Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis and reactivity of copper carbyne anion complexes

Abstract

Carbyne anions (R–C) are one of the least explored and most poorly understood subvalent carbon species and, so far, have only been observed in the gas phase. In this study, we report the synthesis and isolation of copper phosphinocarbyne anion complexes. The combination of a π-donor substituent and an electropositive transition metal enables the isolation of copper carbyne anion complexes at room temperature. The electronic structure of the isolated copper phosphinocarbyne anion complexes was probed using density functional theory calculations. These calculations reveal the dominance of ionic interactions between the copper and carbon atoms and the singlet ground state of the phosphinocarbyne anion, featuring a planar phosphorus atom and a short phosphorus–carbon bond. These complexes exhibit the reactivity of a carbyne anion, as demonstrated through the synthetic transformations to form silyl- and germanyl-substituted carbenes, diazaphospholidinyl-substituted alkenes and ethenimines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and the main concept.
Fig. 2: Synthesis of copper carbyne anion complexes 5 and 6.
Fig. 3: Solid-state structures.
Fig. 4: Theoretical analysis.
Fig. 5: Reactivity of 5.
Fig. 6: Solid-state structures.
Fig. 7: Free energy profile for formation of 11.

Data availability

General information, experimental procedures, 1H NMR/13C{1H} NMR/31P NMR/19F NMR spectra, X-ray crystallographic data, high resolution mass spectrometry data and infrared spectrometry data are provided in the Supplementary Information. For NMR spectra, see Supplementary Figs. 135. For selected NLMOs of HC≡C-CuIPent, P≡C-CuIPent, [H2C=C-CuIPent]+ and 6, see Supplementary Figs. 4043. For crystallographic analysis, see Supplementary Fig. 36 and Supplementary Tables 211. For natural bond orbital analysis of 6 and C, see Supplementary Table 13. For the mechanism leading to 11, see Supplementary Table 14. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2169399 (2), 2169400 (3), 2169401 (4), 2169402 (5), 2169403 (6), 2169404 (7), 2169405 (8), 2210613 (9), 2169406 (11) and 2210612 (12). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Moss, R. A., Platz, M. S. and Jones, M. Jr. Reactive Intermediate Chemistry (John Wiley & Sons, 2004).

  2. Bates, R. B. and Ogle, C. A. Carbanion Chemistry (De Gruyter, 2022).

  3. Wietelmann, U. & Klett, J. 200 years of lithium and 100 years of organolithium chemistry. Z. Anorg. Allg. Chem. 644, 194–204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoshikai, N. & Nakamura, E. Mechanisms of nucleophilic organocopper(I) reactions. Chem. Rev. 112, 2339–2372 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Seyferth, D. The grignard reagents. Organometallics 28, 1598–1605 (2009).

    Article  CAS  Google Scholar 

  6. Hinsberg, W. D. & Dervan, P. B. Synthesis and direct spectroscopic observation of a 1,1-dialkyldiazene. Infrared and electronic spectrum of N-(2,2,6,6-tetramethylpiperidyl)nitrene. J. Am. Chem. Soc. 100, 1608–1610 (1978).

    Article  CAS  Google Scholar 

  7. Dielmann, F. et al. A crystalline singlet phosphinonitrene: a nitrogen atom–transfer agent. Science 337, 1526–1528 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 57, 11508–11521 (2018).

    Article  CAS  Google Scholar 

  9. Sun, J. et al. A platinum(ii) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Mathey, F. Developing the chemistry of monovalent phosphorus. Dalton Trans. 36, 1861–1868 (2007).

    Article  Google Scholar 

  11. Aktaş, H., Slootweg, J. C. & Lammertsma, K. Nucleophilic phosphinidene complexes: access and applicability. Angew. Chem. Int. Ed. 49, 2102–2113 (2010).

    Article  Google Scholar 

  12. Liu, L., Ruiz, D. A., Munz, D. & Bertrand, G. A singlet phosphinidene stable at room temperature. Chem 1, 147–153 (2016).

    Article  CAS  Google Scholar 

  13. Wang, Z., Herraiz, A. G., del Hoyo, A. M. & Suero, M. G. Generating carbyne equivalents with photoredox catalysis. Nature 554, 86–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Soleilhavoup, M. & Bertrand, G. Stable carbenes, nitrenes, phosphinidenes, and borylenes: past and future. Chem 6, 1275–1282 (2020).

    Article  CAS  Google Scholar 

  15. Seburg, R. A., Hill, B. T., Jesinger, R. A. & Squires, R. R. The phenylcarbyne anion. J. Am. Chem. Soc. 121, 6310–6311 (1999).

    Article  CAS  Google Scholar 

  16. Feng, E. et al. Gas-phase reactivity of phenylcarbyne anions. J. Am. Chem. Soc. 144, 8576–8590 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, W., Guo, Y., Han, C. & Huang, X. Characteristic fragmentation behavior of 5-[1-aryl-1H-pyrrol-2-yl]-1H-tetrazole by electrospray ionization tandem mass spectrometry. Life Sci. J. 5, 25–29 (2008).

    CAS  Google Scholar 

  18. Fischer, E. O. et al. trans-halogeno[alkyl(aryl)carbyne]tetracarbonyl complexes of chromium, molybdenum, and tungsten —a new class of compounds having a transition metal-carbon triple bond. Angew. Chem. Int. Ed. Engl. 12, 564–565 (1973).

    Article  Google Scholar 

  19. Guggenberger, L. J. & Schrock, R. R. Tantalum carbyne complex. J. Am. Chem. Soc. 97, 2935–2935 (1975).

    Article  CAS  Google Scholar 

  20. Schrock, R. R. High oxidation state multiple metal−carbon bonds. Chem. Rev. 102, 145–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Jia, G. Recent progress in the chemistry of osmium carbyne and metallabenzyne complexes. Coord. Chem. Rev. 251, 2167–2187 (2007).

    Article  CAS  Google Scholar 

  22. Zhu, C. & Xia, H. Carbolong chemistry: a story of carbon chain ligands and transition metals. Acc. Chem. Res. 51, 1691–1700 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Frogley, B. J., Hill, A. F. & Watson, L. J. Advances in transition metal seleno- and tellurocarbonyl chemistry. Chem. Eur. J. 26, 12706–12716 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Luecke, H. F. & Bergman, R. G. Synthesis, structural characterization, and chemistry of a monomeric cationic iridium carbyne complex. J. Am. Chem. Soc. 120, 11008–11009 (1998).

    Article  CAS  Google Scholar 

  25. Carlson, R. G. et al. The metathesis-facilitated synthesis of terminal ruthenium carbide complexes: a unique carbon atom transfer reaction. J. Am. Chem. Soc. 124, 1580–1581 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Peters, J. C., Odom, A. L. & Cummins, C. C. A terminal molybdenum carbide prepared by methylidyne deprotonation. Chem. Commun. 32, 1995–1996 (1997).

    Article  Google Scholar 

  27. Wengrovius, J. H., Sancho, J. & Schrock, R. R. Metathesis of acetylenes by tungsten(VI)-alkylidyne complexes. J. Am. Chem. Soc. 103, 3932–3934 (1981).

    Article  CAS  Google Scholar 

  28. Giannini, L. et al. Genesis, redox, and acid−base relationships among WC, WC, and WC functionalities over an oxo surface modeled by calix[4]arene. J. Am. Chem. Soc. 121, 2784–2796 (1999).

    Article  CAS  Google Scholar 

  29. Lackner, A. D. & Fürstner, A. The triple-bond metathesis of aryldiazonium salts: a prospect for dinitrogen cleavage. Angew. Chem. Int. Ed. 54, 12814–12818 (2015).

    Article  CAS  Google Scholar 

  30. Simpson, C. K. et al. Effects of cation–anion interactions on the structures and photophysical properties of anionic d0 tungsten–benzylidyne complexes. Inorg. Chim. Acta 345, 309–319 (2003).

    Article  CAS  Google Scholar 

  31. VenkatRamani, S. et al. New alkylidyne complexes featuring a flexible trianionic ONO3– pincer-type ligand: inorganic enamine effect versus sterics in electrophilic additions. Organometallics 34, 2841–2848 (2015).

    Article  CAS  Google Scholar 

  32. Brew, S. A., Gordon, F. and Stone, A. in Advances in Organometallic Chemistry Vol. 35 (eds Stone, F. G. A. & West, R.) 135–186 (Academic Press, 1993).

  33. Hill, A. F. & Kong, R. Y. An anionic nucleophilic d4 carbyne complex. Chem. Commun. 53, 2032–2035 (2017).

    Article  CAS  Google Scholar 

  34. Kim, S. J., Hamilton, T. P. & Schaefer, H. F. Phenylnitrene: energetics, vibrational frequencies, and molecular structures. J. Am. Chem. Soc. 114, 5349–5355 (1992).

    Article  CAS  Google Scholar 

  35. Hrovat, D. A., Waali, E. E. & Borden, W. T. Ab initio calculations of the singlet-triplet energy difference in phenylnitrene. J. Am. Chem. Soc. 114, 8698–8699 (1992).

    Article  CAS  Google Scholar 

  36. Hamilton, T. P., Willis, A. G. & Williams, S. D. Ab initio predictions of the lowest electronic states, structures vibrational frequencies of phenylphosphinidene. Chem. Phys. Lett. 246, 59–65 (1995).

    Article  CAS  Google Scholar 

  37. Nguyen, M. T., Van Keer, A., Eriksson, L. A. & Vanquickenborne, L. G. Some calculated properties of phenylphosphinidene (C6H5P). Chem. Phys. Lett. 254, 307–313 (1996).

    Article  CAS  Google Scholar 

  38. Hu, C. et al. Crystalline monometal-substituted free carbenes. Chem 8, 2278–2289 (2022).

    Article  CAS  Google Scholar 

  39. Vignolle, J., Cattoën, X. & Bourissou, D. Stable noncyclic singlet carbenes. Chem. Rev. 109, 3333–3384 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Iluc, V. M., Laskowski, C. A. & Hillhouse, G. L. Synthesis of bis(phosphine) and N-heterocyclic carbene supported α- diazoalkyl complexes of copper(I). Organometallics 28, 6135–6138 (2009).

    Article  CAS  Google Scholar 

  42. Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).

    Article  PubMed  Google Scholar 

  43. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous .alpha.,.alpha.’-bis-carbenoid, triply bonded species: synthesis of a stable .lambda.3-phosphino carbene-.lambda.5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

  44. Kato, T., Gornitzka, H., Baceiredo, A., Savin, A. & Bertrand, G. On the electronic structure of (phosphino)(silyl)carbenes: single-crystal X-ray diffraction and ELF analyses. J. Am. Chem. Soc. 122, 998–999 (2000).

    Article  CAS  Google Scholar 

  45. Colebatch, A. L., Frogley, B. J. & Hill, A. F. Phosphaisonitrile umpolung – synthesis and reactivity of chloro aminophosphino carbynes. Dalton Trans. 48, 10628–10641 (2019).

    Article  PubMed  Google Scholar 

  46. Wilson, D. W. N., Urwin, S. J., Yang, E. S. & Goicoechea, J. M. A cyaphide transfer reagent. J. Am. Chem. Soc. 143, 10367–10373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ziegler, T. & Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 46, 1–10 (1977).

    Article  CAS  Google Scholar 

  48. Mitoraj, M. & Michalak, A. Donor–acceptor properties of ligands from the natural orbitals for chemical valence. Organometallics 26, 6576–6580 (2007).

    Article  CAS  Google Scholar 

  49. Mitoraj, M. & Michalak, A. Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules. J. Mol. Model. 14, 681–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  51. Savin, A., Nesper, R., Wengert, S. & Fässler, T. F. ELF: the electron localization function. Angew. Chem. Int. Ed. Engl. 36, 1808–1832 (1997).

    Article  CAS  Google Scholar 

  52. Zhao, L., Pan, S., Holzmann, N., Schwerdtfeger, P. & Frenking, G. Chemical bonding and bonding models of main-group compounds. Chem. Rev. 119, 8781–8845 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Lupinetti, A. J., Jonas, V., Thiel, W., Strauss, S. H. & Frenking, G. Trends in molecular geometries and bond strengths of the Homoleptic d10 metal carbonyl cations [M(CO)n]x+ (Mx+=Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+; n=1–6): a theoretical study. Chem. Eur. J. 5, 2573–2583 (1999).

    Article  CAS  Google Scholar 

  54. Frenking, G. & Fröhlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, X.-B. et al. Evidence of significant covalent bonding in Au(CN)2−. J. Am. Chem. Soc. 131, 16368–16370 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Emig, N., Tejeda, J., Réau, R. & Bertrand, G. The surprising instability of (phosphino)(stannyl)carbenes! Tetrahedron Lett. 36, 4231–4234 (1995).

    Article  CAS  Google Scholar 

  57. Evanseck, J. D. & Houk, K. N. Theoretical predictions of activation energies for 1,2-hydrogen shifts in singlet carbenes. J. Phys. Chem. 94, 5518–5523 (1990).

    Article  CAS  Google Scholar 

  58. Despagnet, E. et al. Stable non-push–pull phosphanylcarbenes: NMR spectroscopic characterization of a methylcarbene. Angew. Chem. Int. Ed. 41, 2835–2837 (2002).

    Article  CAS  Google Scholar 

  59. Nakano, R., Jazzar, R. & Bertrand, G. A crystalline monosubstituted carbene. Nat. Chem. 10, 1196–1200 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Amsallem, D. et al. A rare example of a rearrangement involving four structural isomers: α-phosphinonitrile/c-phosphinoketenimine/1-aza-4-phosphabutadiene/1,2-dihydro-1,2-azaphosphete. Chem. Eur. J. 8, 5305–5311 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Valyaev, D. A., Filippov, O. A., Lugan, N., Lavigne, G. & Ustynyuk, N. A. Umpolung of methylenephosphonium ions in their manganese half-sandwich complexes and application to the synthesis of chiral phosphorus-containing ligand scaffolds. Angew. Chem. Int. Ed. 54, 6315–6319 (2015).

    Article  CAS  Google Scholar 

  62. Valyaev, D. A. et al. A direct, modular, and efficient construction of the P-C-P structural motif through coupling of manganese carbyne complexes with phosphines. Chem. Eur. J. 20, 2175–2178 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (grant nos. 22271132 and 22101114), Shenzhen Science and Technology Innovation Programme (grant no. JCYJ20220530114806015), Guangdong Innovative & Entrepreneurial Research Team Programme (grant no. 2021ZT09C278), Guangdong Basic and Applied Basic Research Foundation (grant no. 2022A1515011717) and Guangdong Provincial Key Laboratory of Catalysis (grant no. 2020B121201002). The theoretical work was supported by the Center for Computational Science and Engineering and the CHEM High-Performance Supercomputer Cluster at SUSTech. We acknowledge the assistance of SUSTech Core Research Facilities. We thank D. A. Ruiz at SUSTech for polishing this paper.

Author information

Authors and Affiliations

Authors

Contributions

L.L.L. conceptualized and supervised the project. R.W. and X.F.W. performed the experimental work. L.L.L., R.W. and C.H performed the computational work. R.W. performed the X-ray crystallographic analyses. L.L.L. wrote the paper with the input from all authors. All authors discussed the results in detail and commented on the paper.

Corresponding author

Correspondence to Liu Leo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Didier Bourissou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

General information, experimental section, Supplementary Figs.1–43, Tables 1–14, computational details and references.

Supplementary Data 1

Crystallographic data for compound 2, CCDC: 2169399.

Supplementary Data 2

Crystallographic data for compound 3, CCDC: 2169400.

Supplementary Data 3

Crystallographic data for compound 4, CCDC: 2169401.

Supplementary Data 4

Crystallographic data for compound 5, CCDC: 2169402.

Supplementary Data 5

Crystallographic data for compound 6, CCDC: 2169403.

Supplementary Data 6

Crystallographic data for compound 7, CCDC: 2169404.

Supplementary Data 7

Crystallographic data for compound 8, CCDC: 2169405.

Supplementary Data 8

Crystallographic data for compound 9, CCDC: 2210613.

Supplementary Data 9

Crystallographic data for compound 11, CCDC: 2169406.

Supplementary Data 10

Crystallographic data for compound 12, CCDC: 2210612.

Supplementary Data 11

Cartesian coordinations of the optimized structures by DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Wang, XF., Hu, C. et al. Synthesis and reactivity of copper carbyne anion complexes. Nat. Synth (2023). https://doi.org/10.1038/s44160-022-00225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-022-00225-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing