Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nickel dual-atom sites for electrochemical carbon dioxide reduction

Abstract

Dual-atom catalysts, combining single-atom catalysts and metal alloys, are promising electrocatalysts for CO2 reduction but are limited by sluggish CO2 reduction kinetics and ill-defined dual-atom sites. Here, we develop a catalyst of Ni dual-atom sites via in situ conversion of nanoparticles into dual atoms. We achieve efficient electrocatalytic CO2 reduction on Ni dual-atom catalysts with a CO partial current density up to ~1 A cm−2 and turnover frequency of 77,500 h−1 at >99% Faradaic efficiency. In situ X-ray absorption and theoretical calculations reveal that during the catalytic process the Ni dual-atom sites trigger the adsorption of hydroxyl (OHad), forming electron-rich active centres that endow a moderate reaction kinetic barrier of *COOH formation and *CO desorption. The resultant catalytic microenvironment enables expedited kinetics compared with either the kinetics of bare dual-atom sites or OHad regulated single-atom sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology of Ni2NC.
Fig. 2: Structural characterizations of Ni2NC and Ni1NC.
Fig. 3: Electrocatalytic CO2 activity using flow cell with 1 M KOH electrolyte.
Fig. 4: In situ XAFS analysis.
Fig. 5: DFT calculations.
Fig. 6: Characterizations of other M2NC catalysts.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the article and Supplementary Information. Source data are provided with this paper.

References

  1. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    Article  CAS  Google Scholar 

  2. Digdaya, I. A. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat. Commun. 11, 4412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin, S., Hao, Z., Zhang, K., Yan, Z. & Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. Engl. 60, 20627–20648 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal–organic frameworks. Nat. Commun. 11, 1409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell, S. & Pérez-Ramírez, J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin, L. et al. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019).

    Article  CAS  Google Scholar 

  8. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  9. Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Ding, T. et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 11317–11324 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Li, Y. et al. Synergistic effect of atomically dispersed Ni–Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 33, 2102212 (2021).

    Article  CAS  Google Scholar 

  12. Okamura, M. et al. A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Rong, H., Ji, S., Zhang, J., Wang, D. & Li, Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, Y. et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi, K. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  19. Li, J. et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat. Commun. 12, 6806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, B. et al. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni–N4 sites. Adv. Energy Mater. 11, 2102152 (2021).

    Article  CAS  Google Scholar 

  21. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  22. Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Ni, W. et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 Site. Adv. Mater. 33, 2003238 (2021).

    Article  CAS  Google Scholar 

  25. Wang, J., Zhong, H.-x, Wang, Z.-l, Meng, F.-l & Zhang, X.-b Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10, 2342–2348 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Firet, N. J. & Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 7, 606–612 (2017).

    Article  CAS  Google Scholar 

  28. Zhu, W. et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem. Int. Ed. Engl. 59, 12664–12668 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  30. Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article  PubMed  CAS  Google Scholar 

  31. Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    Article  CAS  Google Scholar 

  32. Zhao, X. & Liu, Y. Unveiling the active structure of single nickel atom catalysis: critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, X. & Liu, Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 143, 9423–9428 (2021).

    Article  CAS  Google Scholar 

  34. Chen, J.-W. et al. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nat. Commun. 13, 1734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan, Y., Zhang, C., Liu, Z., Chen, C. & Li, Y. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter 2, 78–110 (2020).

    Article  Google Scholar 

  36. Zhang, L. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kumar, B. et al. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. Engl. 56, 3645–3649 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Pintado, S., Goberna-Ferrón, S., Escudero-Adán, E. C. & Galán-Mascarós, J. R. Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian Blue coordination polymers. J. Am. Chem. Soc. 135, 13270–13273 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7, 436–449 (2021).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  42. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  CAS  Google Scholar 

  46. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

H.X.Z. acknowledges funding from the Alexander von Humboldt Foundation. This work was supported by the National Natural Science Foundation of China (21725103, 51925102), National Key R&D Program of China (2020YFB1505603, 2019YFA0705704), Jilin Province Science and Technology Development Plan Funding Project (20200201079JC) and Youth Innovation Promotion Association CAS (2021223).

Author information

Authors and Affiliations

Authors

Contributions

X.B.Z. conceived and designed the project. Q.H. synthesized the materials. Q.H. and K.H.L. carried out the electrochemical testing. H.X.Z., Q.H., K.H.L. and D.X.L. contributed to the characterization and related discussion. Q.H. and N.Z. performed in situ ATR-IR measurements. J.Z.W. contributed to the theoretical calculations. Z.H.R., X.L. and L.W.C. contributed to the in situ ESTEM measurements. X.Z. contributed to the XANES simulations. H.Z. and J.L. contributed to the STEM simulation. Q.H., H.X.Z., K.H.L., J.Z.W., J.M.Y. and X.B.Z. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xin-bo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Shaojun Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–11 and Figs. 1–73.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Zhong, Hx., Wang, Jz. et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth 1, 719–728 (2022). https://doi.org/10.1038/s44160-022-00138-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00138-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing