Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general approach to 3D-printed single-atom catalysts

Abstract

A mass production route to single-atom catalysts (SACs) is crucial for their end use application. To date, the direct fabrication of SACs via a simple and economic manufacturing route remains a challenge, with current approaches relying on convoluted processes using expensive components. Here, a straightforward and cost-effective three-dimensional (3D) printing approach is developed to fabricate a library of SACs. Despite changing synthetic parameters, including centre transition metal atom, metal loading, coordination environment and spatial geometry, the products show similar atomic dispersion nature of single metal sites, demonstrating the generality of the approach. The 3D-printed SACs exhibited excellent activity and stability in the nitrate reduction reaction. It is expected that this 3D-printing technique can be used as a method for large-scale commercial production of SACs, thus enabling the use of these materials in a broad spectrum of industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthesis procedure.
Fig. 2: Universality of elements and metal loadings.
Fig. 3: Universality of coordination environments and spatial geometries.
Fig. 4: Electrocatalytic performance of 3D-printed SACs for nitrate reduction reaction.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the article and its Supplementary information. Source data are provided with this paper.

References

  1. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Qiao, B. et al. Single-atom catalysis of co oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, L. et al. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv. Mater. 33, 2100150 (2021).

    Article  CAS  Google Scholar 

  4. Chen, B., Zhong, X., Zhou, G., Zhao, N. & Cheng, H. M. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 33, 2105812 (2021).

    Google Scholar 

  5. Wang, Y. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Deng, Q. et al. Hydrogen-catalyzed acid transformation for the hydration of alkenes and epoxy alkanes over Co–N frustrated lewis pair surfaces. J. Am. Chem. Soc. 143, 21294–21301 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. et al. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 61, 202201491 (2022).

    Google Scholar 

  9. Zhang, H. B., Lu, X. F., Wu, Z. P. & Lou, X. W. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei, Y. S., Zhang, M., Zou, R. & Xu, Q. Metal–organic framework-based catalysts with single metal sites. Chem. Rev. 120, 12089–12174 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Hai, X. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, X. et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater. 32, 1906905 (2020).

    Article  CAS  Google Scholar 

  14. Lai, W. H. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem. Int. Ed. Engl. 58, 11868–11873 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Y. et al. Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 33, 2102801 (2021).

    Article  CAS  Google Scholar 

  17. Jiao, L. et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 20, 1385–1391 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, H. et al. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 143, 2173–2177 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119, 1806–1854 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Peng, P. et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, aaw2322 (2019).

    Article  Google Scholar 

  22. Wang, L. et al. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 5, eaax6322 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, G. et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 15, 2619–2628 (2022).

    Article  CAS  Google Scholar 

  24. Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    Article  CAS  Google Scholar 

  25. Gu, J., Hsu, C. S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article  PubMed  Google Scholar 

  27. Chen, W. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 14, 6428–6440 (2021).

    Article  CAS  Google Scholar 

  28. Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  30. Feng, L., Wang, K. Y., Willman, J. & Zhou, H. C. Hierarchy in metal–organic frameworks. ACS Cent. Sci. 6, 359–367 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorrenti, A. et al. Growing and shaping metal–organic framework single crystals at the millimeter scale. J. Am. Chem. Soc. 142, 9372–9381 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Venna, S. R., Jasinski, J. B. & Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, K. et al. Ordered macro-microporous metal-organic framework single crystals. Science 359, 206–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Bai, Y. et al. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Kong, X. J. et al. Constructing new metal–organic frameworks with complicated ligands from ‘one-pot’ in situ reactions. Chem. Sci. 10, 3949–3955 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xing, L. et al. Top-down synthetic strategies toward single atoms on the rise. Matter 5, 788–807 (2022).

    Article  CAS  Google Scholar 

  37. Han, G. F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Peng, Y. et al. Laser solid-phase synthesis of single-atom catalysts. Light Sci. Appl. 10, 168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Browne, M. P., Redondo, E. & Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 120, 2783–2810 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, C. Y., Taylor, A. C., Nattestad, A., Beirne, S. & Wallace, G. G. 3D printing for electrocatalytic applications. Joule 3, 1835–1849 (2019).

    Article  CAS  Google Scholar 

  42. dos Santos, M. F. et al. 3D-printed low-cost spectroelectrochemical cell for in situ raman measurements. Anal. Chem. 91, 10386–10389 (2019).

    Article  PubMed  Google Scholar 

  43. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartings, M. R. & Ahmed, Z. Chemistry from 3D printed objects. Nat. Rev. Chem. 3, 305–314 (2019).

    Article  Google Scholar 

  45. Zhang, M. et al. Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154–5158 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Hou, W. et al. Automatic generation of 3D-printed reactionware for chemical synthesis digitization using chemscad. ACS Cent. Sci. 7, 212–218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sullivan, I. et al. 3D printed nickel–molybdenum-based electrocatalysts for hydrogen evolution at low overpotentials in a flow-through configuration. ACS Appl. Mater. Interfaces 13, 20260–20268 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Funke, H., Chukalina, M. & Scheinost, A. C. A new FEFF-based wavelet for EXAFS data analysis. J Synchrotron Radiat. 14, 426–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).

    Article  Google Scholar 

  51. Wang, Y. et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 9, 6252–6261 (2019).

    Article  CAS  Google Scholar 

  52. Zhang, S. et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew. Chem. Int. Ed. Engl. 59, 13423–13429 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. Engl. 59, 13057–13062 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Li, Z. et al. Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 430, 132882 (2022).

    Article  CAS  Google Scholar 

  55. Han, Y. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 11, 2348–2352 (2018).

    Article  CAS  Google Scholar 

  56. Liu, M. et al. Atomically-dispersed NiN4–Cl active sites with axial Ni–Cl coordination for accelerating electrocatalytic hydrogen evolution. J. Mater. Chem. A 10, 6007–6015 (2022).

    Article  Google Scholar 

  57. Li, P., Jin, Z., Fang, Z. & Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021).

    Article  CAS  Google Scholar 

  58. Singh, B. et al. Single-atom (iron-based) catalysts: synthesis and applications. Chem. Rev. 121, 13620–13697 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Tang, J. et al. Injection-free delivery of MSC-derived extracellular vesicles for myocardial infarction therapeutics. Adv. Healthcare Mater. 11, 2100312 (2022).

    Article  CAS  Google Scholar 

  60. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Li, L. et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem. Int. Ed. Engl. 60, 14131–14137 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  65. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  66. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  67. Wan, H., Bagger, A. & Rossmeisl, J. Electrochemical nitric oxide reduction on metal surfaces. Angew. Chem. Int. Ed. Engl. 60, 21966–21972 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Calle-Vallejo, F., Huang, M., Henry, J. B., Koper, M. T. M. & Bandarenka, A. S. Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate. Phys. Chem. Chem. Phys. 15, 3196–3202 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DFT computations within this work were supported by computational resources provided by the Australian Government through NCI under the National Computational Merit Allocation Scheme and the Phoenix High Performance Compute (HPC) Service at The University of Adelaide. This research was undertaken on the XAS and Soft X-ray beamlines at the Australian Synchrotron, part of ANSTO. F.X. thanks H. Jin, C. Tang, Y. Jiao, Y. Zheng, P. Wang and J. Shan from the school of CEAM, A. Slattery and S. Gilbert from Adelaide Microscopy at the University of Adelaide, and H. Yu from the University of South Australia for constructive suggestions and help. This study was supported by the Australian Research Council (grant Nos. FL170100154-S.Z.Q and DP220102596-S.Z.Q), the New Zealand Health Research Council (grant No. 19/779 to C.X.), the New Zealand Ministry for Business, Innovation and Employment (grant No. MBIE Science Whitinga Fellowship, MWF-UOO2103 to C.X.) and the National Heart Foundation of New Zealand (grant Nos. 1891, 1896 to C.X.).

Author information

Authors and Affiliations

Authors

Contributions

F.X. and C.X. conceived the project. S.-Z.Q. supervised the project and whole studies. F.X. and C.X. performed the materials preparations with the assistance of J.T. and T.W. F.X. and D.Y. conducted the electrochemical measurements. X.Z. conducted the DFT calculations. F.X., B.J., T.L. and G.L. performed the physicochemical characterizations. F.X., C.X., X.Z., D.Y. and S.-Z.Q. wrote the manuscript. S.-Z.Q. revised the manuscript for submission.

Corresponding author

Correspondence to Shi-Zhang Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Yu Chen, Xiong Wen (David) Lou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44 and Tables 1 and 2.

Supplementary Video 1

Typical printing process.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Cui, X., Zhi, X. et al. A general approach to 3D-printed single-atom catalysts. Nat. Synth 2, 129–139 (2023). https://doi.org/10.1038/s44160-022-00193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00193-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing