanced 
functional materials, in contrast to that of small molecules, is the lack 
of reproducible data in the literature. Although automated data extrac-
tion from the literature, despite a proved bias74, has been achieved for 
organic synthesis19,75 and successfully enabled data-driven retrosyn-
thesis or highly accurate reaction prediction, it has largely failed for 
advanced (nano)materials. This failure, however, creates a unique 
opportunity for SDLs. The sparse data availability for advanced (nano)
materials (for example, clean energy materials), in combination with 
their lab-to-lab variations, makes SDLs an ideal research platform to 
provide reproducible data for ML modelling and design space naviga-
tion and for knowledge transfer within each class of targeted mate-
rial. In general, SDLs improve the experimental data reproducibility 
through digitization, enhanced accuracy, transferrable knowledge 
and minimization of the impact of human errors.

Although mobile or stationary robotic arms can be utilized for 
the transfer of liquid-phase reagents or products between different 
modules or the automatic reconfiguration of SDLs, they are mostly 
required for SDLs that handle solid-phase reagents, or in cases for 
which more powerful characterization techniques, for example, NMR 
spectroscopy, are required. A critical requirement of SDLs working with 
solid-phase reactions, reagents or samples is the need to use robotics 

for precise solid-powder dosing and a fast and reliable sample transfer 
between different SDL modules. Despite the rapid progress of robots 
and solid-dispensing technologies over the past two decades, the high 
cost of precise solid-dispensing and robotic arms, with the required 
precision, reproducibility, mobility and speed, poses a limitation for 
the widespread implementation of SDLs. Reductions in the costs of 
solid- and/or liquid-dispensing and stationary and/or mobile robots are 
enabling factors for the broad deployment and adoption of SDLs across 
chemical and materials sciences. We believe that a critical next step 
for SDL adoption is the development of cost-effective mobile robotic 
manipulators designed to enable flexibility in the automatic recon-
figuration of the SDL design and adaptation to dynamic changes in the 
workspace. Furthermore, robotic manipulators should provide precise 
and reproducible high-speed operations to maximize the reproducibil-
ity and agility of SDLs. A reduced cost of mobile robotic manipulators 
would enable the incorporation of multiple robots in the SDLs, which 
would prevent disruption in the closed-loop SDL operation in the case 
of a potential failure of a specific robot. Such open-access and mobile 
robotic manipulators will be able to make agile actions in an environ-
ment, similar to conventional human-centred research labs, without the 
need for a special lab space design or modification of the SDL operation.

An important software aspect of SDLs is their robust and flexible 
integration with ML to provide autonomy for navigation through the 
design space of molecules and materials. The rapidly growing list of 
ML modelling and experiment selection strategies makes the algo-
rithm selection a challenging task for non-experts. This challenge is 
an exciting opportunity for the future development of SDLs towards 
the standardization of ML algorithms suitable for different end-to-end 
experimental workflows, operation modes (exploration, exploitation 
or mechanistic studies) and targeted classes of molecules or (nano)
materials (for example, prior knowledge versus physics-based models 
versus black-box search).

Industry plays an important role in addressing the hardware and 
software challenges for SDLs by leveraging the prior advancements in 
the development of experimental tools for combinatorial screening 
applications in medicinal chemistry and molecular biology. By focus-
ing on cost reduction and the standardization of robots, experimental 
modules and characterization techniques for SDLs, industry can reduce 

b

a Toluene

Chloroform

Flow
reactor 1

Flow
reactor 2

CsPbBr3 QDs CsPb(Br/I)3 QDs
ZnI2

Fig. 5 | Diversity of SDL reactors. a,b, Parallel batch reactors25,35 (a) and 
miniaturized flow reactors19,22 (b) utilized for the controlled synthesis of thin-
film materials (a, left), metal nanoparticles (a, right), active pharmaceutical 

ingredients (b, left), and colloidal quantum dots, QDs (b, right). Adapted with 
permission from: a (left), ref. 35, ACS; a (right), ref. 25, Springer Nature Ltd; b (left), 
ref. 19, AAAS; b (right), ref. 22, Wiley.
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the entry barrier to SDLs for scientists. Standard experimental modules 
and equipment communication protocols are a critically important 
advancement for future SDLs39,76. The main pieces of equipment for 
the online or in situ characterization of materials or molecules using 
conventional spectroscopy and chromatography techniques already 
exist. However, SDLs generally need to use custom-built hardware (for 
example, a flow cell for the in situ monitoring of reactions performed 
in a flow reactor) or a triggering method (for example, online gas chro-
matography sampling) to integrate the existing characterization units 
with other SDL modules. As the number of SDL users increases, it is 
expected the companies that manufacture characterization instru-
mentation, such as spectrometers and chromatographs, as well as NMR 
spectroscopy, mass spectrometry and X-ray diffraction equipment, 
will focus on the design and development of sampling and integra-
tion modules with open-access software for the in situ and online 
characterization of materials and molecules. In addition, the leading 
SDL research groups around the world are strongly encouraged to 
work with instrumentation companies to expand the available in situ 
and online characterization modules. A successful example of such an 
academia–industry collaboration in the advancements of online reac-
tion monitoring modules is the powerful ReactIR probe for integration 
with flow reactors developed by Mettler Toledo in collaboration with 
the Ley group at the University of Cambridge77.

We encourage the ML community in chemical and materials 
sciences to focus their future efforts on the facile benchmarking of 
application-specific algorithms45, expanding open-access databases 
and making the design space exploration and/or exploitation software 
user-friendly. Another important aspect of SDLs that is still not well 
studied is how to carefully choose the best ML algorithm to gener-
ate new fundamental knowledge about an underlying phenomenon 
or an unexpected relationship between input parameters and out-
put properties for the class of reactions or materials explored by the 
SDL. As the number of experimental modules and independent input 
parameters of SDLs increases over the next few years, more data- and/
or physics-informed ML strategies will be needed to reduce the total 
cost of computation and experimentation to discover new materials 
and molecules or the sustainable way to manufacture them at scale78–80. 
Such information can be provided to the SDL either from open-source 
reaction databases81, or by ML models that are created using prior data 
generated by the same or another SDL (for example, the model built on 
a different subset of materials or reactions from the same general class 
of materials or reactions)82. Data- and/or physics-informed autono-
mous experimentation is a necessary next step of the SDL’s software 
development to realize their largest impact in the autonomous dis-
covery of materials and molecules. This aspect of future SDLs requires 
cross-disciplinary training83 and collaboration between the ML and 
chemical and materials science communities to enable implementation 
of the most suitable ML algorithms that are accessible and understand-
able to non-experts. Such collaborations are necessary to accelerate the 
intelligent search through the chemical space with constrains, metrics 
and objectives defined by domain experts.

One of the most intriguing aspects of SDLs, which is largely unex-
plored and directly tied to the future hardware and software advance-
ments, is their remote operation capabilities through the cloud or 
remote connection to define the next goal of the SDL operation27. Auto-
matic access to a library of starting reagents, in combination with reli-
able and reproducible automated sample preparation, synthesis and 
online and offline characterization techniques substantially reduces 
the required amount of ‘in-person’ presence of the researcher in the 
lab during the SDL operations. Furthermore, the remote operation of 
SDLs in different physical locations provides the unique advantage of 
reproducible knowledge-sharing (data fusion) opportunities via open 
databases for different classes of emerging materials and molecules.

We note that the remote operation of SDLs will require differ-
ent workforce training than that of the current paradigm in chemical 

and material sciences. The rapidly emerging remote connectivity  
tools, such as virtual reality84 and augmented reality85, along with  
digital communication platforms provided stimulating avenues to 
explore for future SDLs and workforce development during the pan-
demic and continued thereafter. As SDLs start to penetrate different 
applications of experimental sciences, one of the major challenges 
in the next decade will be the required talent pool of a new genera-
tion of interdisciplinary trained scientists to utilize SDLs to their full 
potentials. The need for this new generation of scientists will require 
us to re-evaluate our student’s training and focus on multidisciplinary 
skills in academia.
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