Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed convergent regio- and enantioselective alkynylallylic substitution

Abstract

Asymmetric allylic and propargylic substitutions have seen numerous applications in synthetic chemistry, constructing stereogenic centres vicinal to unsaturated C–C bonds. However, the merger of these two substitution processes into alkynylallylic substitution is relatively underdeveloped, probably owing to the challenge of controlling regio- and stereoselectivity. Here we report the development of enantioselective intermolecular and decarboxylative alkynylallylic aminations, alkoxylation and alkylation for the synthesis of a range of enantioenriched 1,4-enynes. Cu(I) and Cu(II) salts are both effective precatalysts for the process, which can also be readily performed on a gram scale in the presence of air and moisture with no erosion in yield or selectivity. The convergent nature of the process was shown through the synthesis of a single product from a mixture of eight regio- and enantiomeric alkynylallylic carbamates and carbonate substrates, in excellent yield and selectivity. X-ray crystallographic and mechanistic analysis reveal that the Cu(I) and Cu(II) processes probably proceed through distinct enantio-determining transition state models, involving multiple ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and our concept.
Fig. 2: Established reaction conditions and preliminary mechanistic studies of different copper catalysts.
Fig. 3: Additional mechanistic experiments with the Cu(I) system and the proposed mechanism.
Fig. 4: Robustness tests and synthetic applications.
Fig. 5: Convergent synthesis and alkynylallylic alkoxylation and alkylation.

Similar content being viewed by others

Data availability

All relevant data are available within the Article or in the Supplementary Information files. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2100528 (rac-3a), 2155927 (C-1), 2143688 (C-2) and 2155930 (C-3).

References

  1. Trost, B. M. & Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

    Article  CAS  Google Scholar 

  2. Alexakis, A. et al. Transition metal catalyzed enantioselective allylic substitution in organic synthesis in Topics in Organometallic Chemistry Vol. 38 (ed. Kazmaier, U.) (Springer, 2012).

  3. Li, G., Huo, X., Jiang, X. & Zhang, W. Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chem. Soc. Rev. 49, 2060–2118 (2020).

    Article  CAS  Google Scholar 

  4. Süsse, L. & Stoltz, B. M. Enantioselective formation of quaternary centers by allylic alkylation with first-row transition-metal catalysts. Chem. Rev. 121, 4084–4099 (2021).

    Article  Google Scholar 

  5. Pàmies, O. et al. Recent advances in enantioselective Pd-catalyzed allylic substitution: from design to applications. Chem. Rev. 121, 4373–4505 (2021).

    Article  Google Scholar 

  6. Detz, R. J., Hiemstra, H. & van Maarseveen, J. H. Catalyzed propargylic substitution. Eur. J. Org. Chem. 2009, 6263–6276 (2009).

    Article  Google Scholar 

  7. Miyake, Y., Uemura, S. & Nishibayashi, Y. Catalytic propargylic substitution reactions. ChemCatChem 1, 342–356 (2009).

    Article  CAS  Google Scholar 

  8. Ljungdahl, N. & Kann, N. Transition-metal-catalyzed propargylic substitution. Angew. Chem. Int. Ed. 48, 642–644 (2009).

    Article  CAS  Google Scholar 

  9. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  Google Scholar 

  10. Roy, R. & Saha, S. Scope and advances in the catalytic propargylic substitution reaction. RSC Adv. 8, 31129–31193 (2018).

    Article  CAS  Google Scholar 

  11. Shirakura, M. & Suginome, M. Nickel-catalyzed asymmetric addition of alkyne C-H bonds across 1,3-dienes using taddol-based chiral phosphoramidite ligands. Angew. Chem. Int. Ed. 49, 3827–3829 (2010).

    Article  CAS  Google Scholar 

  12. Dabrowski, J. A., Gao, F. & Hoveyda, A. H. Enantioselective synthesis of alkyne-substituted quaternary carbon stereogenic centers through NHC-Cu-catalyzed allylic substitution reactions with (i-bu)2(alkynyl)aluminum reagents. J. Am. Chem. Soc. 133, 4778–4781 (2011).

    Article  CAS  Google Scholar 

  13. Hamilton, J. Y., Sarlah, D. & Carreira, E. M. Iridium-catalyzed enantioselective allylic alkynylation. Angew. Chem. Int. Ed. 52, 7532–7535 (2013).

    Article  CAS  Google Scholar 

  14. Dabrowski, J. A., Haeffner, F. & Hoveyda, A. H. Combining NHC−Cu and Brønsted base catalysis: enantioselective allylic substitution/conjugate additions with alkynylaluminum reagents and stereospecific isomerization of the products to trisubstituted allenes. Angew. Chem. Int. Ed. 52, 7694–7699 (2013).

    Article  CAS  Google Scholar 

  15. Harada, A., Makida, Y., Sato, T., Ohmiya, H. & Sawamura, M. Copper-catalyzed enantioselective allylic alkylation of terminal alkyne pronucleophiles. J. Am. Chem. Soc. 136, 13932–13939 (2014).

    Article  CAS  Google Scholar 

  16. Okusu, S., Okazaki, H., Tokunaga, E., Soloshonok, V. A. & Shibata, N. Organocatalytic enantioselective nucleophilic alkynylation of allyl fluorides affording chiral skipped ene-ynes. Angew. Chem. Int. Ed. 55, 6744–6748 (2016).

    Article  CAS  Google Scholar 

  17. Cui, X.-Y. et al. Guanidine–copper complex-catalyzed enantioselective dynamic kinetic allylic alkynylation under biphasic condition. J. Am. Chem. Soc. 140, 8448–8455 (2018).

  18. Huang, W.-Y., Lu, C.-H., Ghorai, S., Li, B. & Li, C. Regio- and enantioselective allylic alkylation of terminal alkynes by synergistic Rh/Cu catalysis. J. Am. Chem. Soc. 142, 15276–15281 (2020).

    Article  CAS  Google Scholar 

  19. Huang, Y. et al. Ligand coordination- and dissociation-induced divergent allylic alkylations using alkynes. Chem 7, 812–826 (2021).

    Article  CAS  Google Scholar 

  20. Liu, L. et al. Copper-catalyzed intermolecular enantioselective radical oxidative C(sp3)-H/C(sp)-H cross-coupling with rationally designed oxazoline-derived N,N,P(O)-ligands. Angew. Chem. Int. Ed. 60, 26710–26717 (2021).

    Article  CAS  Google Scholar 

  21. Bai, J.-F., Yasumoto, K., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral 1,4-enynes through organocatalytic alkenylation of propargyl alcohols with trialkenylboroxines. Angew. Chem. Int. Ed. 58, 8898–8901 (2019).

    Article  CAS  Google Scholar 

  22. Zhang, K. et al. Enantioconvergent copper catalysis: in situ generation of the chiral phosphorus ylide and its Wittig reactions. J. Am. Chem. Soc. 139, 12847–12854 (2017).

    Article  CAS  Google Scholar 

  23. Trost, B. M., Hildbrand, S. & Dogra, K. Regio- and enantioselective molybdenum-catalyzed alkylations of polyenyl esters. J. Am. Chem. Soc. 121, 10416–10417 (1999).

    Article  CAS  Google Scholar 

  24. Kacprzynski, M. A. & Hoveyda, A. H. Cu-catalyzed asymmetric allylic alkylation of aromatic and aliphatic phosphates with alkylzinc reagents. An effective method for enantioselective synthesis of tertiary and quaternary carbons. J. Am. Chem. Soc. 126, 10676–10681 (2004).

    Article  CAS  Google Scholar 

  25. Li, H. & Alexakis, A. Enyne chlorides: substrates for copper-catalyzed asymmetric allylic alkylation. Angew. Chem. Int. Ed. 51, 1055–1058 (2012).

    Article  CAS  Google Scholar 

  26. Detz, R. J., Delville, M. M. E., Hiemstra, H. & van Maarseveen, J. H. Enantioselective copper-catalyzed propargylic amination. Angew. Chem. Int. Ed. 47, 3777–3780 (2008).

    Article  CAS  Google Scholar 

  27. Hattori, G., Matsuzawa, H., Miyake, Y. & Nishibayashi, Y. Copper-catalyzed asymmetric propargylic substitution reactions of propargylic acetates with amines. Angew. Chem. Int. Ed. 47, 3781–3783 (2008).

    Article  CAS  Google Scholar 

  28. Zhang, D. Y. & Hu, X. P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    Article  CAS  Google Scholar 

  29. Hattori, G. et al. Copper-catalyzed enantioselective propargylic amination of propargylic esters with amines: Copper-allenylidene complexes as key intermediates. J. Am. Chem. Soc. 132, 10592–10608 (2010).

    Article  CAS  Google Scholar 

  30. Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).

    Article  CAS  Google Scholar 

  31. Li, R.-Z. et al. Enantioselective propargylation of polyols and desymmetrization of meso 1,2-diols by copper/borinic acid dual catalysis. Angew. Chem. Int. Ed. 56, 7213–7217 (2017).

    Article  CAS  Google Scholar 

  32. Cheng, L.-J., Brown, A. P. N. & Cordier, C. J. Enantioselective propargylic [1,3]-rearrangements: copper-catalyzed O-to-N migrations toward C−N bond formation. Chem. Sci. 8, 4299–4305 (2017).

    Article  CAS  Google Scholar 

  33. Gómez, J. E., Cristòfol, À. & Kleij, A. W. Copper-catalyzed enantioselective construction of tertiary propargylic sulfones. Angew. Chem. Int. Ed. 58, 3903–3907 (2019).

    Article  Google Scholar 

  34. Li, R.-Z., Liu, D.-Q. & Niu, D. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).

    Article  CAS  Google Scholar 

  35. Zhang, C. et al. Highly diastereo- and enantioselective Cu-catalyzed [3 + 3] cycloaddition of propargyl esters with cyclic enamines toward chiral bicyclo[n.3.1] frameworks. J. Am. Chem. Soc. 134, 9585–9588 (2012).

    Article  CAS  Google Scholar 

  36. Zhu, F.-L., Wang, Y.-H., Zhang, D.-Y., Xu, J. & Hu, X.-P. Enantioselective synthesis of highly functionalized dihydrofurans through copper-catalyzed asymmetric formal [3+2] cycloaddition of β-ketoesters with propargylic esters. Angew. Chem. Int. Ed. 53, 10223–10227 (2014).

    Article  CAS  Google Scholar 

  37. Shao, W., Li, H., Liu, C., Liu, C. J. & You, S. L. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles. Angew. Chem. Int. Ed. 54, 7684–7687 (2015).

    Article  CAS  Google Scholar 

  38. Wang, Q. et al. Catalytic asymmetric [4 + 1] annulation of sulfur ylides with copper-allenylidene intermediates. J. Am. Chem. Soc. 138, 8360–8363 (2016).

    Article  CAS  Google Scholar 

  39. Song, J., Zhang, Z.-J. & Gong, L.-Z. Asymmetric [4 + 2] annulation of C1 ammonium enolates with copper-allenylidenes. Angew. Chem. Int. Ed. 56, 5212–5216 (2017).

    Article  CAS  Google Scholar 

  40. Gao, X., Cheng, R., Xiao, Y.-L., Wan, X.-L. & Zhang, X. Copper-catalyzed highly enantioselective difluoroalkylation of secondary propargyl sulfonates with difluoroenoxysilanes. Chem. 5, 2987–2999 (2019).

    Article  CAS  Google Scholar 

  41. Zhang, Z.-J. et al. N-heterocyclic carbene/copper cooperative catalysis for the asymmetric synthesis of spirooxindoles. Angew. Chem. Int. Ed. 58, 12190–12194 (2019).

    Article  CAS  Google Scholar 

  42. Simlandy, A. K. & Brown, M. K. Allenylidene induced 1,2-metalate rearrangement of indole-boronates: diastereoselective access to highly substituted indolines. Angew. Chem. Int. Ed. 60, 12366–12370 (2021).

    Article  CAS  Google Scholar 

  43. Niu, S. et al. Copper-catalyzed yne-allylic substitutions using stabilized nucleophiles. ACS Catal. 12, 6840–6850 (2022).

    Article  CAS  Google Scholar 

  44. Rej, R. K., Das, T., Hazra, S. & Nanda, S. Chemoenzymatic asymmetric synthesis of fluoxetine, atomoxetine, nisoxetine, and duloxetine. Tetrahedron: Asymmetry 24, 913–918 (2013).

    Article  CAS  Google Scholar 

  45. Smilovic, I. G. et al. Synthesis of enantiopure antiobesity drug lorcaserin. Bioorg. Med. Chem. 26, 2686–2690 (2018).

    Article  CAS  Google Scholar 

  46. Tewari, N., Maheshwari, N., Medhane, R., Nizar, H. & Prasad, M. A novel method for the large scale synthesis of cinacalcet hydrochloride using iron catalyzed C−C coupling. Org. Process Res. Dev. 16, 1566–1568 (2012).

    Article  CAS  Google Scholar 

  47. Lee, S. H. et al. Stereoselective amination of chiral benzylic ethers using chlorosulfonyl isocyanate: total synthesis of (+)-sertraline. J. Org. Chem. 76, 10011–10019 (2011).

    Article  CAS  Google Scholar 

  48. Ma, G. et al. A novel synthesis of rasagiline via a chemoenzymatic dynamic kinetic resolution. Org. Process Res. Dev. 18, 1169–1174 (2014).

    Article  CAS  Google Scholar 

  49. Otani, T. et al. Construction of dibenzo-fused seven- to nine-membered carbocycles via Brønsted acid-promoted intramolecular Friedel−Crafts-type alkenylation. Chem. Commun. 51, 7895–7898 (2015).

    Article  CAS  Google Scholar 

  50. Bymaster, F. P. et al. Duloxetine (cymbaltaTM), a dual inhibitor of serotonin and norepinephrine reuptake. Bioorg. Med. Chem. Lett. 13, 4477–4480 (2003).

    Article  CAS  Google Scholar 

  51. Liu, Z. & Xiang, J. A high yield and pilot-scale process for the preparation of adapalene. Org. Process Res. Dev. 10, 285–288 (2006).

    Article  CAS  Google Scholar 

  52. Rouden, J., Lasne, M.-C., Blanchet, J. & Baudoux, J. (−)-Cytisine and derivatives: synthesis, reactivity, and applications. Chem. Rev. 114, 712–778 (2014).

  53. Hughes, G., Kimura, M. & Buchwald, S. L. Catalytic enantioselective conjugate reduction of lactones and lactams. J. Am. Chem. Soc. 125, 11253–11258 (2003).

    Article  CAS  Google Scholar 

  54. Wang, H. et al. Selective inhibition of the Kir2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133. ACS Chem. Biol. 6, 845–856 (2011).

    Article  CAS  Google Scholar 

  55. Mohr, J. T. & Stoltz, B. M. Enantioselective Tsuji allylations. Chem. - Asian J. 2, 1476–1491 (2007).

    Article  CAS  Google Scholar 

  56. Weaver, J. D., Recio, A. III, Grenning, A. J. & Tunge, J. A. Transition metal-catalyzed decarboxylative allylation and benzylation reactions. Chem. Rev. 111, 1846–1913 (2011).

    Article  CAS  Google Scholar 

  57. James, J., Jackson, M. & Guiry, P. J. Palladium-catalyzed decarboxylative asymmetric allylic alkylation: development, mechanistic understanding and recent advances. Adv. Synth. Catal. 361, 3016–3049 (2019).

    Article  CAS  Google Scholar 

  58. Zhu, F.-L. et al. Enantioselective copper-catalyzed decarboxylative propargylic alkylation of propargyl β-ketoesters with a chiral ketimine P,N,N-ligand. Angew. Chem. Int. Ed. 53, 1410–1414 (2014).

    Article  CAS  Google Scholar 

  59. Zou, Y. et al. Enantioselective Cu-catalyzed decarboxylative propargylic amination of propargyl carbamates. Tetrahedron Lett. 55, 2033–2036 (2014).

    Article  CAS  Google Scholar 

  60. Lu, W.-Y. et al. Copper-catalyzed decarboxylative [3 + 2] annulation of ethynylethylene carbonates with azlactones: access to γ-butyrolactones bearing two vicinal quaternary carbon centers. J. Org. Chem. 86, 1779–1788 (2021).

    Article  CAS  Google Scholar 

  61. Guo, W., Zuo, L., Cui, M., Yan, B. & Ni, S. Propargylic amination enabled the access to enantioenriched acyclic α-quaternary α-amino ketones. J. Am. Chem. Soc. 143, 7629–7634 (2021).

    Article  CAS  Google Scholar 

  62. Xia, J.-T., Li, L. & Hu, X.-P. Copper-catalyzed decarboxylative propargylic alkylation of enol carbonates: stereoselective synthesis of quaternary α‑amino acids. ACS Catal. 11, 11843–11848 (2021).

    Article  CAS  Google Scholar 

  63. Ma, J. et al. Enantioselective synthesis of pyroglutamic acid esters from glycinate via carbonyl catalysis. Angew. Chem. Int. Ed. 60, 10588–10592 (2021).

    Article  CAS  Google Scholar 

  64. Chai, W. et al. Lewis-acid-promoted ligand-controlled regiodivergent cycloaddition of Pd-oxyallyl with 1,3-dienes: reaction development and origins of selectivities. J. Am. Chem. Soc. 143, 3595–3603 (2021).

    Article  CAS  Google Scholar 

  65. Larock, R. C., Yum, E. K. & Refvik, M. D. Synthesis of 2,3-disubstituted indoles via palladium-catalyzed annulation of internal alkynes. J. Org. Chem. 63, 7652–7662 (1998).

    Article  CAS  Google Scholar 

  66. Gommermann, N. & Knochel, P. Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(1)-coniine. Chem. Commun. 2004, 2324–2325 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant nos. NSFC 22071262 to Z.-T.H., and 22101296, 21871284 and 91956113 to G.-Q.L.), the Shanghai Rising-Star programme (grant no. 20QA1411300 to Z.-T.H.), the Shanghai Municipal Committee of Science and Technology (grant no. 22ZR1475200 to Z.-T.H.), the CAS Key Laboratory of Synthetic Chemistry of Natural Substances and the Shanghai Institute of Organic Chemistry for financial support. H. Luo and X.-S. Xue are thanked for help with preliminary trials and discussions on Density Functional Theory calculations.

Author information

Authors and Affiliations

Authors

Contributions

Z.-T.H. conceived the project. J.-S.M., H.-Y.L., Y.-W.C., Y.-Z.S., W.-C.Z., R.-P.L. and H.-X.W. performed the experiments. G.-Q.L. and Z.-T.H. supervised the project. Z.-T.H. wrote the manuscript with feedback from all authors.

Corresponding authors

Correspondence to Guo-Qiang Lin or Zhi-Tao He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jan van Maarseveen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–176 and Tables 1–14.

Supplementary Data 1

X-ray crystallographic data for C-1, CCDC 2155927.

Supplementary Data 2

X-ray crystallographic data for C-2, CCDC 2143688.

Supplementary Data 3

X-ray crystallographic data for C-3, CCDC 2155930.

Supplementary Data 4

X-ray crystallographic data for rac-3a, CCDC 2100528.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JS., Lu, HY., Chen, YW. et al. Copper-catalysed convergent regio- and enantioselective alkynylallylic substitution. Nat. Synth 2, 37–48 (2023). https://doi.org/10.1038/s44160-022-00176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00176-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing