Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nickel-catalysed regio- and stereoselective acylzincation of unsaturated hydrocarbons with organozincs and CO

Abstract

Carbometallation of unsaturated hydrocarbons is one of the most straightforward functionalizations of carbon–carbon unsaturated bonds; however, the analogous acylmetallation remains a significant synthetic challenge. Here, we disclose the nickel-catalysed acylzincation of ynamides, oxabicyclic alkenes and α,β-unsaturated ketones with organozinc reagents under 1 atm of CO, featuring excellent functional group tolerance, a broad substrate scope and mild conditions. The acyl functionality generated in situ from an organozinc reagent can be viewed as a nucleophilic synthon, and the corresponding acylzincation intermediate is trapped via intermolecular reaction with electrophiles. Alternatively, the intermediate can undergo an intramolecular Truce–Smiles rearrangement or aldol condensation to afford tetrasubstituted enones, multisubstituted benzocyclohexane derivatives and cyclopentenones. This method is applied to the formal synthesis of the anthracyclinone antibiotic daunomycinone, as well as to prepare functionalized 1,3-dienones possessing aggregation-induced emission activity. The syn metallation of acyl nickel intermediates with unsaturated hydrocarbons allows for the complete regioselective and highly stereoselective formation of functionalized zinc intermediates. Furthermore, density functional theory calculations show that acylmetallation is lower in energy than alkylmetallation, and demonstrates that favourable interaction energies lead to a lower energy transition state for formation of the major regioisomer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transition metal-catalysed carbometallation and acylmetallation of unsaturated C–C bonds.
Fig. 2: Synthetic applications.
Fig. 3: Mechanism studies.

Similar content being viewed by others

Data availability

The crystallographic data for compound 5af are available from the Cambridge Crystallographic Data Centre under deposition number CCDC 2054942 (https://www.ccdc.cam.ac.uk/structures). All other data to support the conclusions are available in the main text or the Supplementary Information.

References

  1. Knochel, P. in Comprehensive Organic Synthesis (eds Trost, B. & Fleming, I.) (Pergamon, 1991).

  2. Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Marek, I. & Minko, Y. in Metal-catalyzed Cross-coupling Reactions and More (eds de Meijere, A. et al.) Ch.10 (Wiley-VCH, 2013).

  4. Marek, I., Chinkov, N. & Banon-Tenne, D. in Metal-catalyzed Cross-coupling Reactions, 2nd edn (eds de Meijere, A. & Diederich, F.) Ch. 7 (Wiley-VCH, 2004).

  5. Marsico, G., Scafato, P., Belviso, S. & Superchi, S. Regio- and stereoselective intermolecular carbolithiation reactions. RSC Adv. 10, 32581–32601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Itami, K. & Yoshida, J.-I. in The Chemistry of Organomagnesium Compounds (eds Rappaport, Z. & Marek. I.) Ch. 14 (Wiley, 2008).

  7. Shirakawa, E., Ikeda, D., Masui, S., Yoshida, M. & Hayashi, T. Iron–copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes. J. Am. Chem. Soc. 134, 272–279 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Xue, F., Zhao, J. & Hor, T. S. A. Ambient arylmagnesiation of alkynes catalysed by ligandless nickel(II). Chem. Commun. 49, 10121–10123 (2013).

    Article  CAS  Google Scholar 

  9. Wang, S. & Xi, C. Nickel-catalyzed arylative carboxylation of alkynes with arylmagnesium reagents and carbon dioxide leading to trisubstituted acrylic acids. Org. Lett. 20, 4131–4134 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Lorthiois, E. & Meyer, C. in The Chemistry of Organozinc Compounds (eds Patai, S. et al.) Ch. 19 (Wiley, 2009).

  11. Negishi, E., Hu, Q., Huang, Z., Wang, G. & Yin, N. in The Chemistry of Organozinc Compounds (eds Rappaport, Z. & Marek. I.) Ch. 11 (Wiley, 2006).

  12. Corpet, M. & Gosmini, C. Cobalt-catalysed synthesis of highly substituted styrene derivatives via arylzincation of alkynes. Chem. Commun. 48, 11561–11563 (2012).

    Article  CAS  Google Scholar 

  13. Tan, B.-H., Dong, J. & Yoshikai, N. Cobalt-catalyzed addition of arylzinc reagents to alkynes to form ortho-alkenylarylzinc species through 1,4-cobalt migration. Angew. Chem. Int. Ed. Engl. 51, 9610–9614 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, B. & Yoshikai, N. Versatile synthesis of benzo-thiophenes and benzoseleno-phenes by rapid assembly of arylzinc reagents, alkynes, and elemental chalcogens. Angew. Chem. Int. Ed. Engl. 52, 10496–10499 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, J. & Yoshikai, N. Cobalt-catalyzed alkenylzincation of unfunctionalized alkynes. Angew. Chem. Int. Ed. Engl. 55, 336–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Ming, J. & Hayashi, T. Rhodium-catalyzed arylzincation of alkynes: ligand control of 1,4 migration selectivity. Org. Lett. 20, 6188–6192 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Q. et al. Iron-catalyzed vinyl-zincation of terminal alkynes. J. Am. Chem. Soc. 144, 515–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Hart, D. W. & Schwartz, J. Hydrozirconation. Organic synthesis via organozirconium intermediates. Synthesis and rearrangement of alkylzirconium(IV) complexes and their reaction with electrophiles. J. Am. Chem. Soc. 96, 8115–8116 (1974).

    Article  CAS  Google Scholar 

  19. Hanzawa, Y., Tabuchi, N. & Taguchi, T. Palladium-catalyzed acylation reactions of α,β-unsaturated ketones with acylzirconocene chloride: remarkable control of 1,2- and 1,4-selectivity by the catalyst. Tetrahedron Lett. 39, 8141–8144 (1998).

    Article  CAS  Google Scholar 

  20. Guo, L. & Rueping, M. Transition‐metal‐catalyzed decarbonylative coupling reactions: concepts, classifications, and applications. Chem. Eur. J. 24, 7794–7809 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Corey, E. J. & Hegedus, L. S. 1,4 Addition of acyl groups to conjugated enones. J. Am. Chem. Soc. 91, 4926–4928 (1969).

    Article  CAS  Google Scholar 

  22. Weng, Y. et al. Nickel-catalyzed allylic carbonylative coupling of alkyl zinc reagents with tert-butyl isocyanide. Nat. Commun. 11, 392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, W., Wang, Y., Weng, Y., Qu, J. & Chen, Y. Nickel-catalyzed formal aminocarbonylation of unactivated alkyl iodides with isocyanides. Org. Lett. 22, 3245–3250 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y., Huang, W., Wang, C., Qu, J. & Chen, Y. Nickel-catalyzed formal aminocarbonylation of secondary benzyl chlorides with isocyanides. Org. Lett. 22, 4245–4249 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, C. et al. Palladium-catalyzed secondary benzylic imidoylative reactions. Org. Lett. 22, 6954–6959 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, N., Wu, X., Wang, C., Qu, J. & Chen, Y. Nickel-catalyzed alkoxycarbonylation of aryl iodides with 1 atm CO. Chem. Commun. 58, 4643–4646 (2022).

    Article  CAS  Google Scholar 

  27. Hou, L., Huang, W., Wu, X., Qu, J. & Chen, Y. Nickel-catalyzed carbonylation of cyclopropanol with benzyl bromide for multisubstituted cyclopentenone synthesis. Org. Lett. 24, 2699–2704 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, C., Wu, X., Li, H., Qu, J. & Chen, Y. Carbonylative cross-coupling reaction of allylic alcohols and organoalanes with 1 atm CO enabled by nickel catalysis. Angew. Chem. Int. Ed. Engl. https://doi.org/10.1002/anie.202210484 (2022).

  29. Wu, X., Qu, J. & Chen, Y. Quinim: a new ligand scaffold enables nickel-catalyzed enantioselective synthesis of α-alkylated γ-lactam. J. Am. Chem. Soc. 142, 15654–15660 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, X. et al. Catalytic desymmetric dicarbofunctionalization of unactivated alkenes. Angew. Chem. Int. Ed. Engl. 61, e202111598 (2022).

    CAS  PubMed  Google Scholar 

  31. Zhou, B., Tan, T.-D., Zhu, X.-Q., Shang, M. & Ye, L.-W. Reversal of regioselectivity in ynamide chemistry. ACS Catal. 9, 6393–6406 (2019).

    Article  CAS  Google Scholar 

  32. Lynch, C. C., Sripada, A. & Wolf, C. Asymmetric synthesis with ynamides: unique reaction control, chemical diversity and applications. Chem. Soc. Rev. 49, 8543–8583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Y.-B., Qian, P.-C. & Ye, L.-W. Brønsted acid-mediated reactions of ynamides. Chem. Soc. Rev. 49, 8897–8909 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Hong, F.-L. & Ye, L.-W. Transition metal-catalyzed tandem reactions of ynamides for divergent N-heterocycle synthesis. Acc. Chem. Res. 53, 2003–2019 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Boutin, R., Koh, S. & Tam, W. Recent advances in transition metal-catalyzed reactions of oxabenzonorbornadiene. Curr. Org. Synth. 16, 460–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lautens, M., Fagnou, K. & Hiebert, S. Transition metal-catalyzed enantioselective ring-opening reactions of oxabicyclic alkenes. Acc. Chem. Res. 36, 48–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kumar, S. V., Yen, A., Lautens, M. & Guiry, P. J. Catalytic asymmetric transformations of oxa- and azabicyclic alkenes. Chem. Soc. Rev. 50, 3013–3093 (2021).

    Article  Google Scholar 

  38. Menard, F., Weise, C. F. & Lautens, M. Rh(I)-catalyzed carbonylative ring opening of diazabicycles with acyl anion equivalents. Org. Lett. 9, 5365–5367 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Tamaru, Y. Modern Organonickel Chemistry (Wiley-VCH, 2005).

  40. Wang, Q. & Chen, C. Nickel-catalyzed carbonylative Negishi cross-coupling reactions. Tetrahedron Lett. 49, 2916–2921 (2008).

    Article  CAS  Google Scholar 

  41. Andersen, T. L., Donslund, A. S., Neumann, K. T. & Skrydstrup, T. Carbonylative coupling of alkyl zinc reagents with benzyl bromides catalyzed by an NN2 pincer ligand nickel complex. Angew. Chem. Int. Ed. Engl. 57, 800–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Donslund, A. S. et al. Access to β-ketonitriles through nickel-catalyzed carbonylative coupling of α-bromonitriles with alkylzinc reagents. Chem. Eur. J. 25, 9856–9860 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Ravn, A. K. et al. Carbon isotope labeling strategy for β-amino acid derivatives via carbonylation of azanickellacycle. J. Am. Chem. Soc. 141, 11821–11826 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, H.-Y., Gao, X., Zhang, S. & Zhang, X. Nickel-catalyzed carbonylation of difluoroalkyl bromides with arylboronic acids. Org. Lett. 21, 1031–1036 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Donslund, A. S. et al. Direct access to isotopically labeled aliphatic ketones mediated by nickel(I) activation. Angew. Chem. Int. Ed. Engl. 59, 8099–8103 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Cheng, R., Zhao, H.-Y., Zhang, S. & Zhang, X. Nickel-catalyzed carbonylation of secondary trifluoromethylated, difluoromethylated, and nonfluorinated aliphatic electrophiles with arylboronic acids under 1 atm of CO. ACS Catal. 10, 36–42 (2020).

    Article  CAS  Google Scholar 

  47. Pedersen, S. et al. A nickel(II)-mediated thiocarbonylation strategy for carbon isotope labeling of aliphatic carboxamides. Chem. Eur. J. 27, 7114–7123 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, R. et al. Highly γ-selective arylation and carbonylative arylation of 3-bromo-3,3-difluoropropene via nickel catalysis. Angew. Chem. Int. Ed. Engl. 60, 12386–12391 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, M., Zhao, H.-Y., Zhang, S., Zhang, Y. & Zhang, X. Nickel-catalyzed four-component carbocarbonylation of alkenes under 1 atm of CO. J. Am. Chem. Soc. 142, 18191–18199 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, X. et al. Divergent aminocarbonylations of alkynes enabled by photoredox/nickel dual catalysis. Angew. Chem. Int. Ed. Engl. 60, 26511–26517 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, J. & Zhu, S. Nickel-catalyzed multicomponent coupling: synthesis of α‑chiral ketones by reductive hydrocarbonylation of alkenes. J. Am. Chem. Soc. 143, 14089–14096 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Gourdet, B. & Lam, H. W. Stereoselective synthesis of multisubstituted enamides via rhodium-catalyzed carbozincation of ynamides. J. Am. Chem. Soc. 131, 3802–3803 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Gourdet, B., Rudkin, M. E., Watts, C. A. & Lam, H. W. Preparation of multisubstituted enamides via rhodium-catalyzed carbozincation and hydrozincation of ynamides. J. Org. Chem. 74, 7849–7858 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Ito, S., Itoh, T. & Nakamura, M. Diastereoselective carbometalation of oxa- and azabicyclic alkenes under iron catalysis. Angew. Chem. Int. Ed. Engl. 50, 454–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Sallio, R. et al. Cobalt-catalyzed carbozincation of ynamides. J. Org. Chem. 82, 1254–1259 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Morton, M. Anionic Polymerization: Principles and Practice (Academic Press, 1983).

  57. Haas, D., Hammann, J. M., Greiner, R. & Knochel, P. Recent developments in Negishi cross-coupling reactions. ACS Catal. 6, 1540–1552 (2016).

    Article  CAS  Google Scholar 

  58. Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem. Eur. J. 23, 8992–9008 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Whalley, D. M. & Greaney, M. F. Recent advances in the Smiles rearrangement: new opportunities for arylation. Synthesis 54, 1908–1918 (2022).

    Article  Google Scholar 

  60. Wang, Z. S. et al. Ynamide Smiles rearrangement triggered by visible-light-mediated regioselective ketyl–ynamide coupling: rapid access to functionalized indoles and isoquinolines. J. Am. Chem. Soc. 142, 3636–3644 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Holden, C. M., Sohel, S. M. & Greaney, M. F. Metal free bi(hetero)aryl synthesis: a benzyne Truce–Smiles rearrangement. Angew. Chem. Int. Ed. Engl. 55, 2450–2453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Monos, T. M., McAtee, R. C. & Stephenson, C. R. J. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. Science 361, 1369–1373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Whalley, D. M., Seayad, J. & Greaney, M. F. Truce–Smiles rearrangements by strain release: harnessing primary alkyl radicals for metal-free arylation. Angew. Chem. Int. Ed. Engl. 60, 22219–22223 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Hervieu, C. et al. Asymmetric, visible light-mediated radical sulfinyl Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 13, 327–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Leonard, D. J., Ward, J. W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Abrams, R., Jesani, M. H., Browning, A. & Clayden, J. Triarylmethanes and their medium-ring analogues by unactivated Truce–Smiles rearrangement of benzanilides. Angew. Chem. Int. Ed. Engl. 60, 11272–11277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Keay, B. A. & Rodrigo, R. A convergent synthesis of (±)daunomycinoni. Tetrahedron 40, 4597–4607 (1984).

    Article  CAS  Google Scholar 

  68. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Suman, G. R., Pandey, M. & Chakravarthy, A. S. J. Review on new horizons of aggregation induced emission: from design to development. Mater. Chem. Front. 5, 1541–1584 (2021).

    Article  Google Scholar 

  70. Cao, X. & Liu, B. Aggregation-induced emission: recent advances in materials and biomedical applications. Angew. Chem. Int. Ed. Engl. 59, 9868–9886 (2020).

    Article  Google Scholar 

  71. Frisch, M. J. et al. Gaussian 16, Revision C.01. (Gaussian Inc., 2016).

  72. Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22, 7169–7192 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  74. Head-Gordon, M., Pople, J. A. & Frisch, M. J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153, 503–506 (1988).

    Article  CAS  Google Scholar 

  75. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  76. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  77. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  78. Steinmetz, M. & Grimme, S. Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts. ChemistryOpen 2, 115–124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Paton, R. S. J., Rodríguez-Guerra, J. & Funes, J. I. bobbypaton/GoodVibes: GoodVibes v3.0.0. Zenodo https://doi.org/10.5281/zenodo.3346166 (2019).

  84. Budnikova, Y. H., Vicic, D. A. & Klein, A. Exploring mechanisms in Ni terpyridine catalyzed C–C cross-coupling reactions—a review. Inorganics 6, 18 (2018).

    Article  Google Scholar 

  85. Harvey, J. N., Aschi, M., Schwarz, H. & Koch, W. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc. 99, 95–99 (1998).

    Article  CAS  Google Scholar 

  86. Rodríguez-Guerra, J. jaimergp/easymecp: v0.3.2. Zenodo https://doi.org/10.5281/zenodo.4293422 (2020).

  87. Svatunek, D. & Houk, K. N. auto DIAS: A Python tool for an automated distortion/interaction activation strain analysis. J. Comput. Chem. 40, 2509–2515 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Debrauwer, V. et al. Ligand-controlled regiodivergent palladium-catalyzed hydrogermylation of ynamides. J. Am. Chem. Soc. 142, 11153–11164 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC/China (grant nos. 21702060 and 22171079), the National Science Foundation (grant no. CHE-1764328), Natural Science Foundation of Shanghai (grant no. 21ZR1480400), Shanghai Rising-Star Program (grant no. 20QA1402300), Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX03), the Program of Introducing Talents of Discipline to Universities (grant no. B16017), the Fundamental Research Funds for the Central Universities and the China Postdoctoral Science Foundation (grant no. 2021M701197). A.T. acknowledges the support of the National Institutes of Health under Ruth L. Kirschstein National Research Service Award F32GM134709. Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (grant no. OCI-1053575). We thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and Y.C. conceived the project. Y.W., Y.Z., X.W., H.L., F.F. and C.W. performed the experiments under the supervision of J.Q. and Y.C. A.T. performed DFT calculations under the supervision of K.N.H. Y.Y. performed the photophysical properties tests under the supervision of Z.G. Y.W., X.W., A.T., K.N.H. and Y.C. wrote the manuscript with feedback from all authors.

Corresponding authors

Correspondence to K. N. Houk or Yifeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Synthesis thanks Long-Wu Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Fig. 1 and Tables 1–4.

Supplementary Data 1

Crystallographic data for compound 5af, CCDC 2054942.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Y., Zhang, Y., Turlik, A. et al. Nickel-catalysed regio- and stereoselective acylzincation of unsaturated hydrocarbons with organozincs and CO. Nat. Synth 2, 261–274 (2023). https://doi.org/10.1038/s44160-022-00208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00208-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing