Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical oxidative C(sp3)–H cross-coupling with hydrogen evolution

Abstract

Oxidative C(sp3)–H bond functionalization is a powerful tool in organic synthesis, but the stoichiometric oxidants required for bond formation raise environmental concerns. Electrochemical synthesis is typically carried out under environmentally benign conditions and hence is increasingly used in organic reactions. Recent advances revealed that electrochemical oxidative cross-coupling reactions employing either free radicals or carbocations can be conducted in the absence of external oxidants. In this Review, we outline the electrochemical oxidative C(sp3)–H cross-coupling to C(sp3)–C(X) (X = N, O, S, P, F, I and Br) bonds with hydrogen evolution under external oxidant-free conditions. Two commonly used electrochemical methods, namely direct and indirect oxidation electrolysis, are discussed for C(sp3)–H activation. The outline of electrochemical oxidative C(sp3)–H cross-coupling is organized based on the reactive intermediates (C(sp3)–M, a C(sp3) radical or a C(sp3) cation). Electrochemical asymmetric C(sp3)–H cross-coupling and late-stage functionalization of C(sp3)–H bonds in complex molecules are included to demonstrate the utility. Future perspectives for the development of electrochemical C(sp3)–H bond functionalization are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxidative C(sp3)–H cross-coupling.
Fig. 2: Pathway for activated C(sp3)–H bonds and unactivated C(sp3)–H bonds in electrochemical oxidative C(sp3)–H cross-couplings.
Fig. 3: ET to afford a C(sp3) radical through SET.
Fig. 4: HAT process in electrocatalytic C(sp3)–H cross-coupling.
Fig. 5: C(sp3)–H functionalization involving C(sp3) carbocation.
Fig. 6: Electrochemical palladium-catalysed oxidative C(sp3)–H functionalization.
Fig. 7: Electrochemical asymmetric functionalization of C(sp3)–H.
Fig. 8: LSF of C C(sp3)–H bonds by electrocatalysis.

Similar content being viewed by others

References

  1. Girard, S. A., Knauber, T. & Li, C. J. The cross-dehydrogenative coupling of C(sp3)–H bonds: a versatile strategy for C–C bond formations. Angew. Chem. Int. Ed. 53, 74–100 (2014).

    Article  CAS  Google Scholar 

  2. Liu, C., Liu, D. & Lei, A. Recent advances of transition-metal catalysed radical oxidative cross-couplings. Acc. Chem. Res. 47, 3459–3470 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, C. et al. Oxidative coupling between two hydrocarbons: an update of recent C–H functionalizations. Chem. Rev. 115, 12138–12204 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Li, C. J. et al. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Yeung, C. S. & Dong, V. M. Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Le Bras, J. & Muzart, J. Intermolecular dehydrogenative Heck reactions. Chem. Rev. 111, 1170–1214 (2011).

    Article  PubMed  Google Scholar 

  7. An, X.-D. & Xiao, J. Recent advances in hydride transfer-involved C(sp3)–H activation reactions. Org. Chem. Front. 8, 1364–1383 (2021).

    Article  CAS  Google Scholar 

  8. Chen, J. Y., Wu, W., Li, Q. & Wei, W. T. Visible‐light induced C(sp3)−H functionalization for the formation of C−N bonds under metal catalyst‐free conditions. Adv. Synth. Catal. 362, 2770–2777 (2020).

    Article  CAS  Google Scholar 

  9. Liu, X.-Y., Li, Z.-L., Wei, H. & Zhang, Z.-H. Recent advances in radical-involved alkynylation of unactivated C(sp3)–H bonds by hydrogen atom abstraction. Synlett. 32, 362–369 (2020).

    Google Scholar 

  10. Mishra, A. A., Subhedar, D. & Bhanage, B. M. Nickel, cobalt and palladium catalysed C–H functionalization of un-activated C(sp3)–H bond. Chem. Rec. 19, 1829–1857 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 11, 12974–12993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xing, Y., Wang, N.-X., Zhang, L.-Y. & Wu, Y.-H. C(sp3)–H bond functionalization of alcohols, ketones, nitriles, ethers and amides using tert-butyl hydroperoxide as a radical initiator. Synlett. 32, 23–29 (2020).

    Google Scholar 

  13. Chen, X., Engle, K. M., Wang, D. H. & Yu, J. Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    Article  CAS  Google Scholar 

  14. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  15. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  16. Jiang, Y., Xu, K. & Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 118, 4485–4540 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, Q.-L., Fang, P. & Mei, T.-S. Recent advances in organic electrochemical C–H functionalization. Chin. J. Chem. 36, 338–352 (2018).

    Article  CAS  Google Scholar 

  19. Frontana-Uribe, B. A., Little, R. D., Ibanez, J. G., Palma, A. & Vasquez-Medrano, R. Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem. 12, 2099–2119 (2010).

    Article  CAS  Google Scholar 

  20. Horn, E. J., Rosen, B. R. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent. Sci. 2, 302–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Jutan, Anny Contribution of electrochemistry to organometallic catalysis. Chem. Rev. 108, 2300–2347 (2008).

    Article  Google Scholar 

  23. Schäfer, H. J. Contributions of organic electrosynthesis to green chemistry. C. R. Chim. 14, 745–765 (2011).

    Article  Google Scholar 

  24. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, S., Zeng, L. & Lei, A. Oxidative R1–H/R2–H cross-coupling with hydrogen evolution. J. Am. Chem. Soc. 140, 13128–13135 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Tang, S., Liu, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4, 27–45 (2018).

    Article  CAS  Google Scholar 

  28. Smith, M. B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 7th edn (John Wiley & Sons, Inc., 2013).

  29. Huang, P., Wang, P., Wang, S., Tang, S. & Lei, A. Electrochemical oxidative [4 + 2] annulation of tertiary anilines and alkenes for the synthesis of tetrahydroquinolines. Green Chem. 20, 4870–4874 (2018).

    Article  CAS  Google Scholar 

  30. Guan, Z. et al. Electrochemical synthesis of α-amino amides via C(sp3)–H bond activation. Green Chem. 24, 3964–3968 (2022).

    Article  CAS  Google Scholar 

  31. Wu, Z. J. & Xu, H. C. Synthesis of C3-fluorinated oxindoles through reagent-free cross-dehydrogenative coupling. Angew. Chem. Int. Ed. 56, 4734–4738 (2017).

    Article  CAS  Google Scholar 

  32. Wu, Z. J., Li, S. R., Long, H. & Xu, H. C. Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds. Chem. Commun. 54, 4601–4604 (2018).

    Article  CAS  Google Scholar 

  33. Wu, Z. J., Li, S. R. & Xu, H. C. Synthesis of N-heterocycles by dehydrogenative annulation of N-allyl amides with 1,3-dicarbonyl compounds. Angew. Chem. Int. Ed. 57, 14070–14074 (2018).

    Article  CAS  Google Scholar 

  34. Jie, L. H., Guo, B., Song, J. & Xu, H. C. Organoelectrocatalysis enables direct cyclopropanation of methylene compounds. J. Am. Chem. Soc. 144, 2343–2350 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Guan, Z. et al. Synthesis of cyclopentene derivatives via electrochemically induced intermolecular selective (3+2) annulation. Angew. Chem. Int. Ed. 61, e202207059 (2022).

    Article  CAS  Google Scholar 

  36. Chen, M., Wu, Z. J., Song, J. & Xu, H. C. Electrocatalytic allylic C–H alkylation enabled by a dual-function cobalt catalyst. Angew. Chem. Int. Ed. 61, e202115954 (2022).

    CAS  Google Scholar 

  37. Gao, H., Zha, Z., Zhang, Z., Ma, H. & Wang, Z. A simple and efficient approach to realize difunctionalization of arylketones with malonate esters via electrochemical oxidation. Chem. Commun. 50, 5034–5036 (2014).

    Article  CAS  Google Scholar 

  38. Qian, P. et al. Electrocatalytic C–H/N–H Coupling of 2′-aminoacetophenones for the synthesis of isatins. J. Org. Chem. 82, 6434–6440 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. He, T. J., Ye, Z., Ke, Z. & Huang, J. M. Stereoselective synthesis of sulfur-containing β-enaminonitrile derivatives through electrochemical C(sp3)–H bond oxidative functionalization of acetonitrile. Nat. Commun. 10, 833 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp3)–H bonds. Angew. Chem. Int. Ed. 58, 6385–6390 (2019).

    Article  CAS  Google Scholar 

  41. Xu, P., Chen, P. Y. & Xu, H. C. Scalable photoelectrochemical dehydrogenative cross-coupling of heteroarenes with aliphatic C–H bonds. Angew. Chem. Int. Ed. 59, 14275–14280 (2020).

    Article  CAS  Google Scholar 

  42. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Masui, M. et al. Electrochemical oxidation of olefins using N–hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 33, 4798–4802 (1985).

    Article  CAS  Google Scholar 

  45. Masui, M. et al. Anodic oxidation of compounds having benzylic or allylic carbon and α-carbon to heteroatom using N-hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 31, 4209–4211 (1983).

    Article  CAS  Google Scholar 

  46. Masui, M. et al. N-hydroxyphthalimide as an effective mediator for the oxidation of alcohols by electrolysis. J. Chem. Soc. Chem. Commun. 1983, 479–480 (1983).

    Article  Google Scholar 

  47. Rafiee, M., Wang, F., Hruszkewycz, D. P. & Stahl, S. S. N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C–H functionalization. J. Am. Chem. Soc. 140, 22–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Niu, L. et al. Manganese-catalysed oxidative azidation of C(sp3)–H bonds under electrophotocatalytic conditions. J. Am. Chem. Soc. 142, 17693–17702 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, S. et al. Scalable electrochemical dehydrogenative lactonization of C(sp2)/(sp3)–H bonds. Org. Lett. 20, 252–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, X., Zhang, G., Bu, F., Nie, L. & Lei, A. Electrochemical-oxidation-induced site-selective intramolecular C(sp3)–H amination. ACS Catal. 8, 9370–9375 (2018).

    Article  CAS  Google Scholar 

  52. Huang, H., Strater, Z. M. & Lambert, T. H. Electrophotocatalytic C–H functionalization of ethers with high regioselectivity. J. Am. Chem. Soc. 142, 1698–1703 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Capaldo, L., Quadri, L. L., Merli, D. & Ravelli, D. Photoelectrochemical cross-dehydrogenative coupling of benzothiazoles with strong aliphatic C–H bonds. Chem. Commun. 57, 4424–4427 (2021).

    Article  CAS  Google Scholar 

  54. Meyer, T. H., Samanta, R. C., Del Vecchio, A. & Ackermann, L. Mangana(III/IV)electro-catalysed C(sp3)–H azidation. Chem. Sci. 12, 2890–2897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhou, Z. et al. Synergy of anodic oxidation and cathodic reduction leads to electrochemical C–H halogenation. Chin. J. Chem. 37, 611–615 (2019).

    Article  CAS  Google Scholar 

  56. Zhang, L. et al. Ritter-type amination of C(sp3)–H bonds enabled by electrochemistry with SO42–. Nat. Commun. 13, 4138 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo, Y.-R., Comprehensive Handbook of Chemical Bond Energies 1st edn (CRC, 2007).

  58. Kvasovs, N. & Gevorgyan, V. Contemporary methods for generation of aryl radicals. Chem. Soc. Rev. 50, 2244–2259 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kurandina, D. et al. Transition-metal- and light-free directed amination of remote unactivated Csp3–H bonds of alcohols. J. Am. Chem. Soc. 141, 8104–8109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parasram, M., Chuentragool, P., Sarkar, D. & Gevorgyan, V. Photoinduced formation of hybrid aryl Pd-radical species capable of 1,5-HAT: selective catalytic oxidation of silyl ethers into silyl enol ethers. J. Am. Chem. Soc. 138, 6340–6343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ratushnyy, M., Kvasovs, N., Sarkar, S. & Gevorgyan, V. Visible-light-induced palladium-catalyzed generation of aryl radicals from aryl triflates. Angew. Chem. Int. Ed. 59, 10316–10320 (2020).

    Article  CAS  Google Scholar 

  62. Ashikari, Y., Nokami, T. & Yoshida, J. Integrated electrochemical-chemical oxidation mediated by alkoxysulfonium ions. J. Am. Chem. Soc. 133, 11840–11843 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Jun-ichi, Yoshida et al. Oxidative hydroxylation mediated by alkoxysulfonium ions. Org. Lett. 14, 938–941 (2012).

    Article  Google Scholar 

  64. Meng, L. et al. Direct electrosynthesis of ketones from benzylic methylenes by electrooxidative C–H activation. Chemistry 19, 5542–5545 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Xiong, P. et al. Site-selective electrooxidation of methylarenes to aromatic acetals. Nat. Commun. 11, 2706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baba, D. & Fuchigami, T. Anodic methoxylation and acetoxylation of imines and imidates. Tetrahedron Lett. 44, 3133–3136 (2003).

    Article  CAS  Google Scholar 

  67. Okimoto, M. et al. Electrooxidative cyclization of hydroxyamino compounds possessing a benzyl group. Synthesis 44, 1315–1322 (2012).

    Article  CAS  Google Scholar 

  68. Akinori, Konno et al. Electrolytic partial fluorination of organic compounds. 23.1 Regioselective anodic difluorination of sulfides using novel fluorine source Et4NF·4HF. J. Org. Chem. 62, 8579–8581 (1997).

    Article  Google Scholar 

  69. Yuan, Y. et al. Exogenous-oxidant-free electrochemical oxidative C–H phosphonylation with hydrogen evolution. Chem. Commun. 55, 4230–4233 (2019).

    Article  CAS  Google Scholar 

  70. Wang, H. et al. Electrochemical oxidation-induced etherification via C(sp3)─H/O─H cross-coupling. Sci. Adv. 6, eaaz05 (2020).

    Google Scholar 

  71. Hou, Z. W. et al. Site-selective electrochemical benzylic C–H amination. Angew. Chem. Int. Ed. 60, 2943–2947 (2021).

    Article  CAS  Google Scholar 

  72. Yang, Y. Z., Wu, Y. C., Song, R. J. & Li, J. H. Electrochemical dehydrogenative cross-coupling of xanthenes with ketones. Chem. Commun. 56, 7585–7588 (2020).

    Article  CAS  Google Scholar 

  73. Shen, T. & Lambert, T. H. C–H amination via electrophotocatalytic Ritter-type reaction. J. Am. Chem. Soc. 143, 8597–8602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shao, X., Tian, L. & Wang, Y. C–N coupling of azoles or imides with carbocations generated by electrochemical oxidation. Eur. J. Org. Chem. 2019, 4089–4094 (2019).

    Article  CAS  Google Scholar 

  75. Wang, Y., Lin, Z., Oliveira, J. C. A. & Ackermann, L. Electro-oxidative intermolecular allylic C(sp3)–H aminations. J. Org. Chem. 22, 15935–15945 (2021).

    Article  Google Scholar 

  76. Wu, J., Zhou, Y., Zhou, Y., Chiang, C.-W. & Lei, A. Electro-oxidative C(sp3)–H amination of azoles via intermolecular oxidative C(sp3)–H/N–H cross-coupling. ACS Catal. 7, 8320–8323 (2017).

    Article  CAS  Google Scholar 

  77. Wang, P. et al. Electrochemical oxidative C(sp3)–H/N–H cross-coupling for N-Mannich bases with hydrogen evolution. ChemSusChem 12, 3073–3077 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Wan, Z. et al. Electrochemical oxidative C(sp3)–H azolation of lactams under mild conditions. Green Chem. 22, 3742–3747 (2020).

    Article  CAS  Google Scholar 

  79. Wang, H. et al. Electrochemical oxidation enables regioselective and scalable α-C(sp3)–H acyloxylation of sulfides. J. Am. Chem. Soc. 143, 3628–3637 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Lennox, A. J. J. et al. Electrochemical aminoxyl-mediated α-cyanation of secondary piperidines for pharmaceutical building block diversification. J. Am. Chem. Soc. 140, 11227–11231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalysed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rit, R. K., Yadav, M. R. & Sahoo, A. K. Pd(II)-catalysed primary-C(sp3)–H acyloxylation at room temperature. Org. Lett. 14, 3724–3727 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Thompson, S. J., Thach, D. Q. & Dong, G. Cyclic ether synthesis via palladium-catalysed directed dehydrogenative annulation at unactivated terminal positions. J. Am. Chem. Soc. 137, 11586–11589 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, M. et al. Pd-catalysed α-selective C(sp3)–H acetoxylation of amides through an unusual cyclopalladation mechanism. Chem. Commun. 51, 3219–3222 (2015).

    Article  CAS  Google Scholar 

  85. Ye, X. et al. 1,2,3-Triazoles as versatile directing group for selective sp2 and sp3 C–H activation: cyclization vs substitution. Chem. Sci. 4, 3712–3716 (2013).

    Article  CAS  Google Scholar 

  86. Zhang, S. Y. et al. Efficient alkyl ether synthesis via palladium-catalysed, picolinamide-directed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds at remote positions. J. Am. Chem. Soc. 134, 7313–7316 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Bercaw, J. E. et al. Electrocatalytic functionalization of alkanes using aqueous platinum salts. J. Mol. Catal. 87, 11–15 (1994).

    Article  Google Scholar 

  88. Yang, Q. L. et al. Palladium-catalysed C(sp3)–H oxygenation via electrochemical oxidation. J. Am. Chem. Soc. 139, 3293–3298 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Shrestha, A., Lee, M., Dunn, A. L. & Sanford, M. S. Palladium-catalysed C–H bond acetoxylation via electrochemical oxidation. Org. Lett. 20, 204–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Jutand, A., Amatore, C. & Cammoun, C. Palladium/benzoquinone-catalyzed electrochemical oxidation of alcohols under anaerobic conditions. Synlett. 2007, 2173–2178 (2007).

    Article  Google Scholar 

  91. Tsuchida, K., Kochi, T. & Kakiuchi, F. Copper-catalyzed electrochemical chlorination of 1,3-dicarbonyl compounds using hydrochloric acid. Asian J. Org. Chem. 2, 935–937 (2013).

    Article  CAS  Google Scholar 

  92. Jacobsen, E. N., Pfaltz, A & Yamamoto, H., Comprehensive Asymmetric Catalysis Vols I–III, Suppl. I & II (Springer, 1999).

  93. Qin, Y., Zhu, L. & Luo, S. Organocatalysis in inert C–H bond functionalization. Chem. Rev. 117, 9433–9520 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. MacMillan, D. W. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Bui, N.-N. & Ho, X.-H. Mho, S.-I. & Jang, H.-Y. Organocatalysed α-oxyamination of aldehydes using anodic oxidation. Eur. J. Org. Chem. 31, 5309–5312 (2009).

    Article  Google Scholar 

  96. Ho, X.-H., Mho, S.-i, Kang, H. & Jang, H.-Y. Electro-organocatalysis: enantioselective α-alkylation of aldehydes. Eur. J. Org. Chem. 23, 4436–4441 (2010).

    Google Scholar 

  97. Fu, N., Li, L., Yang, Q. & Luo, S. Catalytic asymmetric electrochemical oxidative coupling of tertiary amines with simple ketones. Org. Lett. 19, 2122–2125 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic asymmetric electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    Article  CAS  Google Scholar 

  99. Huang, X., Zhang, Q., Lin, J., Harms, K., & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. Nat. Catal. 2, 34–40 (2018).

    Article  Google Scholar 

  100. Zhang, Q., Chang, X., Peng, L. & Guo, C. Asymmetric Lewis acid catalysed electrochemical alkylation. Angew. Chem. Int. Ed. 58, 6999–7003 (2019).

    Article  CAS  Google Scholar 

  101. Gao, P. S. et al. Cu(II)/TEMPO-catalysed enantioselective C(sp3)–H alkynylation of tertiary cyclic amines through Shono-type oxidation. Angew. Chem. Int. Ed. 59, 15254–15259 (2020).

    Article  CAS  Google Scholar 

  102. Jensen, K. L., Franke, P. T., Nielsen, L. T., Daasbjerg, K. & Jorgensen, K. A. Anodic oxidation and organocatalysis: direct regio- and stereoselective access to meta-substituted anilines by α-arylation of aldehydes. Angew. Chem. Int. Ed. 49, 129–133 (2010).

    Article  CAS  Google Scholar 

  103. Wang, Z. H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Chang, X., Zhang, J., Zhang, Q. & Guo, C. Merging electrosynthesis and bifunctional squaramide catalysis in the asymmetric detrifluoroacetylative alkylation reactions. Angew. Chem. Int. Ed. 59, 18500–18504 (2020).

    Article  CAS  Google Scholar 

  105. Saito, M. et al. N-ammonium ylide mediators for electrochemical C–H oxidation. J. Am. Chem. Soc. 143, 7859–7867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Frankowski, K. J., Liu, R., Milligan, G. L., Moeller, K. D. & Aube, J. Practical electrochemical anodic oxidation of polycyclic lactams for late stage functionalization. Angew. Chem. Int. Ed. 54, 10555–10558 (2015).

    Article  CAS  Google Scholar 

  107. Wu, T. & Moeller, K. D. Organic electrochemistry: expanding the scope of paired reactions. Angew. Chem. Int. Ed. 60, 12883–12890 (2021).

    Article  CAS  Google Scholar 

  108. Ma, Y. et al. Direct arylation of α-amino C(sp3)–H bonds by convergent paired electrolysis. Angew. Chem. Int. Ed. 58, 16548–16552 (2019).

    Article  CAS  Google Scholar 

  109. Zhang, L. & Hu, X. Nickel catalysis enables convergent paired electrolysis for direct arylation of benzylic C–H bonds. Chem. Sci. 11, 10786–11079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gunasekera, D. et al. Controlling one- or two-electron oxidation for selective amine functionalization by alternating current frequency. J. Am. Chem. Soc. 144, 9874–9882 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (no. 2022YFA1505100 and 2021YFA1500100), National Natural Science Foundation of China (22031008) and Science Foundation of Wuhan (2020010601012192). This research work was funded by the Institution Fund Projects under grant IFPRP 263-135-1442. Also, we gratefully acknowledge technical and financial support from the Ministry of Education and Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

A.L. and H.Y. designed and directed the investigations and composed the manuscript with revisions provided by the other authors.. Z.Y., H.A. and W.S. completed the full text of the writing.

Corresponding authors

Correspondence to Hong Yi or Aiwen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Shi, W., Alhumade, H. et al. Electrochemical oxidative C(sp3)–H cross-coupling with hydrogen evolution. Nat. Synth 2, 217–230 (2023). https://doi.org/10.1038/s44160-022-00221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00221-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing