Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of superconducting two-dimensional non-layered PdTe by interfacial reactions

Abstract

Highly crystalline two-dimensional (2D) superconductors are emerging as promising platforms for exploring quantum phenomena. Currently, 2D crystalline superconductors are mainly limited to layered materials. In contrast, non-layered 2D superconductors have rarely been investigated due to the inherent challenges for their synthesis within the 2D limit. Here, we developed a facile approach for the synthesis of non-layered 2D superconductors by inducing interfacial reactions at solid–solid interfaces which naturally serve as 2D templates. Highly crystalline 2D PdTe, a typical non-layered superconductor, has been successfully synthesized via this approach. The obtained 2D PdTe exhibited 2D superconductivity with thickness-dependent onset critical temperatures as low as ~2.56 K, lower than that of bulk PdTe. In addition to PdTe, other materials including 2D PtTe have been synthesized via this approach. Our work offers a controlled synthetic route to 2D non-layered materials with intriguing properties for fundamental research and practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of PdTe at the interface of Pd–PdTe2.
Fig. 2: Atomic-resolved STEM images of 2D PdTe generated by interfacial reaction.
Fig. 3: Superconductivity of 2D PdTe prepared by interfacial reaction.
Fig. 4: Interfacial reaction applied to the PdTe2–Ag and PtTe2–Pt systems.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the paper and its Supplementary information. Source data are provided with the paper.

References

  1. Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys. Rev. B 80, 184505 (2009).

    Article  Google Scholar 

  2. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Article  Google Scholar 

  3. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015).

    Article  Google Scholar 

  4. Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Y. et al. Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 20, 5728–5734 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. He, Q. L. et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 5, 4247 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C. et al. Two-dimensional superconductivity and topological states in PdTe2 thin films. Phys. Rev. Mater. 2, 094001 (2018).

    Article  CAS  Google Scholar 

  8. Fisher, M. P. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Yoo, Y., Degregorio, Z. P. & Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 137, 14281–14287 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892–11895 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J. et al. Controlled synthesis of two-dimensional 1T-TiSe2 with charge density wave transition by chemical vapor transport. J. Am. Chem. Soc. 138, 16216–16219 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Tiwari, B., Goyal, R., Jha, R., Dixit, A. & Awana, V. P. S. PdTe: a 4.5 K type-II BCS superconductor. Supercond. Sci. Technol. 28, 055008 (2015).

    Article  Google Scholar 

  15. Karki, A. B., Browne, D. A., Stadler, S., Li, J. & Jin, R. PdTe: a strongly coupled superconductor. J. Phys. Condens. Matter 24, 055701 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J. et al. Superconductivity at 2.5 K in the new transition-metal chalcogenide Ta2PdSe5. Supercond. Sci. Technol. 28, 115015 (2015).

    Article  Google Scholar 

  17. Matsumoto, R. et al. Pressure-induced superconductivity in tin sulfide. Phys. Rev. B 99, 184502 (2019).

    Article  CAS  Google Scholar 

  18. Wang, A. F. et al. Superconductivity at 32 K in single-crystalline RbxFe2-ySe2. Phys. Rev. B 83, 060512 (2011).

    Article  Google Scholar 

  19. Zheng, J. et al. Chemical synthesis and integration of highly conductive PdTe2 with low-dimensional semiconductors for p-type transistors with low contact barriers. Adv. Mater. 33, 2101150 (2021).

    Article  CAS  Google Scholar 

  20. Kristavchuk, A. V., Zabolotskaya, A. V., Voronin, M. V., Chareev, D. A. & Osadchii, E. G. Temperature dependence of tellurium fugacity for the kotulskite (PdTe)–merenskyite (PdTe2) equilibrium determined by the method of a solid-state galvanic cell. Phys. Chem. Miner. 48, 1–9 (2021).

    Article  Google Scholar 

  21. Li, E. et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chinese Phys. B 27, 086804 (2018).

    Article  Google Scholar 

  22. Vymazalová, A., Zaccarini, F. & Bakker, R. J. Raman spectroscopy characterisation of synthetic platinum-group minerals (PGM) in the Pd–Sn–Te and Pd–Pb–Te ternary systems. Eur. J. Mineral. 26, 711–716 (2014).

    Article  Google Scholar 

  23. Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2015).

    Article  Google Scholar 

  24. Tinkham, M. Effect of fluxoid quantization on transitions of superconducting films. Phys. Rev. 129, 2413–2422 (1963).

    Article  Google Scholar 

  25. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  Google Scholar 

  26. Zheng, F. et al. Emergent superconductivity in two-dimensional NiTe2 crystals. Phys. Rev. B 101, 100505 (2020).

    Article  CAS  Google Scholar 

  27. Milenov, T. I. et al. Preliminary studies of the Raman spectra of Ag2Te and Ag5Te3. Opt. Quantum Electron. 46, 573–580 (2013).

    Article  Google Scholar 

  28. Zhang, K. et al. Growth of large scale PtTe, PtTe2 and PtSe2 films on a wide range of substrates. Nano Res. 14, 1663–1667 (2020).

    Article  Google Scholar 

  29. Zhang, Y. et al. Proximity-effect-induced superconductivity in Bi2Te3/FeSe0.5Te0.5 thin-film heterostructures with different interface conditions. Phys. Rev. B 102, 064503 (2020).

    Article  CAS  Google Scholar 

  30. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  PubMed  Google Scholar 

  31. Lüpke, F. et al. Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. Nat. Phys. 16, 526–530 (2020).

    Article  Google Scholar 

  32. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  33. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, grant Nos. 21925504 and 21875127 to L.J.), National Key R&D Program of China (grant No. 2021YFA1200102 to L.J.) and the Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Contributions

L.J. and Y. W. conceived the ideas. Y. W. performed the experiments. J.Z. and M.S. synthesized the PdTe2 flakes. Q.L. and N. L. carried out the theoretical calculations. S.Y. assisted with PPMS and AFM characterizations. Y.W., Q.L. and L.J. co-wrote the manuscript. All the authors have read the manuscript and commented on it.

Corresponding author

Correspondence to Liying Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jin-Feng Jia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Discussion.

Supplementary Data 1

Source Raman spectral data of Supplementary Figs. 1, 11, 18, 20.

Supplementary Data 2

Source XPS data of Supplementary Figs. 1 and 5.

Supplementary Data 3

Source data of Supplementary Fig. 1.

Supplementary Data 4

Source electrical data of Supplementary Figs. 2, 13–15 and 17–21.

Supplementary Data 5

Source AFM height profile data of Supplementary Figs. 12 and 16.

Supplementary Data 6

Source AES data of Supplementary Figs. 3, 4 and 17.

Source data

Source Data Fig. 1

Source data of Raman spectra in Fig.1c and source data of XPS spectra in Fig. 1f.

Source Data Fig. 2

Atomic fraction data of Pd and Te in Fig. 2c.

Source Data Fig. 3

Source data of R–T plots in Fig. 3a–d, temperature dependence of critical magnetic fields in Fig. 3e and section of DOS for PdTe with 1 unit cell (1-UC) and 3-UC in Fig. 3f.

Source Data Fig. 4

Source data of Raman spectra in Fig. 4d and h.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zheng, J., Li, Q. et al. Synthesis of superconducting two-dimensional non-layered PdTe by interfacial reactions. Nat. Synth 1, 908–914 (2022). https://doi.org/10.1038/s44160-022-00149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00149-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing