Abstract
Carbometallation of unsaturated hydrocarbons is one of the most straightforward functionalizations of carbon–carbon unsaturated bonds; however, the analogous acylmetallation remains a significant synthetic challenge. Here, we disclose the nickel-catalysed acylzincation of ynamides, oxabicyclic alkenes and α,β-unsaturated ketones with organozinc reagents under 1 atm of CO, featuring excellent functional group tolerance, a broad substrate scope and mild conditions. The acyl functionality generated in situ from an organozinc reagent can be viewed as a nucleophilic synthon, and the corresponding acylzincation intermediate is trapped via intermolecular reaction with electrophiles. Alternatively, the intermediate can undergo an intramolecular Truce–Smiles rearrangement or aldol condensation to afford tetrasubstituted enones, multisubstituted benzocyclohexane derivatives and cyclopentenones. This method is applied to the formal synthesis of the anthracyclinone antibiotic daunomycinone, as well as to prepare functionalized 1,3-dienones possessing aggregation-induced emission activity. The syn metallation of acyl nickel intermediates with unsaturated hydrocarbons allows for the complete regioselective and highly stereoselective formation of functionalized zinc intermediates. Furthermore, density functional theory calculations show that acylmetallation is lower in energy than alkylmetallation, and demonstrates that favourable interaction energies lead to a lower energy transition state for formation of the major regioisomer.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The crystallographic data for compound 5af are available from the Cambridge Crystallographic Data Centre under deposition number CCDC 2054942 (https://www.ccdc.cam.ac.uk/structures). All other data to support the conclusions are available in the main text or the Supplementary Information.
References
Knochel, P. in Comprehensive Organic Synthesis (eds Trost, B. & Fleming, I.) (Pergamon, 1991).
Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).
Marek, I. & Minko, Y. in Metal-catalyzed Cross-coupling Reactions and More (eds de Meijere, A. et al.) Ch.10 (Wiley-VCH, 2013).
Marek, I., Chinkov, N. & Banon-Tenne, D. in Metal-catalyzed Cross-coupling Reactions, 2nd edn (eds de Meijere, A. & Diederich, F.) Ch. 7 (Wiley-VCH, 2004).
Marsico, G., Scafato, P., Belviso, S. & Superchi, S. Regio- and stereoselective intermolecular carbolithiation reactions. RSC Adv. 10, 32581–32601 (2020).
Itami, K. & Yoshida, J.-I. in The Chemistry of Organomagnesium Compounds (eds Rappaport, Z. & Marek. I.) Ch. 14 (Wiley, 2008).
Shirakawa, E., Ikeda, D., Masui, S., Yoshida, M. & Hayashi, T. Iron–copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes. J. Am. Chem. Soc. 134, 272–279 (2012).
Xue, F., Zhao, J. & Hor, T. S. A. Ambient arylmagnesiation of alkynes catalysed by ligandless nickel(II). Chem. Commun. 49, 10121–10123 (2013).
Wang, S. & Xi, C. Nickel-catalyzed arylative carboxylation of alkynes with arylmagnesium reagents and carbon dioxide leading to trisubstituted acrylic acids. Org. Lett. 20, 4131–4134 (2018).
Lorthiois, E. & Meyer, C. in The Chemistry of Organozinc Compounds (eds Patai, S. et al.) Ch. 19 (Wiley, 2009).
Negishi, E., Hu, Q., Huang, Z., Wang, G. & Yin, N. in The Chemistry of Organozinc Compounds (eds Rappaport, Z. & Marek. I.) Ch. 11 (Wiley, 2006).
Corpet, M. & Gosmini, C. Cobalt-catalysed synthesis of highly substituted styrene derivatives via arylzincation of alkynes. Chem. Commun. 48, 11561–11563 (2012).
Tan, B.-H., Dong, J. & Yoshikai, N. Cobalt-catalyzed addition of arylzinc reagents to alkynes to form ortho-alkenylarylzinc species through 1,4-cobalt migration. Angew. Chem. Int. Ed. Engl. 51, 9610–9614 (2012).
Wu, B. & Yoshikai, N. Versatile synthesis of benzo-thiophenes and benzoseleno-phenes by rapid assembly of arylzinc reagents, alkynes, and elemental chalcogens. Angew. Chem. Int. Ed. Engl. 52, 10496–10499 (2013).
Wu, J. & Yoshikai, N. Cobalt-catalyzed alkenylzincation of unfunctionalized alkynes. Angew. Chem. Int. Ed. Engl. 55, 336–340 (2016).
Ming, J. & Hayashi, T. Rhodium-catalyzed arylzincation of alkynes: ligand control of 1,4 migration selectivity. Org. Lett. 20, 6188–6192 (2018).
Huang, Q. et al. Iron-catalyzed vinyl-zincation of terminal alkynes. J. Am. Chem. Soc. 144, 515–526 (2022).
Hart, D. W. & Schwartz, J. Hydrozirconation. Organic synthesis via organozirconium intermediates. Synthesis and rearrangement of alkylzirconium(IV) complexes and their reaction with electrophiles. J. Am. Chem. Soc. 96, 8115–8116 (1974).
Hanzawa, Y., Tabuchi, N. & Taguchi, T. Palladium-catalyzed acylation reactions of α,β-unsaturated ketones with acylzirconocene chloride: remarkable control of 1,2- and 1,4-selectivity by the catalyst. Tetrahedron Lett. 39, 8141–8144 (1998).
Guo, L. & Rueping, M. Transition‐metal‐catalyzed decarbonylative coupling reactions: concepts, classifications, and applications. Chem. Eur. J. 24, 7794–7809 (2018).
Corey, E. J. & Hegedus, L. S. 1,4 Addition of acyl groups to conjugated enones. J. Am. Chem. Soc. 91, 4926–4928 (1969).
Weng, Y. et al. Nickel-catalyzed allylic carbonylative coupling of alkyl zinc reagents with tert-butyl isocyanide. Nat. Commun. 11, 392 (2020).
Huang, W., Wang, Y., Weng, Y., Qu, J. & Chen, Y. Nickel-catalyzed formal aminocarbonylation of unactivated alkyl iodides with isocyanides. Org. Lett. 22, 3245–3250 (2020).
Wang, Y., Huang, W., Wang, C., Qu, J. & Chen, Y. Nickel-catalyzed formal aminocarbonylation of secondary benzyl chlorides with isocyanides. Org. Lett. 22, 4245–4249 (2020).
Wang, C. et al. Palladium-catalyzed secondary benzylic imidoylative reactions. Org. Lett. 22, 6954–6959 (2020).
Liu, N., Wu, X., Wang, C., Qu, J. & Chen, Y. Nickel-catalyzed alkoxycarbonylation of aryl iodides with 1 atm CO. Chem. Commun. 58, 4643–4646 (2022).
Hou, L., Huang, W., Wu, X., Qu, J. & Chen, Y. Nickel-catalyzed carbonylation of cyclopropanol with benzyl bromide for multisubstituted cyclopentenone synthesis. Org. Lett. 24, 2699–2704 (2022).
Wang, C., Wu, X., Li, H., Qu, J. & Chen, Y. Carbonylative cross-coupling reaction of allylic alcohols and organoalanes with 1 atm CO enabled by nickel catalysis. Angew. Chem. Int. Ed. Engl. https://doi.org/10.1002/anie.202210484 (2022).
Wu, X., Qu, J. & Chen, Y. Quinim: a new ligand scaffold enables nickel-catalyzed enantioselective synthesis of α-alkylated γ-lactam. J. Am. Chem. Soc. 142, 15654–15660 (2020).
Wu, X. et al. Catalytic desymmetric dicarbofunctionalization of unactivated alkenes. Angew. Chem. Int. Ed. Engl. 61, e202111598 (2022).
Zhou, B., Tan, T.-D., Zhu, X.-Q., Shang, M. & Ye, L.-W. Reversal of regioselectivity in ynamide chemistry. ACS Catal. 9, 6393–6406 (2019).
Lynch, C. C., Sripada, A. & Wolf, C. Asymmetric synthesis with ynamides: unique reaction control, chemical diversity and applications. Chem. Soc. Rev. 49, 8543–8583 (2020).
Chen, Y.-B., Qian, P.-C. & Ye, L.-W. Brønsted acid-mediated reactions of ynamides. Chem. Soc. Rev. 49, 8897–8909 (2020).
Hong, F.-L. & Ye, L.-W. Transition metal-catalyzed tandem reactions of ynamides for divergent N-heterocycle synthesis. Acc. Chem. Res. 53, 2003–2019 (2020).
Boutin, R., Koh, S. & Tam, W. Recent advances in transition metal-catalyzed reactions of oxabenzonorbornadiene. Curr. Org. Synth. 16, 460–484 (2019).
Lautens, M., Fagnou, K. & Hiebert, S. Transition metal-catalyzed enantioselective ring-opening reactions of oxabicyclic alkenes. Acc. Chem. Res. 36, 48–58 (2003).
Kumar, S. V., Yen, A., Lautens, M. & Guiry, P. J. Catalytic asymmetric transformations of oxa- and azabicyclic alkenes. Chem. Soc. Rev. 50, 3013–3093 (2021).
Menard, F., Weise, C. F. & Lautens, M. Rh(I)-catalyzed carbonylative ring opening of diazabicycles with acyl anion equivalents. Org. Lett. 9, 5365–5367 (2007).
Tamaru, Y. Modern Organonickel Chemistry (Wiley-VCH, 2005).
Wang, Q. & Chen, C. Nickel-catalyzed carbonylative Negishi cross-coupling reactions. Tetrahedron Lett. 49, 2916–2921 (2008).
Andersen, T. L., Donslund, A. S., Neumann, K. T. & Skrydstrup, T. Carbonylative coupling of alkyl zinc reagents with benzyl bromides catalyzed by an NN2 pincer ligand nickel complex. Angew. Chem. Int. Ed. Engl. 57, 800–812 (2018).
Donslund, A. S. et al. Access to β-ketonitriles through nickel-catalyzed carbonylative coupling of α-bromonitriles with alkylzinc reagents. Chem. Eur. J. 25, 9856–9860 (2019).
Ravn, A. K. et al. Carbon isotope labeling strategy for β-amino acid derivatives via carbonylation of azanickellacycle. J. Am. Chem. Soc. 141, 11821–11826 (2019).
Zhao, H.-Y., Gao, X., Zhang, S. & Zhang, X. Nickel-catalyzed carbonylation of difluoroalkyl bromides with arylboronic acids. Org. Lett. 21, 1031–1036 (2019).
Donslund, A. S. et al. Direct access to isotopically labeled aliphatic ketones mediated by nickel(I) activation. Angew. Chem. Int. Ed. Engl. 59, 8099–8103 (2020).
Cheng, R., Zhao, H.-Y., Zhang, S. & Zhang, X. Nickel-catalyzed carbonylation of secondary trifluoromethylated, difluoromethylated, and nonfluorinated aliphatic electrophiles with arylboronic acids under 1 atm of CO. ACS Catal. 10, 36–42 (2020).
Pedersen, S. et al. A nickel(II)-mediated thiocarbonylation strategy for carbon isotope labeling of aliphatic carboxamides. Chem. Eur. J. 27, 7114–7123 (2021).
Cheng, R. et al. Highly γ-selective arylation and carbonylative arylation of 3-bromo-3,3-difluoropropene via nickel catalysis. Angew. Chem. Int. Ed. Engl. 60, 12386–12391 (2021).
Zhou, M., Zhao, H.-Y., Zhang, S., Zhang, Y. & Zhang, X. Nickel-catalyzed four-component carbocarbonylation of alkenes under 1 atm of CO. J. Am. Chem. Soc. 142, 18191–18199 (2020).
Zhao, X. et al. Divergent aminocarbonylations of alkynes enabled by photoredox/nickel dual catalysis. Angew. Chem. Int. Ed. Engl. 60, 26511–26517 (2021).
Chen, J. & Zhu, S. Nickel-catalyzed multicomponent coupling: synthesis of α‑chiral ketones by reductive hydrocarbonylation of alkenes. J. Am. Chem. Soc. 143, 14089–14096 (2021).
Gourdet, B. & Lam, H. W. Stereoselective synthesis of multisubstituted enamides via rhodium-catalyzed carbozincation of ynamides. J. Am. Chem. Soc. 131, 3802–3803 (2009).
Gourdet, B., Rudkin, M. E., Watts, C. A. & Lam, H. W. Preparation of multisubstituted enamides via rhodium-catalyzed carbozincation and hydrozincation of ynamides. J. Org. Chem. 74, 7849–7858 (2009).
Ito, S., Itoh, T. & Nakamura, M. Diastereoselective carbometalation of oxa- and azabicyclic alkenes under iron catalysis. Angew. Chem. Int. Ed. Engl. 50, 454–457 (2011).
Sallio, R. et al. Cobalt-catalyzed carbozincation of ynamides. J. Org. Chem. 82, 1254–1259 (2017).
Morton, M. Anionic Polymerization: Principles and Practice (Academic Press, 1983).
Haas, D., Hammann, J. M., Greiner, R. & Knochel, P. Recent developments in Negishi cross-coupling reactions. ACS Catal. 6, 1540–1552 (2016).
Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem. Eur. J. 23, 8992–9008 (2017).
Whalley, D. M. & Greaney, M. F. Recent advances in the Smiles rearrangement: new opportunities for arylation. Synthesis 54, 1908–1918 (2022).
Wang, Z. S. et al. Ynamide Smiles rearrangement triggered by visible-light-mediated regioselective ketyl–ynamide coupling: rapid access to functionalized indoles and isoquinolines. J. Am. Chem. Soc. 142, 3636–3644 (2020).
Holden, C. M., Sohel, S. M. & Greaney, M. F. Metal free bi(hetero)aryl synthesis: a benzyne Truce–Smiles rearrangement. Angew. Chem. Int. Ed. Engl. 55, 2450–2453 (2016).
Monos, T. M., McAtee, R. C. & Stephenson, C. R. J. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. Science 361, 1369–1373 (2018).
Whalley, D. M., Seayad, J. & Greaney, M. F. Truce–Smiles rearrangements by strain release: harnessing primary alkyl radicals for metal-free arylation. Angew. Chem. Int. Ed. Engl. 60, 22219–22223 (2021).
Hervieu, C. et al. Asymmetric, visible light-mediated radical sulfinyl Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 13, 327–334 (2021).
Leonard, D. J., Ward, J. W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018).
Abrams, R., Jesani, M. H., Browning, A. & Clayden, J. Triarylmethanes and their medium-ring analogues by unactivated Truce–Smiles rearrangement of benzanilides. Angew. Chem. Int. Ed. Engl. 60, 11272–11277 (2021).
Keay, B. A. & Rodrigo, R. A convergent synthesis of (±)daunomycinoni. Tetrahedron 40, 4597–4607 (1984).
Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).
Suman, G. R., Pandey, M. & Chakravarthy, A. S. J. Review on new horizons of aggregation induced emission: from design to development. Mater. Chem. Front. 5, 1541–1584 (2021).
Cao, X. & Liu, B. Aggregation-induced emission: recent advances in materials and biomedical applications. Angew. Chem. Int. Ed. Engl. 59, 9868–9886 (2020).
Frisch, M. J. et al. Gaussian 16, Revision C.01. (Gaussian Inc., 2016).
Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22, 7169–7192 (2020).
Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).
Head-Gordon, M., Pople, J. A. & Frisch, M. J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153, 503–506 (1988).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).
Steinmetz, M. & Grimme, S. Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts. ChemistryOpen 2, 115–124 (2013).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Paton, R. S. J., Rodríguez-Guerra, J. & Funes, J. I. bobbypaton/GoodVibes: GoodVibes v3.0.0. Zenodo https://doi.org/10.5281/zenodo.3346166 (2019).
Budnikova, Y. H., Vicic, D. A. & Klein, A. Exploring mechanisms in Ni terpyridine catalyzed C–C cross-coupling reactions—a review. Inorganics 6, 18 (2018).
Harvey, J. N., Aschi, M., Schwarz, H. & Koch, W. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc. 99, 95–99 (1998).
Rodríguez-Guerra, J. jaimergp/easymecp: v0.3.2. Zenodo https://doi.org/10.5281/zenodo.4293422 (2020).
Svatunek, D. & Houk, K. N. auto DIAS: A Python tool for an automated distortion/interaction activation strain analysis. J. Comput. Chem. 40, 2509–2515 (2019).
Debrauwer, V. et al. Ligand-controlled regiodivergent palladium-catalyzed hydrogermylation of ynamides. J. Am. Chem. Soc. 142, 11153–11164 (2020).
Acknowledgements
This work was supported by NSFC/China (grant nos. 21702060 and 22171079), the National Science Foundation (grant no. CHE-1764328), Natural Science Foundation of Shanghai (grant no. 21ZR1480400), Shanghai Rising-Star Program (grant no. 20QA1402300), Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX03), the Program of Introducing Talents of Discipline to Universities (grant no. B16017), the Fundamental Research Funds for the Central Universities and the China Postdoctoral Science Foundation (grant no. 2021M701197). A.T. acknowledges the support of the National Institutes of Health under Ruth L. Kirschstein National Research Service Award F32GM134709. Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (grant no. OCI-1053575). We thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR spectroscopy analysis.
Author information
Authors and Affiliations
Contributions
Y.W. and Y.C. conceived the project. Y.W., Y.Z., X.W., H.L., F.F. and C.W. performed the experiments under the supervision of J.Q. and Y.C. A.T. performed DFT calculations under the supervision of K.N.H. Y.Y. performed the photophysical properties tests under the supervision of Z.G. Y.W., X.W., A.T., K.N.H. and Y.C. wrote the manuscript with feedback from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review information
Peer review information
Nature Synthesis thanks Long-Wu Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Experimental details, Supplementary Fig. 1 and Tables 1–4.
Supplementary Data 1
Crystallographic data for compound 5af, CCDC 2054942.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Weng, Y., Zhang, Y., Turlik, A. et al. Nickel-catalysed regio- and stereoselective acylzincation of unsaturated hydrocarbons with organozincs and CO. Nat. Synth 2, 261–274 (2023). https://doi.org/10.1038/s44160-022-00208-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44160-022-00208-z