Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals

Abstract

Large ZnSe nanocrystals are expected to be promising blue-light emitters with an emission peak of 455–475 nm, which is important for the construction of display apparatus. The final size of ZnSe nanocrystals via one-step injection can be varied by the reactivity of the Zn and Se precursors; however, it has a limit of <5 nm. To describe the key factors in determining the final size of ZnSe nanocrystals, we proposed a nuclei number-considered LaMer model based on the Maxwell–Boltzmann distribution of crystal embryos. As a result, a general strategy of reactivity-controlled epitaxial growth was developed to synthesize large ZnSe nanocrystals through sequential injection of high-reactivity and low-reactivity Zn and Se precursors. The resultant ZnSe nanocrystals achieved pure blue emission between 455 and 470 nm. We further fabricated stable, large ZnSe/ZnS core–shell nanocrystals with photoluminescence quantum yields up to approximately 60%. Moreover, the reactivity-controlled epitaxial growth strategy is versatile and could be used to synthesize large ZnSe, CdSe and PbSe nanocrystals with average sizes up to 35 nm, 76 nm and 87 nm, respectively. The control of quantum-confined and classical effects in these large semiconductor nanocrystals will open up new directions for fundamental research and application exploration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthesis of ZnSe nanocrystals through a hot-injection method.
Fig. 2: Nucleation and growth model of nanocrystals.
Fig. 3: Epitaxial growth of large ZnSe nanocrystals.
Fig. 4: Optical, morphology and structural characterization of large ZnSe/ZnS core–shell nanocrystals.
Fig. 5: TEM images of large CdSe and PbSe nanocrystals.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  PubMed  Google Scholar 

  2. Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Hines, M. A. & Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657 (1998).

    Article  CAS  Google Scholar 

  5. Li, L. S., Pradhan, N., Wang, Y. & Peng, X. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 4, 2261–2264 (2004).

    Article  CAS  Google Scholar 

  6. Ji, B., Koley, S., Slobodkin, I., Remennik, S. & Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 20, 2387–2395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Murray, C., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  9. Peng, X., Wickham, J. & Alivisatos, A. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: ‘focusing’ of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998).

    Article  CAS  Google Scholar 

  10. Peng, Z. A. & Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. 46, 4630–4660 (2007).

    Article  CAS  Google Scholar 

  12. Owen, J. S., Chan, E. M., Liu, H. & Alivisatos, A. P. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J. Am. Chem. Soc. 132, 18206–18213 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    Article  CAS  Google Scholar 

  14. Liu, M. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 8, 15467 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leffler, V., Ehlert, S., Förster, B., Dulle, M. & Förster, S. Nanoparticle heat-up synthesis: in situ X-ray diffraction and extension from classical to nonclassical nucleation and growth theory. ACS Nano 15, 840–856 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Qu, L., Peng, Z. A. & Peng, X. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001).

    Article  CAS  Google Scholar 

  17. Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M. & Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, O. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  21. Liu, L. et al. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 131, 16423–16429 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Li, H., Kanaras, A. G. & Manna, L. Colloidal branched semiconductor nanocrystals: state of the art and perspectives. Acc. Chem. Res. 46, 1387–1396 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Jia, G. & Banin, U. A general strategy for synthesizing colloidal semiconductor zinc chalcogenide quantum rods. J. Am. Chem. Soc. 136, 11121–11127 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ning, J., Liu, J., Levi-Kalisman, Y., Frenkel, A. I. & Banin, U. Controlling anisotropic growth of colloidal ZnSe nanostructures. J. Am. Chem. Soc. 140, 14627–14637 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Ji, B. et al. Strain-controlled shell morphology on quantum rods. Nat. Commun. 10, 2 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunningham, P. D., Coropceanu, I., Mulloy, K., Cho, W. & Talapin, D. V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: a connection between clusters, nanowires, and two-dimensional nanoplatelets. ACS nano 14, 3847–3857 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Acharya, S., Sarma, D., Jana, N. R. & Pradhan, N. An alternate route to high-quality ZnSe and Mn-doped ZnSe nanocrystals. J. Phys. Chem. Lett. 1, 485–488 (2010).

    Article  CAS  Google Scholar 

  30. Jang, E.-P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, S.-H., Zhang, S. & Zunger, A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 87, 1304–1311 (2000).

    Article  CAS  Google Scholar 

  32. Guo, Y., Alvarado, S. R., Barclay, J. D. & Vela, J. Shape-programmed nanofabrication: understanding the reactivity of dichalcogenide precursors. ACS Nano 7, 3616–3626 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Park, J., Jayaraman, A., Schrader, A. W., Hwang, G. W. & Han, H. S. Controllable modulation of precursor reactivity using chemical additives for systematic synthesis of high-quality quantum dots. Nat. Commun. 11, 5748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gary, D. C., Glassy, B. A. & Cossairt, B. M. Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 26, 1734–1744 (2014).

    Article  CAS  Google Scholar 

  35. Toufanian, R., Zhong, X., Kays, J. C., Saeboe, A. M. & Dennis, A. M. Correlating ZnSe quantum dot absorption with particle size and concentration. Chem. Mater. 33, 7527–7536 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Embden, J., Chesman, A. S. & Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246–2285 (2015).

    Article  Google Scholar 

  37. McMurtry, B. M. et al. Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals. Chem. Mater. 32, 4358–4368 (2020).

    Article  CAS  Google Scholar 

  38. Prins, P. T. et al. Extended nucleation and superfocusing in colloidal semiconductor nanocrystal synthesis. Nano Lett. 21, 2487–2496 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Talapin, D. V., Rogach, A. L., Haase, M. & Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001).

    Article  CAS  Google Scholar 

  40. Campos, M. P. et al. Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals. Chem. Sci. 13, 4555–4565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    Article  CAS  Google Scholar 

  42. Kashchiev, D. Nucleation (Elsevier, 2000).

  43. Robb, D. T. & Privman, V. Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 24, 26–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Rempel, J. Y., Bawendi, M. G. & Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 131, 4479–4489 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Thanh, N. T., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Abe, S., Capek, R. K., De Geyter, B. & Hens, Z. Tuning the postfocused size of colloidal nanocrystals by the reaction rate: from theory to application. ACS Nano 6, 42–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leite, E. R. & Ribeiro, C. Crystallization and Growth of Colloidal Nanocrystals (Springer Science & Business Media, 2011).

  49. Xie, R., Li, Z. & Peng, X. Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 131, 15457–15466 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Scholes, G. D. Controlling the optical properties of inorganic nanoparticles. Adv. Fun. Mater. 18, 1157–1172 (2008).

    Article  CAS  Google Scholar 

  51. Sugimoto, T. Monodispersed Particles (Elsevier, 2019).

  52. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Reiss, P., Protiere, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Franke, D. et al. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 7, 12749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Riedinger, A. et al. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 16, 743–748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Z210018, H.Z.), National Natural Science Foundation of China (61735004, H.Z.) and BOE Technology Group Co., Ltd. We would like to thank the Experimental Center of Advanced Materials of Beijing Institute of Technology for the support in materials synthesis and characterization. Z.L. and R.L. acknowledge the support from the S&T Program of Hebei under grant (216Z0601G, R.L.). The authors would like to acknowledge H. Bao (Beijing Institute of Technology) for checking the calculation of the diffusion-controlled model.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., Y.L. and Z.C. conceptualized the project. H.Z., R.L. and G.Y. supervised the project. Z.L., M.L. and K.G. performed the materials synthesis and conducted the characterization measurements. H.Z., Z.L. and X.W. proposed the nucleation model. Z.L., G.Y. and H.Z. analysed the results and wrote the draft of the manuscript with subsequent input of the other authors.

Corresponding authors

Correspondence to Gaoling Yang, Ronghui Liu or Haizheng Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Zuliang Du, Guohua Jia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. The primary handling editor was Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Figs. 1–25, Tables 1–2 and Sections 1–4.

Supplementary Data Fig. 1

Statistical Source Data for Supplementary Figs. 1–9, 11–15, 17–21, 24 and 25.

Supplementary Data Fig. 2

Unprocessed TEM and STEM images for Supplementary Figs. 1, 10, 11, 22 and 23.

Source data

Source Data Fig. 1

Raw data of absorption and PL spectra, and plots of PL peak, UV peak, FWHM and diameter.

Source Data Fig. 2

Raw data of the plots of absorbance and nanocrystal concentration at different reaction conditions. Raw data of plots of standard deviation and the simulation data. Calculation data of diffusion radius.

Source Data Fig. 3

Raw data of absorption and PL spectra of different growth processes of ZnSe nanocrystals.

Source Data Fig. 3

Unprocessed TEM images of ZnSe nanocrystals with different sizes.

Source Data Fig. 4

Raw data of absorption and PL spectra of ZnSe core and ZnSe/ZnS core–shell nanocrystals. Raw data of plots of PLQY, PL peak and FWHM. Raw data of XRD patterns for ZnSe core and ZnSe/ZnS core–shell nanocrystals.

Source Data Fig. 4

Unprocessed TEM images of ZnSe and ZnSe/ZnS nanocrystals as well as their corresponding HRTEM images.

Source Data Fig. 5

Unprocessed TEM images of CdSe and PbSe nanocrystals with different sizes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Z., Liu, M., Wu, Xg. et al. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth 2, 296–304 (2023). https://doi.org/10.1038/s44160-022-00210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00210-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing